
Evaluation of Distributed SOAP and RESTful Mobile Web Services

Feda AlShahwan
Centre for Communications

Systems Research
University of Surrey

Surrey, UK

F. AlShahwan@surrey.ac.uk

Klaus Moessner
Centre for Communications

Systems Research

University of Surrey

Surrey, UK

K. Moessner@surrey.ac.uk

Francois Carrez
Centre for Communications

Systems Research

University of Surrey

Surrey, UK

F.Carrez @surrey.ac.uk

Abstract— Even mobile Web Services are still provided using

servers that usually reside in the core networks. Main reason

for not providing large and complex Web Services from

resource limited mobile devices is not only the volatility of

wireless connections and mobility of mobile hosts, but also, the

often limited processing power. Offloading of some of the

processing tasks is one step towards achieving optimal mobile

Web Service provision. This paper presents two frameworks

for providing distributed mobile Web Services: One mobile

service provision framework is built on Simple Object Access

Protocol (SOAP), while the other implements Representational

State Transfer (REST) architecture. Both frameworks have

been extended with offloading functionality and different types

of resource intensive operations, i.e., process intensive and

bandwidth intensive services, have been tested. The results

show that using a REST-based framework leads of a better

performing offloading behaviour, compared to SOAP-based

mobile services. Distributed mobile services based on REST

consume fewer resources and achieve better performance

compared to SOAP based mobile services. The paper describes

the approach, evaluation method and findings.

Keywords-Mobile Web Services; REST; SOAP; Service

Distribution.

I. INTRODUCTION AND MOTIVATION

Mobile Web services are self-contained modular
applications that are defined, published and accessed across
the Internet using standard protocols in a mobile
communications environment. This technology has evolved
from advances in the mobile device technology, rapid growth
of Web Services development and progression of wireless
communication in parallel with widespread use of Internet
applications. However, it is still in its early stages and there
are many challenges to overcome. Those challenges result
from constraints in mobile resources, mobility issues and
intermittent wireless network.

In literature, three different types of Mobile Web-

services have been explored; they are characterized by the

role acted by the mobile device when providing or

consuming Web Services (see Fig. 1). These types include:

(Mobile) consumer, provider, and P2P Web Services. In

the mobile

Figure 1: Classification of Mobile Web Services

Web-service consumer case, mobile devices act as clients

and request a service. In the provider case, mobile devices

act as servers and provide them to any type of client. In the

P2P case, mobile devices are connected in Ad hoc manner

and each node may act as client or server, or both.

Most research into mobile Web Services has focused on

consuming standard Web Services from mobile devices.

However, the ubiquitous availability of mobile devices and

their capability to provide information (e.g., Sensing

information), or to provide complete/integrated services is a

viable proposition. Hence, there is a need of exploring the

provisioning of Web Services from mobile hosts. Our

previous work [1] has investigated providing Web Services

from mobile devices.

Hosting Web Services from mobile devices has an

enormous number of useful real life applications. Location-

based applications are an example of these useful

applications. Location-based Web Services can be provided

from mobile devices and have shown performance

enhancement to companies who have employees deployed

in the field. For example, a Mobile Host (MH) with a built-

in Global Positioning System (GPS) receiver allows

tracking of products and goods [2]. Health care applications

are further evidence of the kind of applications provided by

hosting Web Services from mobile devices. They might be

useful for both doctors as well as patients. For example,

deploying an appropriate service on a doctor’s mobile

allows tracking professionals’ location and context to handle

Mobile WS

Provider

Mobile WS

Consumer

Mobile P2P WS

447

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

emergency cases. Health care services can also be extended

and provided from patients’ mobile devices. This takes

place by exposing a remote tele-monitoring service on the

patient’s MH [3] that allows monitoring their conditions

using log files with the aid of some measurement devices

such as a Body Area Network (BAN) sensor suite [4]. Not

all location-based applications can be provided from the

conventional fixed servers. This is because providing any

location-based service is highly dependent on the actual

current location of the service provider. For instance,

providing the latest updated news and scene snapshots for a

specific location in a predefined format requires portable

devices with built-in GPS and cameras that are capable to

move to the actual location of the event. Furthermore, it

requires MHs that are aware of their location to publish the

event as a live feed and takes latest information gathered at

the current location. MHs allow processing of the gathered

information and can then make it available, instantly to

clients. Consequently, for the server, it may be more

efficient in terms of cost and performance since it eliminates

the need to upload the gathered location dependent

information to static web server. Mobile devices are

ubiquitous; they have small form factors, portable and

almost anywhere accessible. As such, managing and

maintaining handheld mobile hosts is easier, faster and more

portable than static terminals. Moreover, mobile Web

Services can be useful in polling-based applications that

require using and triggering the most recent data, which is

changing dynamically. Since checking an updated Really

Simple Syndication (RSS) feeds through polling scheme

requires exchanging a significant amount of information

between each client and the standard fixed server. However,

if the web server is a mobile device then the polling scheme

is eliminated and substituted by sending a message from

mobile host to all mobile clients when an update occurs.

