
TrickleTree: A Gossiping Approach To Fast And
Collision Free Staggered Scheduling

Wojciech Bober, Chris J. Bleakley, Xiaoyun Li
UCD Complex & Adaptive Systems Laboratory

UCD School of Computer Science and Informatics
University College Dublin
Belfield, Dublin 4, Ireland

{wojciech.bober, xiaoyun.li, chris.bleakley}@ucd.ie

Abstract—In recent years, data gathering has received signif-
icant attention as an application of Wireless Sensor Networks
(WSNs). Staggered data tree based protocols have been shown to
be successful in reducing energy consumption in data gathering
scenarios. An important part of staggered protocols is the
process of schedule construction. In order to minimize energy
consumption, this process must be fast. In this paper, we present
TrickleTree, a fast distributed protocol for establishing staggered
and collision free communication schedule. TrickleTree has three
functions: to establish routes, i.e., construct a data gathering tree,
to establish a staggered communication schedule, i.e, assign time
slots to links, and to disseminate the maximal tree depth in the
network. To minimize network setup time, TrickleTree combines
neighborhood discovery and schedule construction into one step.
To ensure that good neighbors are discovered before a node joins
the network, TrickleTree uses a rating mechanism. Collisions
during node association are reduced by using association slots. To
increase the message delivery rate with small message overhead,
TrickleTree uses adaptive gossiping. We provide a formal analysis
of the protocol properties i.e., collision free scheduling and
termination. The behavior of the proposed approach is evaluated
in simulation. The results show up to 90% in a reduction in
schedule setup time and a 50% reduction of duty cycle compared
to a flooding approach.

Index Terms—Wireless sensor networks, staggered schedule,
schedule construction, fast association, collisions reduction, asso-
ciation ranking

I. INTRODUCTION

This paper is an extended version of [1]. It contains a
modified version of the previously proposed algorithm. It
contains analysis of the algorithm with proofs of termination
and collision free slot assignment. Additional simulations were
added for in-depth evaluation of the algorithm.

The promise of cheap sensors deployed at large scale is
attractive for areas such us microclimate research [1], and
habitat monitoring [2]. Precise observations produce large
quantities of data, that must be transmitted via the network.
In addition, these networks are often expected to operate for
long periods of time. Although various methods of energy
harvesting have been proposed [3], so far using a battery
is the most common method of powering nodes. Dutta et
al. [4] have shown that radio operation is the main cause
of power consumption. Therefore, communication protocols
which reduce radio on-time are crucial for achieving the goal
of long network lifetime.

Data gathering networks are characterized by a many to one
traffic pattern. A common approach to routing in this class of
networks is tree based routing. In tree base routing, a node
selects a node closer to the sink as its parent. All messages
are forwarded only to this node. In order to improve energy-
efficiency and data latency a staggered approach has been
proposed. In this approach, communication between nodes is
scheduled according to their level in the tree (i.e., hop count
from the root). Only two consecutive levels off the tree are
active at any given time. Hence all nodes in the network must
be aware of the maximal tree depth in order to schedule their
communication correctly. The quality of wireless links can
change considerably in a short amount of time [5]. This means
a new schedule must be established each time the network
topology changes. Therefore it is important that a staggered
schedule is established quickly, so that the cost of control
does not exceed the cost of data transmission. We address
this problem by proposing TrickleTree, a protocol designed to
establish staggered schedule quickly, yet with a small message
overhead.

TrickleTree differs from existing protocols, in that it com-
bines neighborhood discovery and schedule construction into
one step. This reduces the number of messages which must be
exchanged. To ensure that a balanced schedule is constructed,
TrickleTree carefully selects the time at which a node starts its
association process. This is done by delaying the association
process accordingly to a ranking function. The function takes
into consideration link quality and the number of potential
parents. To reduce the likelihood of a node becoming an
orphan these factors are weighted accordingly to the number
of messages received by the node.

TrickleTree is based on gossiping, which is a simple but
robust and reliable technique of information dissemination.
We show how this technique can be applied to establish a
staggered schedule. Thanks to adaptive mechanisms derived
from the gossiping approach, we are able to balance the delay
and communication overhead (energy consumption) required
to establish the network tree and communication schedule.
TrickleTree is able to derive a collision free schedule, therefore
energy is not wasted resolving collisions during the data
gathering phase. To the authors’ knowledge, this is the first
protocol for establishing staggered communication schedules.

81

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The contribution of the work is a novel algorithm which
has three functions: 1) to establish communication routes, i.e,
construct data gathering tree, 2) to establish a collision free
staggered communication schedule, i.e., assign time slots to
nodes, 3) and to disseminate the maximal tree depth in the
network.

The rest of the paper is structured as follows. In section II
we discuss related work. Section III, describes the proposed
protocol. In Section IV we provide proof of collision free
scheduling and algorithm termination. Section V presents
simulation results. We conclude the paper with Section VI.

II. RELATED WORK

In this section, we discuss two categories of protocols
related to TrickleTree. The first category are protocols which
can be used to create staggered schedule. The second, is
a category of protocols used to disseminate information in
Wireless Sensor Networks.

A. Staggered scheduling protocols

Staggered scheduling was first introduced in D-MAC by
Lu [7]. In D-MAC, transmission times are staggered in very
short time slots. This reduces latency and end-to-end delivery
time because the receiver is guaranteed to be awake at the
time of the sender’s transmission. Because nodes with at same
network depth have the same transmission time offset they
must to compete for the channel. A CSMA scheme is used to
deal with collisions. The authors do not discuss many practical
issues related to the protocol. For example, how nodes learn
the maximal routing tree depth in order to calculate their wake-
up offset.