Context-based applications constitute another application

discipline that benefits from hosting Web Services from

mobile devices. Accessing the user profile of the mobile

host and sharing the contents with others could be a useful

application that allows clients to access the mobile host data

contents, pictures and share the profile or modify it. The

owner can also use web user interface of his mobile using

standard desktop or laptop to get messages, information

about incoming phone calls and phone book log when

mobile host is currently unavailable or a better interface is

required for accessing mobile contents. However, there are

some issues related to the internal and external resource

limitations of mobile hosts see Table1 that act as a barrier

against the easy development of this area.

The motivation that leads towards this research is the

large number of useful applications that can be provided

from hosting services on resource constrained mobile

devices. However, there are clear limitations in terms of

complexity and size of the services that may be executed on

mobile host.

TABLE 1. Internal and External mobile Constraints

Internal Constraints External Constraints

 Memory capacity,

processing power

and short battery life

 Some data types that

are defined with web

services are not

supported by the

mobile devices

 Most mobile devices

support only short

range wireless

communication.

 Heterogeneity of the

wireless environment

 Limited bandwidth and

large communication

delay.

 Frequent context and

location change of

mobile host

 Mobile devices

continuously need static

IP address

Our goal is to allow providing large and complex

mobile Web Services continuously and without interfering

with the main functionality of the mobile host that is making

phone calls. Thus, lightweight processing and provisioning

of mobile Web Services is needed to compensate for the

limited resources of mobile hosts. This can be achieved

through supporting automatic and autonomous self

configuring distributed systems.

The technology used for developing Web Services can

be classified into two main categories: Representational

State Transfer (RESTful) and Simple Object Access

Protocol (SOAP) Web Services. This classification is based

on the architectural style used in the implementation

technology. SOAP is an object-oriented technology that

defines a standard protocol used for exchanging XML-based

messages. It is defined as protocol specification for

exchanging structured information in the implementation of

Web Services in computer networks [5]. The specification

defines an XML-based envelope for exchanging messages

and the protocol defines a set of rules for converting

platform specific data types into XML representations.

REST is a resource oriented technology and it is defined by

Fielding in [6] as an architectural style that consists of a set

of design criteria that define the proper way for using web

standards such as HTTP and URIs. Although REST is

originally defined in the context of the Web, it is becoming

a common implementation technology for developing Web

Services. RESTful Web Services are implemented with

Web standards (HTTP, XML and URI) and REST

principles. REST principles include addressability,

uniformity, connectivity and stateless. RESTful Web

Services are based on uniform interface used to define

specific operations that are operated on URL resources.

Both SOAP and REST are used for implementing Web

Services. However, each has its own distinct features and

448

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

shortcomings that make it more or less suitable for certain

types of applications as shown in Table 2.

This paper is an extended version of [1] . It focuses on

investigating mechanisms that facilitate distribution of

provisioning and executing mobile Web Services. This can

be accomplished through extending our previous SOAP-

and REST-based Mobile Host Web Service Frameworks

(MHWFs) that were implemented to deploy, execute and

provide mobile Web Services. Our original implementation

is extended in this paper to allow offloading of services and

service fragments. In addition, this paper evaluates the

performance and offloading overhead for both SOAP- and

RESTful-based frameworks. This evaluation assists in

selecting the framework that best suits mobile environment

capabilities and fulfils our goal to provide mobile Web

Services continuously with a light-weight processing

requirement.

TABLE 2. Comparison of SOAP/ RESTful-based Web Services

The rest of the paper is organized as follows: Section II

presents a short introduction to the current state of art for

providing Web Services from mobile devices and highlights

the main issues encountered when distributing mobile Web

Services. Section III describes the main modules that are

used for building standard SOAP and RESTful mobile

services. Section IV presents an evaluation between SOAP

and RESTful MHWFs in non-offloading environment.