A similar concept is used in Merlin [8], a cross-layer
protocol integrating MAC and routing. In Merlin staggered
scheduling is used for up- and down-link traffic.

TIGRA [9] is a protocol designed for periodic collection of
raw data from the network. The authors focus on minimization
of the time required to collect the data from the entire network.
The collection time is reduced by two techniques. Firstly,
data from separate packets is merged into one packet. Note,
this is different from data aggregation, where a single value
is calculated to represent data from a number of sources.
Secondly, collisions are eliminated by ensuring interference-
free transmission scheduling.

ASLEEP [10] is a data gathering protocol focusing on
reducing message latency. ASLEEP, like TIGRA, uses stag-
gered data gathering to reduce latency. The protocol is able to
adapt to varying bandwidth requirements by run-time schedule
adjustment. ASLEEP adjusts the active radio time at each level
of the tree. Schedule modification is made based on previous
traffic trends. If bandwidth requirements are increasing over
a certain period of time, then the active period is extended,
otherwise the active period is decreased.

In [6], staggered scheduling was combined with syn-
chronous low power listening to reduce energy consumption
in low rate data collection networks. Figure1 illustrates the
concept of a staggered schedule implemented in Bailigh [6].

The network is organized as a tree. Each node has exactly
one parent, which forwards data to the tree root (the sink).
Nodes at the same distance from the sink (hop count) are at
the same level. At any time only two consecutive levels of the
tree are active. In the example, nodes A, B and C, at Level
2 transmit data to nodes D and E, at Level 1, using links
1, 2, and 4. This approach reduces delivery latency because
messages are almost immediately forwarded. When the slots
are guaranteed to be collision and contention free there is no
delay due to backoff, as would occur in a CSMA protocol.
However, in the case of distributed scheduling, links 1 and 4
sometimes might use the same time slot. If nodes C and D
are in radio communication range this may lead to collision.
This is an example of the hidden terminal problem in present
in networks using staggered scheduling.

B. Dissemination protocols

When all nodes in the network must share common in-
formation, message dissemination is necessary. Early systems
used packet floods to disseminate common information such
as parameters or commands. Flooding protocols rebroadcast
packets they receive [11]. This is a very simple method,
which has many disadvantages. Firstly, flooding is unreliable.
Due to collisions, some nodes do not receive the information,
so typically flooding is repeated. This leads to excessive re-
broadcasting and is energy inefficient. To overcome this prob-
lem, adaptive protocols have been introduced. They modify
node behavior depending on the information they receive.
Dissemination protocols which have proven to work reliably
in Wireless Sensor Networks are based on gossiping. Trickle
[12] was the first proof of concept implementation designed for
code dissemination. Trickle is an adaptive gossiping protocol.
When nodes detect inconsistent information in the network,
they broadcast new information quickly. When nodes agree,
they slow down their communication rate exponentially, such
that, when in a stable state, they transmit infrequently. Based
on this concept, dissemination protocols have been proposed
for various applications [13], [14]. TrickleTree is a modifica-
tion of Trickle used to construct a staggered scheduling tree.
We use adaptive beaconing for neighborhood discovery and
tree depth dissemination.

TrickleTree is able to minimize collisions between nodes in
the tree by scheduling individual transmission slots. We use
2-hop neighborhood information about scheduled time slots
to reduce collisions. This technique is often used in TDMA
MAC protocols [15]. Fang-Jing Wu [16] shows how collision-
free scheduling can be taken advantage of tree based networks.

III. TRICKLETREE PROTOCOL

TrickleTree uses three types of packets Beacon (BCN), Join
Request (JREQ) and Join Reply (JREP). Each packet contains
a source and destination address. A BCN packet contains the
sender’s distance from the sink (hop count), parent address,
slot number, and the maximal tree depth known to the node,
and number of free slots. A JREQ packet contains the same
fields. JREP contains the slot number assigned by the parent

82

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1: Staggered communication scheme used in [6].

to the child. Note that the purpose of TrickeTree is to quickly
create a short living data gathering tree. We assume, that
during the tree lifetime (tens of seconds), the network topology
remains stable. Therefore, TrickleTree lacks functions typical
for routing protocols, i.e., route maintenance. If required, this
can be achieved by running TrickleTree periodically.

A node can be in one of six states: Suspended, Listening,
Joining, Collision, Gossiping or Connected. Initially a node
starts in a Listening state and waits for BCN packets. Upon
receiving a BCN packet the node compute value of the ranking
function R. After that it delays the start of its association
process accordingly to the function value. In general, the
lower the value of the function the delay is longer. Each
time a BCN packet is received, the ranking function R is
computed. If a BCN from a better candidate is received the
association process delay is set accordingly to the new value.
This means that a node waits for a better candidates for
parent before starting association. This is necessary because
the neighborhood is discovered during schedule construction.

TrickleTree uses a Shortest Path with threshold (SP (x))
metric to select the best parent. This metric selects a node with
the smallest distance from the sink among neighbors with link
quality exceeding x. The SP (x) metric is used for simplicity.
More complicated metrics like MintRoute [17] can be used.

A. Beacon Dissemination

Beacon dissemination based on gossiping is key to the
proposed approach, serving multiple purposes. In principle,
Trickle adjusts the frequency of information dissemination
depending on consistency. When information in the network
is consistent (e.g., a version of binary code) beacons are
broadcasted infrequently. In contrast, when a node detects
inconsistent information, the frequency of beaconing is in-
creased. Consistency in the network is determined by over-

Table I: SUMMARY OF SYMBOL DEFINITIONS

Symbol Description Symbol Description
t beacon timer td discovery timer
τl low gossiping period tg gossiping timer
τh high gossiping period sa # of available slots
js join slot tpkt packet duration
jmax max # of join slots tack ack duration
l node level jdly join delay
d tree depth

Table II: TrickleTree dissemination algorithm pseudocode.