Section V explores some distribution mechanisms that allow

reliable and light weight provisioning of complex mobile

Web Services and outlines different types of offloading

mechanism. Section VI describes our architecture and

implementation that supports provisioning of distributed

mobile services. Section VII introduces a critical analysis

between the two extended frameworks (i.e., the SOAP and

REST MHWFs) in handling offloading strategies for

different types of resource intensive applications. Some of

their features and issues are also addressed in this section.

Finally, conclusions from this work are presented in the last

section along with recommendations for some future work.

II. STATE OF THE ART

There has been extensive research into the development

of MHWFs. Most of the implemented frameworks allow

deploying and providing SOAP-based mobile Web Services

either in a client / server environment [7-9] or in a P2P

network [10-11]. Some researchers have focused on

applying mechanisms that allow adaptation and

compensation for the lack of resources. For example [12]

proposed a partitioning technique to the layered MHWF

approach [13] that allows the execution of complex large

Web Services on mobile hosts. However, in this approach

clients send requests first to a stationary intermediate node,

which contradicts an essential mobility requirement of

mobile Web Service hosts.

Furthermore, this approach relies only on SOAP-based

Web Services that require heavy weight parsers and large

message payloads. Consequently the overall MH

performance is degraded. The Modular Hosting Web

Services architecture [14] contains built-in modules to

support continuous provisioning of mobile Web Services in

P2P network environment. This is accomplished through

migrating services to another surrogate mobile node when

the mobile host becomes inaccessible due to location

changes or drained battery power. However, this framework

provides only SOAP-based simple Web Services and does

not allow light weight processing of complex services.

Recent research studies focus on building resource aware

mobile Web Service provisioning architecture that supports

RESTful-based mobile Web Services. An evaluation of

RESTful Web Services that are consumed from mobile

devices is presented in [15], however, this evaluation is

constrained to mobile Web Service consumers and does not

include mobile Web Service providers. The concept of

REST-based Mobile Web Services (MobWS) is introduced

in [16] and a comparison with SOAP architecture in terms

Criteria SOAP-based WS RESTful-based WS

Server/ Client Tightly coupled Loosely coupled

URI
One URI representing

the service endpoint

URI for each

resource

Transport Layer Support All Only HTTP

Caching Not Supported Supported

Interface
Non Uniform

Interface (WSDL)
Uniform Interface

Context aware
Client context aware

of WS behaviour

Implicit Web Service

behaviour

Data Types

Binary requires

attachment
parsing

Supports all data

types directly

Method Information Body Entity of HTTP HTTP Method

Data Information Body Entity of HTTP HTTP URI

Describing Web Services WSDL WADL

Expandability
Not Expandable (No

hyperlinks)

Expandable without
creating new WS

(using xlink)

Standards used

SOAP specific

standards (WSDL

,UDDI, WS-Security)

Web standards (

URL, HTTP
methods, XML,

MIME Types)

Security/Confidentiality
WS-security standard

specification
HTTP Security

449

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of HTTP payload is carried out in [17] but the

implementation of a mobile host that provides RESTful

Web Service is not addressed. Providing adaptive mobile

Web Services and testing REST for distributed environment

are also not tackled. RESTful-based mobile Web Service

framework is proposed for the first time in [1] and a detailed

comparison is carried out between SOAP- and RESTful-

based MHWFs and analyzed. The evaluation involves

performance, resource consumptions and scalability. The

analyzed preliminary results showed that RESTful-based

MHWF is a promising technology that is more suitable for

limited resource mobile network environments. However,

the proposed frameworks have not address the provisioning

of complex mobile Web Services. Mobile Web Service

distribution is acquired for executing complex and large

applications to lessen the burden on mobile host and

preserve its resources and energy consumption [18].

In contrast to the approaches described above for

providing mobile Web Services from mobile hosts, we aim

to allow light weight provisioning of mobile Web Services,

reduce mobile host energy usage and increase scalability

and throughput. This aim can be achieved through

distributing the execution of mobile Web Services for both

SOAP and RESTful-based MHWFs and comparing them to

each other. This comparison is needed to allow us to define

the most suitable framework for distributing the execution

of complex mobile Web Services. The selection criteria

used for comparison are based on minimizing the offloading

overheads and increasing overall performance.

III. SYSTEM ARCHITECTURE

 Web Services are not explicitly defined for the mobile

wireless environment. The current standard Web Service

frameworks are developed for static servers. In addition,

these standard frameworks are too large to be deployed on

resource constraint mobile devices and they require a

running time environment that is not available on mobile

devices. Also providing Web Services from mobile hosts

consumes a large amount of resources and drains the

batteries within a short period of time. Thus, providing Web

Services from mobile devices requires building a dedicated

framework for deploying, providing and executing Web

Services. In our previous work [1] we developed two

different frameworks. One supports RESTful-based mobile

Web Services that is built for the first time up to our extent

knowledge and the other supports SOAP-based mobile Web

Services. In implementing our framework, Java for Mobile

Edition JME is used as the best language for launching

applications on limited resource mobile devices. JME

defines two configurations: the Connected Device

Configuration (CDC) and the Connected Limited Device

Configuration (CLDC). In this research CLDC has been

selected because it is a low-level specification, suitable for

wide range of mobile devices with limited memory capacity.

Thus, CLDC achieves scalability and generality. APIs and

libraries are added to support more features through Mobile

Information Device Profile (MIDP). In this research MIDP

2.0 is chosen because it supports devices with limited

network communication resources and device internal

resources. Also it provides more networking functionality

and it supports HTTP protocol. In addition, it supports the

Server Socket connection that is required for implementing

mobile server. In general the execution model and the

architecture of the two frameworks are identical MHWF.

The architecture is presented in Fig. 2.

The model consists of five main building blocks:

1. Web ServiceServlet

2. HTTP Listener

3. Request Handler

4. Parser Module

5. Response Composer

Although the overall architecture of SOAP and

RESTful-based MHWF is similar, they differ in the details

for handling and parsing the request. For example, in

SOAP-based MHWF the Request Handler will un-wrap the

incoming HTTP POST request to extract the hidden SOAP

envelope then it will dispatch the envelope to the message

parser. On the other hand the request handler for RESTful-

based MHWF will extract the HTTP request directly and

send it to the Message Parser Module. The main function for

the Parser Module is to get the needed information for

invoking a Web Service such as the name of the service,

service URL and some parameters. Then the extracted

information is sent to the Service Servlet. However, the way

this is performed is different between the two frameworks.

In SOAP-based MHWF, the SOAP parser de-serializes the

SOAP object and maps the data types into Java objects

using kSOAP2 and kXML2 that are open source APIs for

SOAP parsing. However, in RESTful MHWF we have

created our own String Manipulator -based parser. This

parser will extract the server name and the parameters that

are required for executing this service.

Web Service

Servlet

HTTP

Listener

Request

Handler

Message

Parser

Response

Composer

Create Threads

Web Service

Deploys Web

Service/Hash table

Method Name

and

Parameters

Deployed

Web Services

with

associated

URL

Redirects request to

appropriate Web

Service
Web

Service

A

Accept and Open

Connection

Incoming

Requests

Server

Socket

Thread

Incoming Requests

through Input Data

Stream

Process Request

Send Request to

Message Parser

Incoming

Requests through

Input Data Stream

Result

Method Name/ URL

of Web Service/

Parameters

Serialize the

Response Message/

Send to Client

Input Data

Stream

Output Data

Stream

Figure 2: Architecture of Mobile Web Service Framework

450

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The next section introduces an analytical and

experimental analysis between the two SOAP and RESTful

architectures in non-offloading environment.

IV. NON-OFFLOADING EXPERIMENTS AND RESULTS

On a first claim the difference between the two

previously implemented architectures are fairly similar and

there is no apparent difference in complexity but the major

different comes when we have tested the architectures’

performance, scalability and amount of resource

consumption.

The evaluation is conducted using a small test-bed that

consists of a mobile host developed on N80 Nokia mobile

device running Symbian OS, MIDP 2.0 profile. It is

connected in a wireless network through built-in IEEE

802.11b interface and it provides services to a client that is

simulated using Sun Wireless Toolkits 2.5.2 emulator. The

evaluation involves three different scenarios. The first set of

experiments is done to test the performance of the mobile

host. Performance is analyzed through measuring the effect

of varying the request message size on the average

processing time. Results in Fig. 3 and Fig. 4 show that the

average processing time increases when the request message

size increases.