Event Action

τ expires If c > 0 double τ , up to τh.
Set c = 0, pick a new t1.

t expires If c < k or c = 0, transmit.
Receive BCN and Increment c.
BCN(d) = d
Join network; change level; Set τ to τl ,
Receive BCN and Set c = 0, pick a new t1.
BCN(d) �= d

1 t is a random value from the range [τ
2
, τ)

hearing beacons from other nodes. In Trickle dissemination,
information is divided into metadata and the data itself. This
allows separate transmission of large data (e.g., binary code)
from version information. In TrickleTree only small beacons
are broadcasted thus there is no separation between metadata
and data.

The symbol definitions used in TrickleTree are described
in Table I. TrickleTree uses a modified version of the Trickle
algorithm. In the original algorithm, the gossiping period τ
is doubled whenever the previous gossiping period expires.
In TrickleTree τ is doubled only if in the previous gossiping
period a beacon with consistent tree depth (d) was received
(c > 0). This is a simple method of detecting collision due to
a hidden terminal: if the node broadcasts a beacon, it should
receive at least one from one of its neighbors. For the same
reason, a beacon is transmitted whenever the beacon period t
expires and no beacon with the same tree depth is received
(c = 0). This is different from the original Trickle algorithm.
We have also extended the list of events on which the gossiping
period is set to its lowest value. Table II presents pseudocode
for the TrickleTree algorithm.

Upon receiving a BCN packet, a node performs a set of
actions. Information from the packet is used to construct a
neighbor table. Each record of the table consists of a node
address, distance from the sink, assigned slot number, received
signal strength, and time synchronization data. Every time a
node receives a BCN packet from a node which is already in
the table, the information is updated.

Because staggered data gathering requires maximal tree
depth for timing offset calculation, all nodes in the network
must agree on a common value. Each node connected to the

83

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network disseminates the maximal tree depth it currently holds
in the BCN packet. If a node overhears a BCN packet which
has a maximal tree depth field value greater than its current
tree depth value, the node updates its current tree depth to the
received value. It then resets the counter c, sets τ to τ l and
picks up a new t value. This allows for fast dissemination
of a new tree depth in the network. TrickleTree does not
have explicit mechanisms to check the consistency of the tree
depth value. We rely on the general convergence property of
dissemination protocols based on gossiping.

Note that a node is allowed to participate in gossiping only
when it is in the Gossiping or Connected state, i.e., after
joining the network. Initially only the sink node is able to
disseminate beacons.

B. Node association

Most schedule based data gathering protocols build sched-
ules based on data gathering tree. To build such a schedule,
a parent - child relationship must be established between
nodes. To establish this relationship a node associates with
a node closer to the sink. This node becomes the node’s
parent. In the simplest case, a node starts the association
procedure immediately or shortly after receiving a beacon
from a potential parent. This method, used in [9], [18], is
shown in Figure 2b. Although simple, there are two main
drawbacks of this method. Firstly, it relies on the MAC to
resolve collisions. These collisions are caused by multiple
nodes requesting association to the same node. Secondly, it
does not take into consideration the quality of the link to a
selected node. To address this issue, a threshold Th on the
link quality is often introduced. In this case, the association
process is started only when the link quality is above minimal
threshold. To address the former issue a method based on
association slots was proposed in [19]. In this method, nodes
use time slots to perform the association process (Figure2b).
Whenever a node wants to join the network, it selects a random
slot and starts the association process. Because the length of
the slot is sufficient for the whole association process, i.e.,
exchange of request and reply packets, collisions at the MAC
layer are reduced. As in the previous methods, a threshold on
link quality is used to ensure that only good links are used.
The method proposed herein improves on the method proposed
in [19]. Instead of using a random slot, a node selects a slot
according to a ranking function (1). The value of the function
is computed each time a BCN packet from a neighboring node
is received. The function takes into consideration the signal
quality σ, the degree of a node δ (defined as a number of
potential parents), and the total number of beacons received
β. The aim of the function is to assign a higher rank i.e.,
earlier join slot, to nodes which have a better link to the node
broadcasting a beacon. It also takes into consideration how
many potential parents a node has, e.g., if a node has only
one potential parent in its neighborhood its priority will be
higher than a node with more potential parents, even if the
link quality is worse. The function uses the number of beacons
received from neighboring nodes as a weight for both factors.

As the number of beacons increases, degree of a node δ gains
on significance. This is to reduce the number of orphan nodes
and forced associations.

qσ =
(σ − σL)

σH − σL
, qδ =

(δ − δh)

δL − δH
qβ =

(β − βL)

βH − βL

R(σ, δ, β) = (1− qβ)qσ + qβqδ (1)

Based on the value of the ranking function, a node calculates
association delay (2) and (3).

js = �jmax(1−R)� (2)

jd = 2(tpkt + tack)js (3)

Each BCN received by a node is an implicit synchronization
point. Each join slot is long enough to allow for JREQ and
JREP exchange as well to mitigate for clock drift. If the JREQ
packet is delivered successfully, the node will set up a JREP
timeout. Setting a timeout on the JREP prevents the node from
infinite waiting in the case that the selected node does not
reply. This might happen when the potential parent fails before
it manages to send a JREP. In the case of delivery failure, JREP
timeout, or join rejection, the node will return to the Listening
state. It might happen, however, that two nodes will request
association in the same slot. This is more probable when node
density is high and the value of jmax is low. If both nodes are
in the radio range, a node will detect an on going transmission.
In this case the node will repeat the association procedure
after receiving the next beacon. If both nodes are not in the
radio range, most likely their JREQ packet will collide. This is
reported by the MAC layer. A node switches to Random mode
and repeats the association procedure after receiving the next
beacon.