Moreover, the average processing time for SOAP-based

MHWF is larger than the average processing time for

RESTful-based MHWF for the same message request. This

is because processing SOAP requests requires heavy weight

parsers to un-wrap the SOAP envelope from the incoming

0

5

10

15

20

25

30

35

40

4 8 16 32 64
128

265
512

1024
2048

x103

Message Size (Bytes)

R
e

s
p

o
n

s
e

 T
im

e
 (

M
ill

is
e

c
o

n
d

s
)

Figure 3: Effect of message size on process time of SOAP-based MHWF

0

20

40

60

80

100

120

140

160

180

200

4 8 16 32 64 128 265 512 1024 2048

Message Size (Bytes)

R
e

s
p

o
n

s
e

 T
im

e

(M
ill

is
e

c
o

n
d

s
)

Figure 4: Effect of message size on process time of RESTful-based MHWF

HTTP POST request, then de-serialize the SOAP object and

map the data types of the XML-based message into Java

objects. This is done to extract the hidden information

needed for invoking the required Web Service. However,

processing RESTful requests uses light weight parser that is

created by us to extract the information required for

invoking the designated Web Service. Moreover, the

required information resides explicitly on the HTTP request.

Thus, RESTful-based MHWF has better performance than

SOAP-based framework.

The second scenario evaluates reliability and scalability

of the frameworks. This evaluation is carried out by testing

concurrency where a number of clients send requests to the

same host simultaneously. Concurrency is accomplished

through initiating threads and loops on the client emulator.

Then the average process time for each concurrent request is

calculated. Results Fig. 5 and Fig. 6 show that as the

number of concurrent requests increases, the average

process time also increases. This increase is more obvious in

SOAP-based framework where more time is consumed to

parse the SOAP envelope and to manage the threads.

However, we observe that the increase in RESTful-based

MHWF is almost steady. This is because RESTful Web

Services support caching and demand light processes power.

Hence, RESTful-based MHWF is more rigid and robust to

changes in the number of concurrent requests.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60

x103s

Number of Concurrent Requests

P
ro

ce
ss

 T
im

e
 in

 M
ill

is
e

co
n

d
s

Figure 5: Effect of Concurrent requests on process time for SOAP-based

MHWF

451

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60

Number of Concurrent Requests

P
ro

c
e

s
s
 T

im
e

 in
 M

ill
is

e
c
o

n
d

s

Figure 6: Effect of Concurrent requests on process time for RESTful-based

MHWF

After that, the two MHs are stressed by adding more

concurrent requests to measure the threshold value. The

threshold value is defined as the maximum number of

concurrent requests that can be handled without failure. It is

observed that in Table 3 SOAP-based MHWF starts to

reject requests earlier when the threshold is beyond 60 but

RESTful-based MHWF starts to reject requests when the

threshold is beyond 80. This is expected because processing

SOAP-based requests requires more time. Consequently, the

consumed response time is larger and the server queue of

the SOAP-based framework will be occupied and filled

within a short period of time. As a result, there will be no

more resources to accept new connections. Thus, RESTful-

based MHWF is more scalable and reliable than SOAP-

based MHWF.

The last scenario is for testing resource consumption

and measuring memory footprints. Results in Fig. 7

illustrate that the amount of consumed memory during

processing Web Service requests is increased as the

message size increases. As shown in the graph the amount

of consumed memory in SOAP-based framework is larger

than the amount of consumed memory in RESTful-based

framework for the same message size. The reason for this is

that SOAP-based framework demands more memory

footprint during processing. This consumed memory

footprint is used to store general temporary parsed objects

and to load the classes, kSOAP and kXML libraries.

TABLE3. Comparison of rejected requests between SOAP-based and
RESTful-based MHWFs

No of

Requests
Average rejected requests

(SOAP)

Average rejected requests

(REST)

60 10 0

80 59 4

100 64 9

120 86 14

0

200

400

600

800

1000

1200

1400

1600

4 8 16 32 64 128 256 512 1024

x103

Message Size bytes

C
o

n
s

u
m

e
d

 M
e

m
o

ry

k
il
o

b
y

te
s

 SOAP_MWSH (Bytes)

REST_MWSH (Bytes)

Figure 7: Comparison of consumed amount of memory between SOAP and

RESTful-based MHWFs

V. MOBILE WEB SERVICE DISTRIBUTION

The purpose of this research as mentioned before is to

investigate, define and provide mechanisms that will

facilitate continuous provisioning of complex services in a

light-weight processing power with efficient levels of

performance. This is achieved through distribution of

mobile Web Services. There are some factors that

necessitate Web Service distribution in mobile

environments. An important issue relates to the enormous

spreading of distributed computing systems in a Peer to

Peer (P2P) network. In P2P networks, nodes are both

providers and consumers. P2P networks have some

advantages that make it outperform its corresponding typical

client/server networks. Avoiding single point of failure and

increasing system capacity are some of these advantages.