A node accepts JREQ packets only when it is in the
Gossiping state. A parent node which receives a JREQ packet
from a node selects an slot using Algorithm 1. The slot is
marked as used by the node which requests the join and a
JREP packet is sent back. In the case that there are no free
slots left, the node will refuse to accept the join request and
send a JREP packet with the REFUSED flag set.

Upon receiving the JREP packet, the node cancels the JREP
timeout. If Collision Free (CF) mode is enabled, the node
compares the assigned slot number with the slot numbers
assigned to nodes stored in its neighbor table. If a node with
the same slot number at the same level exists, it indicates a slot
collision. In this case, the node enters the Collision state and
initiates a collision resolution procedure (see Section III-E).
If a node with the same slot number does not exist or CF
mode is disabled, the node stores the slot number and enters
the Gossiping state. Once connected, the node enables BCN
packet dissemination as described in Section III-A. It also sets
a gossiping timer tg. This timer determines how long a node
maintains in the Gossiping state. After the timer expires the
node enters the Connected state.

84

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Association procedure based on MAC layer.

Transmit Receive A - Ack D - Data B - Beacon
time

(C1)

(P) B

B

(C2) B

B

B

B

D A

D A

D A

D AD A

D A

D A

D A

Implicit time sync on
beacon reception

Join Slot

Exchange of JREQ
and JREP

Node starts
gossiping

(b) TrickleTree association procedure.

Figure 2: Comparison of association procedures. (P) denotes a potential parent node, whereas (C1) and (C2) denote child
nodes.

C. Forcing association

Occasionally a node has only one potential parent in its
neighborhood. In this case, the node can force association with
the selected node. The node sends a JREQ with the FORCE
flag set. Upon receiving this packet, the parent will select the
child with the highest degree d and remove it by sending JREP
with the REFUSED flag set. The slot released in this way will
be assigned to the node forcing join by sending a JREP packet.
The node which was removed will attempt to join a different
parent, as described in the previous section. Forced association
ensures that the whole network is connected as long as good
quality links are available.

D. Detecting collisions

As mentioned previously, TrickleTree can work in Collision
Free (CF) mode. If CF mode is enabled, TrickleTree ensures
that all nodes have individual transmission slots. To achieve
this, once in Gossiping state, a node constantly monitors
received BCN packets in order to detect potential collisions.
This is done by comparing its level and slot number with the
received values. Equal values indicate slot collision. In this
case, the node will change its state to Collision and request a
new slot from its parent as described in Section III-E. If a node
is a parent and the level of the node in the received BCN packet
is equal to the level of its children then the node will check if
there is a child node assigned to the same slot number. If so,
the node will use a collision resolution procedure to assign a
new slot to its child. A node will always invalidate a given slot,
so that it cannot be used to schedule children. It is possible that
a BCN packet indicating collision is received by the parent
and child at the same time. In order to prevent both nodes
from requesting a new slot at the same time, join requests sent
by children are delayed. This allows the parent to solve the
collision first, which is preferred since it requires transmission
of only one packet. The method used in TrickleTree to detect
collisions uses two hop neighborhood information to assign
individual slots. This method is often used by TDMA MAC
protocols [15] to handle collisions from hidden terminals. In
TrickleTree collisions from hidden terminals are detected and
resolved by either the parent or child, as described in detail
in the next section.

Algorithm 1 Slot selection algorithm

1: if sl > 0 then
2: sr ← random(sc)
3: if sr < sc − 1 then
4: si ← sr + 1
5: else
6: si ← 0
7: end if
8: while si <> sr AND (si is Free OR si is Valid) do
9: if si < sc − 1 then

10: si ← si + 1
11: else
12: si ← 0
13: end if
14: end while
15: sl ← sl − 1
16: return si
17: else
18: return NONE
19: end if

E. Resolving collisions

The method of resolving a detected collision depends on the
node’s role. A node can solve a collision as a parent, child,
or intermediate node.

1) Parent collision resolving procedure:

• A beacon from an unrelated child node is received: the
collision is solved by assigning a new slot to the child
node. The parent invalidates the collided slot and selects a
different slot. Next, the parent sends a JREP packet to its
child node with the new slot. If slot cannot be assigned,
the child node is disconnected from the parent and a JREP
packet with REFUSED flag is send back. This forces the
child node to connect to a other parent. If a node which is
a parent for different nodes cannot connect to the network
it will send a JREP to all its children with the REFUSED
flag set.

• A beacon from an unrelated parent node is received: in
this case, a node compares sa with BCN(sa). If sa >
BCN(sa) then the node changes its own child slot, as

85

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3: Classification of nodes with respect to vi

described previously. If sa < BCN(sa) then the node
requests the other node to change slot.

2) Child collision resolving procedure: As a child node, the
collision is resolved by requesting a new slot from its parent.
This is done by sending a JREQ packet to the current parent.

IV. ANALYSIS OF THE TRICKLETREE ALGORITHM

In this section we provide formal analysis of TrickleTree
algorithm, which is the core of the TrickleTree protocol pre-
sented in Section III. Formally we consider a network modeled
as an unidirected graph G = (V,E), where V contains all
nodes and E contains all communication links. The goal is to
construct a tree T and a communication schedule S from G
rooted at the sink. The communication schedule uses a time-
division model, where time is divided into fixed length slots.
The slots are grouped in a frame, which has a fixed length. The
communication schedule is constructed by assigning a slot s i

to each node vi ∈ V.

Definition 1. Given a node vi and a data collection tree
T in G, we define level(vi) as the distance in hops of vi
from the sink, P (vi) as v′is parent, Nn(vi) as the set of vi’s
n-hop neighbors, Ln(vi) as the set of v′is n-hop neighbors
where ∀ vj ∈ Ln(vi) : level(vj) = level(vi). We define vi’s
interference set as I(vi) = L1(vi) ∪ L2(vi).