Since P2P is increasingly evolving, therefore, the

application of distributed mobile Web Services executed

and deployed in a distributed network environment is an

important direction for future research.

Moreover, distributing Web Services is done to lighten

the processing weight on limited resource mobile web

servers. In spite of the fact that these constraints may be

eliminated in the future and the resource capabilities might

advance, the ideal performance and the minimum latency

will always be the dominant requirements. In addition,

resource limitations will still exist as user demands increase.

For example, the memory capacity of mobile devices will

continue to increase but memory limitation occurs when

user wants to run multiple services or multiple instances of

the same service on the MH. Furthermore, battery life will,

for the foreseeable future, remain a bottleneck. Hence, the

distribution of mobile Web Services results in preserving

energy resources, scalability increase and an overall

performance enhancement. It should also be noted that

running complex large Web Services on an overloaded MH

requires large processing power and might affect its core

functionality.The first step for distributing Web Services is

to define criteria for triggering distribution, in our case this

has been done using Fuzzy Logic, however, this and the

452

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

resource monitoring system are beyond the scope of this

paper. The next step is to partition the execution tasks of a

Web Service and execute partitions on different remote

machines. This mechanism is called offloading.

We have defined different schemes for applying the

offloading mechanism in mobile network environment. The

main difference between these schemes is the methodology

used by the mobile host for handling requests and responses.

The first scheme is called Forward-Offload and shown in

Fig. 8. In Forward-Offload a client sends a request to the

MH then it forwards the request to an AMH for processing.

After that, the AMH sends its response to the MH, which

forwards the response to the client. This type of

communication relies on the MH to partially process the

request, select the AMH and to maintain communication

subsystem TCP. However, it supports ubiquitous computing

through distributing the execution autonomously without the

client being aware.

The second case is called Bounce-Offload. Fig. 9

illustrates Bounce-Offload where the client sends a request

to the MH, which then bounces the request back to the

client, redirecting the request to another host for processing.

This type of communication lessens the load on MH,

preserves its resources and reduces the signaling exchanges

(compared to Forward-Offloading). Thus, it increases the

capability for the mobile host to handle more requests

concurrently and increases scalability. However, these

benefits are gained at the expense of putting a greater

burden on the client to tackle the task of contacting another

host. The critical analysis between the two offloading

strategies has been carried out by us and will be published in

another paper.

Figure 8: Forward-Offload

Figure 9: Bounce-Offload

In this publication, Forward-Offload is examined to

support ubiquity and autonomy. However, this scheme

consumes more resources than Bounce-Offload. Thus, our

aim is to minimize resource consumption as much as

possible. This goal can be achieved through a coherent

study of the signaling and processing overheads for both

extended SOAP- and REST- based MHWFs. The next

section explains and illustrates the architecture of the

aforementioned extended MHWFs.

VI. MOBILE WEB SERVICE DISTRIBUTION

ARCHITECTURE

The MHWFs architecture that has been implemented

previously [1] for providing, deploying and executing

SOAP and RESTful- based mobile Web Services is

extended to allow distribution and offloading functionality.

This is accomplished by using the previously implemented

architecture for developing the AMH. The AMH will take

the role of a mobile host temporary and performs its typical

tasks such as handling the forwarded requests, invoking the

required service, executing it and sending the result back to

the MH. However, the architecture of the mobile host is an

augmentation of the basic built MHWFs. The augmentation

is taken place through adding an Offloading Module as

shown in Fig. 10. The main task of the Offloading Module

is to transform the role acted by the MH from server to

client temporary. This is carried out to allow MH to forward

incoming requests to AMH. MH partially processes

incoming requests to extract the name of the requested Web

Service and its associated parameters. Another important

task for MH is to select the appropriate AMH that satisfies

some predefined conditions. The following section

introduces the prototype that is used for testing and

examining the validity of distributing SOAP and RESTful-

based Web Services in mobile environments.

Resp

Req

C

MH

AMH

Req. bounce

AMH

MH
C

Req

Resp

453

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Web Service

Servlet

HTTP Listener

Request Handler

Message Parser

Response

Composer

Create Threads

Web Service Deploys Web

Service/Hash table

Method Name

and Parameters

Deployed Web

Services with

associated URL

Redirects request to

appropriate Web Service
Web

Service A

Accept and Open

Connection

Incoming

Requests
Server

Socket

Thread

Incoming Requests

through Input Data

Stream

Process Request

Send Request to

Message Parser

Incoming Requests

through Input Data

Stream

Result

Method Name/ URL of

Web Service/

Parameters

Serialize the Response

Message/ Send to Client

Input Data

Stream

Output Data

Stream

Offloading
Receive Request

Receive Response

AMH selection Policy

AMH IP

Send Request

Send Response

Figure 10: Architecture of MHWF with offloading functionality

VII. EXPERIMENTAL RESULTS AND EVALUATION

As aforementioned, the main objective is to investigate

the offloading mechanisms and to examine the feasibility

and validity of distributing SOAP and RESTful based-Web

Services in mobile environments. Another objective is to

test and compare two different architectures to assist in

selecting an architecture that is most suitable for distributing

mobile Web Services with fewer overheads and less

resource consumption.

The experimental approach we followed evaluates

functional and non functional properties in two different

environments: offloading and non-offloading environments.

It also applies two different resource intensive applications

for each environment: processing and bandwidth intensive

application types. Tests for non-offloading environment

have been carried out in the previous section. Following is a

description of the test taken for offloading environment.

A. Offloading Experimental Environment

A small prototype is proposed to carry out the

experiments needed to address the validity of offloading

mobile Web Services and distributing the execution tasks of

a large complex Web Service between different mobile

hosts. We have extended the two architectures for the main

MH by adding an Offloading Module and using the same

previous MHWF architectures for the AMH. The evaluation

was conducted using a prototype compromising three

mobile devices as shown in Fig. 11: The MH is executed on

a mobile device (Nokia N97m) running MIDP 2.1 over

Symbian OS. The other device, implementing the auxiliary

AMH that acts as mobile host when the original MH is

Figure 11: Prototype for offloading mobile Web Services

overloaded, was executed also on an N97m. The client was

executed on a Laptop using the Sun Wireless Toolkit and

emulator. The devices were connected via a wireless

network. In this experiment Forward-Offload strategy has

been applied. Since the MH is assumed to be overloaded it

processes part of the incoming requests and forwards it to

AMH. The MH elects an AMH.

The election is carried out using probe requests sent to

all mobile devices that satisfy set of predefined criteria.

However, this is beyond the scope of this paper. The

evaluation has been accomplished for two different services.

The first Web Service represents processing intensive

application. The example used for this type of applications

was a simple PI calculation service. In this service the

accuracy for calculating PI depends on the number of terms

that are added together. The number of terms is controlled

by a client using an integer parameter. The other type of

services represents bandwidth intensive application. The

service used for bandwidth intensive applications was a

simple String-Concatenation. In this service, the number of

times constant is merged and concatenated depends on a

parameter (i.e., an integer value) set by the client.

The evaluation for both services is carried out using

three different scenarios. In the first set of experiments the

level of internal resource consumption is examined

including both memory and processor resources. In the

second set of experiments the level of external resource

consumption is estimated by calculating the total amount of

interactions between the three connected mobile devices. In

the third set of experiments the overall performance is

evaluated by measuring total elapsed response time for

execution of each request. After that, the offloading

overhead is analyzed. Finally, the performance

improvement is evaluated for both (SOAP and REST)

architectures in the last set of experiments.

454

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Results for Offloading Process Intensive Web Service

The first application scenario demands intensive

processing power. The application represents a simple

mathematical service called PI Web Service used to

calculate the constant π whose value can be approximated

using Gregory-Leibniz series [19]:




 




0 12

)1(
*4

k

k

k


We used different values of k in our experiments to

vary the computational intensity of the Web Service sample.

PI is a suitable service for accomplishing the required tests.

This is because it represents intensive power applications

where the amount of consumed power can be controlled via

k parameter, which determines the number of accumulated

terms. First, the amount of internal resources consumption is

examined for different values of k to investigate the effect of

varying application process complexity level on the MH

resources. These internal resources include both MH

memory and MH processing power that are required during

executing and offloading incoming Web Service requests.

Tests run for both architectures RESTful and SOAP-based

MHWF. The memory consumption is averaged for 50

requests for different values of k. Memory is estimated by

calculating the difference between the total available

amount of memory on MH before processing incoming

requests and the available memory after processing requests

before sending them to clients. However, since the heap

memory size of mobile devices is variable, then a technique

for controlling the variation of mobile host memory is

applied. This is done by releasing the unused objects then

freeing the memory heap by running garbage collection

before measuring the total available memory amount.