Note, that TrickleTree uses a dynamic interference set, i.e.
as nodes join the data gathering tree, new nodes whose slot
assignment might collide will appear in the interference set.

Theorem 1. TrickleTree ensures collision free collection
schedule.

Proof: By definition for each pair of vi and vj where
level(vi) �= level(vj) the schedule is interference free even if
si = sj as the transmission is separated temporally. Therefore
collision is possible only if a node vj ∈ I(vi). We prove
Theorem 1, by showing that TrickleTree provides a collision
free assignment for all cases where vj ∈ I(vi).

1) A node vj ∈ L1(vi) ∧ P (vj) = P (vi), in this case a
node vj is v′is sibling and collision is not possible as

Figure 4: TrickleTree finite state machine diagram.
PACKET<FLAG> notation is used to denote a flag
which must be set in a packet for a transition to occur.
Expired() notation is used for timers.

the parent assigns different slots to its children.
2) A node vj ∈ L1(vi) ∧ P (vj) /∈ N1(vi), in this case

assignment si = sj is detected by overhearing BCN
packets by either node vj or vi. The collision is then
resolved using the child collision resolution procedure.

3) A node vj ∈ L1(vi) ∧ P (vj) ∈ N1(vi), in this case
assignment si = sj might be detected by overhearing
by node vj and P (vj) simultaneously. The procedure
parent collision resolution procedure takes precedence
over the child collision resolution procedure. Thus, the
collision is resolved.

4) A node vj ∈ L2(vi) ∧ P (vj) ∈ N1(vi), in this case
assignment si = sj is detected by overhearing by
node P (vj). The collision is resolved using the parent
collision resolution procedure.

5) A node vj ∈ L2(vi) ∧ P (vj) /∈ N1(vi), in this case
assignment si = sj is detected by intermediate node
mij . The node mij sends a unicast message either to
node vi or vj accordingly to the intermediate node
collision resolution procedure.

Definition 2. We define C(vi) as the set of potential parents
where ∀ vj ∈ C(vi) : vj ∈ N1(vi) ∧ q(vj) > q0 and q(vi)
is a function which allows for assessing quality of the link
to a node vi. We define A → B as transition from state A

to state B, and A
t→ B as timeout transition from state A to

state B i.e., transition which happens after time t unless other
condition occurs earlier.

Theorem 2. TrickleTree terminates.

Proof: The finite state machine of TrickleTree is shown in
Figure 4. We prove Theorem 2 by showing that, for each node
vi participating in schedule, a transition to the Connected or
Suspend states occurs.

1) All nodes, apart from the sink, start in the Listen state.

86

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III: SIMULATION PARAMETERS.

Parameter TelosB Unit Parameter TT Tigra
P ∗
tx 58.5 mW Retransmission # 3 10

P ∗
rx 65.4 mW Slot Count 10

P ∗
sleep 0.015 mW Buffer Size 20 packets

P ∗
poll 14.1 mW Clock drift 100 ppm

tpoll 2.5 ms Initial Backoff - 16
tcca 2 ms Packet Size 48 bytes
Data Rate 250 kbps
Voltage 3 V

Each node vi sets a discover timer td. During time td a
node vi constructs set C(vi).

2) If |C(vi)| = 0 after td, transition Listen
td→ Suspend

occurs. Hence, the algorithm terminates because there
are no potential parents.

3) If |C(vi)| �= 0 after td, transition Listen
td→ Joining

occurs. A node vi selects the first node vj ∈ C(vi) as
P (vi). The join procedure is started.

4) A node may go through a number of transitions
Joining → Collision, Collision → Gossiping, and
Gossiping → Collision.

5) Each time a node vi enters the Collision state, vi is
assigned a new slot si by P (vi). If P (vi) cannot assign
a new slot to vi the node vj is moved from C(vi) to
C(vi). The next node vj ∈ C(vi) is selected as P (vi).
The join procedure is repeated.

6) Since C(vi) is finite, a node vi can enter the Collision
state a limited number of times. In this case, a node
vi selects a node vj from C(vi) and forces join. Due
to this, the transition Collision→ Connected is made
and the algorithm terminates.

7) Each time a node vi enters the Gossiping state a timer

tg is set. Transition Gossiping
tg→ Connected occurs

after tg . The algorithm terminates.

V. EVALUATION

A. Simulation Model

In order to verify the behavior of the proposed algorithm,
a set of simulations were performed using the OMNeT++
[20] simulator. The simulations were performed using 10-
50 randomly deployed nodes. In the two first scenarios the
simulation area was 35×35 m2, whereas in the last the area
was 65×65 m2. In each case, the sink was placed in the center
of the simulated area.

The simulation uses the Log-Normal Shadowing Model [21]
for wireless signal propagation. The model takes into consid-
eration the effects of wireless signal fading and shadowing.
These effects, common in wireless transmissions, are modeled
by adding a perturbation factor to the reception power. This
factor follows a normal distribution, with a standard deviation
σ which can be defined for each simulation run. In addition,
the asymmetry of links is modeled. To capture the effects of
wireless interference, the simulation uses an physical (additive)
interference model [22]. In this model, reception probability

0 5 10 15 20
0

5

10

15

20

0

:

1

1:

2

1:

1:

1:

5

1:

1:0

1:

1:5

Figure 5: Example of node placement in association experi-
ment.

is determined by signal-to-noise ratio. The sum of power from
multiple concurrent transmissions may cause interference at a
given node, even though separately each is below the receiver
sensitivity.

A model of the Chipcon CC2420 [23] transceiver, which
conforms to the IEEE 802.15.4 specification, was used in the
simulation. The transceiver is modeled as a finite state machine
consisting of tree states: sleep, receive, and transmit. Delays
in transition between respective states were modeled, which
allows for precise calculation of the duty cycle and energy
consumption. In addition, the radio model includes properties
such as, modulation type (PSK), sensitivity, and bit error rate.
These properties influence the signal propagation of the model.

Each simulation was repeated 100 times and a 0.05 con-
fidence level was used to calculate respective confidence
intervals. For each simulation, nodes were uniformly dis-
tributed in the simulation field. Motes boot up with start-
up times randomized according to a uniform distribution. In
all simulations we measured the time required to establish a
network schedule. We considered the network topology to be
established when all nodes were connected, have the same
maximal tree depth value, and no schedule collisions exist.
TrickleTree can use any MAC protocol. Herein, the protocol
is evaluated with B-MAC [24].

B. Results

1) Association time: The first set of experiments was
performed to assess the impact of the association scheme
on the number of collisions and on association time. In the
experiment, the sink was placed in the center of the field. A
number of nodes within radio range were placed around the

87

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2 3 4 5 6

Initial backoff exponent

0

0.5

1

1.5

2
Av

er
ag

e
as

so
ci

at
io

n
tim

e
[s

]
1 child
2 children
4 children
6 children
8 children

Figure 6: Avg. association time for MAC-Exponential scheme.

5 10 15 20 25

Max random backoff [ms]

0

0.5

1

1.5

2

Av
er

ag
e

as
so

ci
at

io
n

tim
e

[s
]

1 child
2 children
4 children
6 children
8 children

Figure 7: Avg. association time for MAC-Random scheme.

sink. The distance between each child and the sink was varied,
so that a different RSSI value was achieved for each child. An
example scenario is shown in Figure 5. Note that, association
time is different from schedule construction time. The later
includes the time required to resolve schedule collisions and
disseminate the tree value, whereas the former denotes how
fast a node associates with its parent. We compare four
different association schemes. Two schemes are based on
Medium Access Control: random backoff offset (MAC-Rnd)
and exponential backoff offset (MAC-Exp). We compare these
MAC based schemes with two schemes based on join slots:
slot calculation based on rank (JS-Rank) and randomly chosen
slot (JS-Random). In all cases, the protocols use TrickleTree’s
beacon dissemination method and the low gossiping period
was τl = 0.5s. The initial beacon was broadcasted at time
randomly chosen between 0.25s-0.5s. For this reason, the
average association time is greater than 0.35s. We disabled
LPL in order to eliminate additional delay. Figure 6 shows
the average association time for the MAC-Exp scheme. It can
be seen that association based on exponential backoff has an
optimum near backoff exponent 4-5. This corresponds to a
backoff limit of 16-32ms. A similar observation, although the

1 2 4 6 8

Number of Join Slots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Av
er

ag
e

as
so

ci
at

io
n

tim
e

[s
]

1 child
2 children
4 children
6 children
8 children

Figure 8: Avg. association time for TrickleTree-Rank scheme.

1 2 3 4 5 6 7 8

Number of children

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Av
er

ag
e

as
so

ci
at

io
n

tim
e

[s
]

MAC-Rnd
MAC-Exp
JS-Rank
JS-Random

Figure 9: Comparison of avg. association time.

effect is less pronounced, can be made with MAC-Rnd (Figure
7). The optimal value for the MAC-Rnd scheme is close to
15ms. The results can be interpreted as follows: too small
backoff value can cause high contention and a large number
of collisions. This increases association time as nodes have to
backoff multiple times (in the case of contention) or repeat
the association process (in the case of collision). When a
large backoff duration is used, delay is not increased due to
contention or collision, but due to the duration of the initial
backoff.

Figure 8 shows an average association time for the JS-Rank
scheme. For this scheme, we varied the maximal number of
join slots jmax. The optimal value of jmax should be close
to the average neighborhood size of a node. This ensures that
association requests are spread equally in time. When jmax

is too low, a higher association time is needed due to the
increased number of collisions. With high jmax, the ranking
function has more impact on association delay. This can be
seen clearly in the case of a single child. Since no collisions or
contentions are involved, the association time depends solely
on the outcome of the ranking function. Hence it increases
with jmax. In Figure 9, we compare the association time of all

88

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

10 20 30 40 50

Network size [#nodes]

0

20

40

60

80

100

120
Se

tu
p

Ti
m

e
[s

]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Av
g.

 N
um

be
r o

f N
ei

gh
bo

rs

TT
TT CF
F+J
Avg. #Neighbors

Figure 10: Tree setup time as function of network size.
TT denotes TrickleTree algorithm, whereas F-J denotes the
flooding join algorithm.

10 20 30 40 50

Network size (#nodes)

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Ti
m

e
Re

du
ct

io
n

[%
]

TT CF
TT

Figure 11: Network setup time reduction in relation to flooding
join.

schemes. For each scheme, we selected the lowest association
time for a given number of children i.e., the one with optimal
backoff duration or number of slots. It can be seen that for a
small number of children (less than 3), all schemes perform
similarly. As the number of contending nodes increases, the
time required to complete association differs. For number of
children greater than 3, the JS-Rank scheme performs better
than both MAC-Rnd and MAC-Exp. On average, JS-Rank
is faster than MAC-Rnd and MAC-Exp by 17% and 12%,
respectively. The JS-Random scheme achieves slightly faster
association time. This is because there is no delay introduced
by the ranking function. On average, the JS-Random scheme
is faster than MAC-Rnd and MAC-Exp by 21% and 17%,
respectively.

2) Schedule construction time: The main goal of Trickle-
Tree is to quickly establish a staggered data gathering tree
with minimal energy overhead. TrickleTree uses join slots to
reduce collisions and improve setup time. Adaptive gossiping
is used to reduce message overhead and ensure that changes
in tree depth are disseminated quickly. To verify TrickleTree

10 20 30 40 50

Network size [#nodes]

0

20

40

60

80

100

D
ut

y
cy

cl
e

[%
]

0

10

20

30

40

50

60

70

80

90

100

Fa
irn

es
s

[%
]

TT DC
F+J DC
TT-Fairness
F+J Fairness

Figure 12: Duty cycle as function of network size. TT denotes
the TrickleTree algorithm, whereas F-J denotes the flooding
join algorithm.

10 20 30 40 50

Network size [#nodes]

10

100

1000

10000

10

100

1000

10000

Nu
m

be
r o

f b
ea

co
ns

 s
en

t +
 re

cv

TT
TT CF
Flooding + Join

Figure 13: Sum of beacons sent and received for various
network sizes.

performance it was compared with a flooding approach, similar
to that used in [25], and Tigra [9].

In the flooding approach, the sink periodically broadcasts
a tree setup beacon. Upon receiving the beacon, unconnected
nodes attempt to join a selected parent. Nodes which are con-
nected to the tree rebroadcast received beacons. The flooding
approach relies on the MAC protocol to resolve collisions. If
not all nodes can join the network in given simulation run, the
results were rejected and not included in calculations.

Tigra is a state-of-the art data gathering protocol. It is one
of a few protocols which discuss the process of staggered
schedule construction. We implemented a slightly modified
version of the algorithm described in [9]. The first modification
was necessary because the original algorithm is designed
to assign a round to a node based on the number of its
descendants. In TrickleTree the round is the same as the level
of a node in the tree. The modification does not change the
number of exchanged messages nor the exchange procedure.
We simply changed the contents of the packets. Instead of
number of descendants the RESPONSE packet contains level

89

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

10 20 30 40 50
Network size [#nodes]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Se

tu
p

Ti
m

e
[s

]

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
ta

ge
 o

f i
ni

ta
liz

ed
 n

od
es

TrickleTree
Tigra
TrickleTree-Init
Tigra-Init

Figure 14: Comparision of Initialization time of Tigra and
TrickleTree

of a leaf node. When all response packets get to the sink, the
sink is able to determine the maximal tree depth. After that
the INIT2 packet is sent down the tree, to inform all nodes
about the maximal tree depth.

Figure 10 shows the setup time and average neighborhood
size. It can be seen that as the average number of neigh-
bors grows, the performance of the flooding approach (F+J)
deteriorates considerably. This is due to the high number
of collisions which must be resolved by the MAC layer.
Moreover, nodes ignore information contained in the received
beacons and rebroadcast them, even though the network state
is consistent. This causes additional collisions due to the
hidden terminal problem. TrickleTree (TT) on the other hand,
performs more consistently. Collisions are reduced, due to the
fact that nodes calculate distinctive join slots, therefore the
number of collisions which must be resolved at the MAC layer
is reduced. When collision free scheduling is enabled (TT CF),
Trickle Tree requires more time to establish the schedule. This
is clearly seen in Figure 13, which shows the average number
of beacons sent and received. It can be seen that the collision
free version of TrickleTree requires up to 65% more beacons
to be sent. This is because each change in a schedule (e.g.,
slot change) resets the gossiping period to the lowest value,
therefore beacons are sent more frequently. Figure 13 shows
the advantage of adaptive gossiping as used in TrickleTree,
over the flooding approach. Adaptive gossiping reduces the
average number of beacons from 4000 in the flooding approach
to 145 and 223 for regular and collision free TrickleTree,
respectively. Figure 11 shows the time reduction achieved
using the regular and collision free versions of TrickleTree
with respect to the flooding approach. The advantage of
TrickleTree is increases with the network size. In the flooding
approach large numbers of nodes produce more of collisions
slowing down schedule setup. As indicated previously, the
collision free version of TrickleTree requires more time to
setup the network. There is a tradeoff between fast schedule
setup time and possible collisions during data gathering and
slower schedule setup and collision free transmissions. The

decision as to which version of TrickleTree should be used
depends on the application requirement and network stability.
For unstable networks, low setup time is important as the
network might be rescheduled frequently. Therefore control
overhead should be reduced. In stable networks, higher control
overhead for setting up collision free schedule will be balanced
in the long run by a collision free data gathering phase.

Figure 14 shows a comparision of initialization time of
TrickleTree and Tigra. As it can be seen Tigra, on average,
is 15% faster than TrickleTree. This is because TrickleTree
introduces a delay in the association in order to find good
links. In Tigra nodes connect to a node from which the first
beacon is received. However, Tigra was not able to complete
schedule construction in most of the cases i.e., connect 100%
of the nodes and agree on a common depth of the tree. This
is because the Tigra assumes lossless links and reliable packet
delivery by the MAC layer. In this regards results obtained in
herein confirm results obtained by the authors in a testbed [26].
TrickleTree completed schedule construction in all simulated
cases.

3) Duty cycle: In Figure 12, the duty cycle of both
protocols is shown. The average duty cycle of TrickleTree
over different network sizes is 12%, whereas the duty cycle
of flooding is 32%. The duty cycle is reduced by adaptive
gossiping. Although, the duty cycle of the flooding approach
can be reduced by increasing the sink broadcast period it
results in a longer network setup time. Fairness of both
protocols is also shown in Figure 12 confirms that the main
reason for TrickleTree’s performance is reduction in collisions.
In general, the improvement in network setup time depends
on network size. TrickleTree reduces setup time by 68% for
networks of 10 nodes, to nearly 90% for networks of 50 nodes.

VI. CONCLUSIONS

Data gathering is one of the most recognized applications
of wireless sensor networks. As available network energy is
a very limited resource and radio communication exploits
this resource the most, developing efficient communication
protocols is an important task. In this work, we proposed a
practical approach to scheduling staggered networks based on
gossiping. To validate the behavior of the proposed approach
we performed a number of simulations and the results show up
to 90% reduction of schedule setup time and 50% reduction
duty cycle compared to the conventional flooding approach.

ACKNOWLEDGMENTS

This work is supported by Enterprise Ireland grant num-
ber CFTD/07/IT/303, “Network-level power management for
wireless sensor networks”.

REFERENCES

[1] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A
macroscope in the redwoods,” in Proc. of ACM SenSys. ACM, 2005,
pp. 51–63.

[2] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler,
“An analysis of a large scale habitat monitoring application,” in Proc.
of ACM SenSys. ACM, 2004, pp. 214–226.

90

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] S. Roundy, P. K. Wright, and J. M. Rabaey, Energy Scavenging for
Wireless Sensor Networks: With Special Focus on Vibrations, Norwell,
MA, USA, 2004.

[4] P. Dutta, D. Culler, and S. Shenker, “Procrastination might lead to a
longer and more useful life,” in Proceedings of HotNets-VI, Atlanta,
GA, November, 2007, pp. 1–7.

[5] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis, “The B-
factor: measuring wireless link burstiness,” in Proc. of ACM SenSys.
New York, NY, USA: ACM, 2008, pp. 29–42.

[6] W. Bober and C. Bleakley, “Bailigh: Low power cross-layer data
gathering protocol for Wireless Sensor Networks,” in Proc. of ICUMT,
Oct. 2009, pp. 1–7.

[7] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive energy-
efficient and low-latency mac for tree-based data gathering in sensor
networks: Research articles,” Wirel. Commun. Mob. Comput., vol. 7,
no. 7, pp. 863–875, 2007.

[8] A. G. Ruzzelli, G. M. P. O’Hare, and R. Jurdak, “Merlin: Cross-layer
integration of mac and routing for low duty-cycle sensor networks,” Ad
Hoc Networks, vol. 6, no. 8, pp. 1238–1257, 2008.

[9] L. Paradis and Q. Han, “A data collection protocol for real-time sensor
applications,” Pervasive and Mobile Computing, vol. 5, no. 4, pp. 369
– 384, 2009.

[10] G. Anastasi, M. Conti, and M. Di Francesco, “Extending the lifetime of
wireless sensor networks through adaptive sleep,” Industrial Informatics,
IEEE Transactions on, vol. 5, no. 3, pp. 351 –365, Aug. 2009.

[11] J. Lu and K. Whitehouse, “Flash flooding: Exploiting the capture effect
for rapid flooding in wireless sensor networks,” in Proc. of INFOCOM,
2009, pp. 2491 – 2499.

[12] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: a self-regulating
algorithm for code propagation and maintenance in wireless sensor
networkstr,” in Proc. of USENIX NSDI, Berkeley, CA, USA, 2004, pp.
2–2.

[13] G. Tolle and D. Culler, “Design of an application-cooperative manage-
ment system for wireless sensor networks,” in Proc. of EWSN, 2005,
pp. 121–132.

[14] K. Lin and P. Levis, “Data Discovery and Dissemination with DIP,” in
Proc. of IEEE IPSN, 2008, pp. 433–444.

[15] M. Nunes, A. Grilo, and M. Macedo, “Interference-Free TDMA Slot
Allocation in Wireless Sensor Networks,” in LCN ’07: Proceedings of
the 32nd IEEE Conference on Local Computer Networks, 2007, pp.
239–241.

[16] Y.-C. T. Fang-Jing Wu, “Distributed wake-up scheduling for data col-
lection in tree-based wireless sensor networks,” vol. 13, no. 11, pp. 850
–852, November 2009.

[17] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of
reliable multihop routing in sensor networks,” in Proc. of ACM SenSys.
ACM, 2003, pp. 14–27.

[18] N. Burri, P. von Rickenbach, and R. Wattenhofer, “Dozer: ultra-low
power data gathering in sensor networks,” in Proc. of IEEE IPSN. IEEE
Computer Society, 2007, pp. 450–459.

[19] W. Bober, C. Bleakley, and X. Li, “TrickleTree: A Gossiping Approach
To Fast Staggered Scheduling For Data Gathering Wireless Sensor
Networks,” in 4th Int. Conf. on Sensor Technologies and Applications
(SENSORCOMM). IEEE Computer Society, 2010, pp. 214–219.

[20] A. Varga. (Last accessed: 04/2010) OMNeT++. http://www.omnetpp.org.
[21] T. Rappaport, Wireless Communications: Principles and Practice. Up-

per Saddle River, NJ, USA: Prentice Hall PTR, 2001.
[22] A. Iyer, C. Rosenberg, and A. Karnik, “What is the right model for

wireless channel interference?” in QShine ’06: Proceedings of the
3rd international conference on Quality of service in heterogeneous
wired/wireless networks. New York, NY, USA: ACM, 2006, p. 2.

[23] (Last accessed: 04/2010) CC2420 Data Sheet. http://www.ti.com. Texas
Instruments.

[24] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in Proc. of ACM SenSys. ACM, 2004,
pp. 95–107.

[25] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a
Tiny AGgregation service for ad-hoc sensor networks,” SIGOPS Oper.
Syst. Rev., vol. 36, no. SI, pp. 131–146, 2002.

[26] L. Paradis, “Tigra: Timely sensor data collection using distributed graph
coloring,” Master’s thesis, Colorado School of Mines, 2007.

91

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