Results presented in Fig. 12 show that with offloading,

changing the application processing complexity has no

effect on the memory consumption amount for the main

mobile host. This is because the real processing and

memory allocation are delegated to another auxiliary mobile

host. Moreover, RESTful-based architecture saves more

memory resources than the conventional SOAP-based

architecture. The average amount of CPU processing power

is also tested for different values of k. In general the amount

of CPU processing power can be estimated by measuring

the processing time required to execute a predefined task by

the CPU. In the offloading process the MH processing time

includes two parameters they are: the time required to

process incoming requests from clients and the time

required to process incoming responses from the AMH.

Thus, the average processing time is the summation of the

average time spent for client requests in MH before it being

forwarded to the AMH plus the average time spent for

responses that are delivered from AMH to MH before it

being forwarded to designated client. This average process

Memory consumption of SOAP MH and REST MH during Offloading Web

services

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 10
0

50
0

10
00

20
00

30
00

50
00

10
00

0

20
00

0

50
00

0

x
1
0

6

PI Function Complexity

M
e
m

o
ry

 C
o

n
s
u

m
ti

o
n

 M
B

SOAP Mobile Host

RESTful Mobile Host

Figure 12: Memory Consumption of SOAP and REST mobile hosts

Processing time of SOAP_MH and RESTful_MH during

Offloading Web Services

0

500

1000

1500

2000

2500

3000

3500

10 10
0

50
0

10
00

20
00

30
00

50
00

10
00

0

20
00

0

50
00

0

PI_function complexity

P
ro

c
e
s
s
in

g
 t

im
e
 (

m
s
)

SOAP MH

RESTful MH

Figure 13: Processing time for SOAP and REST mobile hosts

time is measured for different k values. Fig. 13 illustrates

that the average processing time required by MH is constant

since it compromises the process of parsing requests and

responses that have invariable payload length. On the other

hand invoking and executing the required service that has

variable complexity takes place remotely on AMH.

Moreover, SOAP-based MHWF demands larger processing

power than its corresponding RESTful-based MHWF. This

is because processing SOAP requests requires heavy weight

parsers to un-wrap the SOAP envelope from the incoming

HTTP POST request. However, processing RESTful

requests uses a light-weight String-based parser that is

created by us to extract the information, which resides

explicitly on the HTTP request. Thus, RESTful-based

MHWF consumes fewer amounts of internal resources than

SOAP-based framework. This preserves more resources for

the MH to allow it to handle more requests and deploy more

active Web Services. Consequently RESTful-based MHWF

increases scalability and throughput in distributed mobile

Web Service environment.

Second, the level of external resource consumption is

tested for different values of k. Bandwidth consumption is

one of the most critical external resources in mobile wireless

environment. This resource is predicted through computing

the total amount of data transferred in a predetermined

amount of time, which mainly depends on the size of both

request and its corresponding response.

455

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

BW consumption of SOAP-based MHWF and RESTful-based

MHWF during offloading Web Services

0

100

200

300

400

500

600

700

800

900

1000

10 10
0

50
0

10
00

20
00

30
00

50
00

10
00

0

20
00

0

PI function complexity

T
o

ta
l

e
x
c
h

a
n

g
e
d

 i
n

fo
rm

a
ti

o
n

 (
b

y
te

s
)

SOAP MHWF

RESTful MHWF

Figure 14: Bandwidth Consumption for SOAP and REST-based MHWF

For simplicity we used the average total amount of

interactions between the three mobile nodes (client, MH and

AMH). With respect to Fig. 14, it is shown that RESTful-

based MHWF outperforms the standard SOAP-based

MHWF and contains approximately 50% less amount of

data exchanged. This result is expected because SOAP

messages are verbose XML and they require an envelope to

hide the service name and parameters in the body of the

HTTP request. However, RESTful-based messages are

based on the standard HTTP and the service name with its

associated parameters are explicitly reside in the HTTP

URL. Hence, RESTful-based MHWF requires less

bandwidth than SOAP-based MHWF.

 Finally the average response time is measured for

different k values and for both architectures. Response time

is defined as the time that a client spends waiting to receive

the result from the MH. This is measured by calculating the

difference between the time when a response is received by

the client from the MH and the time when a request is sent

by the client to the MH. Results presented in Fig. 15 show

that the average response time is directly proportional to the

complexity degree of the application being processed. The

proportional relation refers to the two parameters that

dominate the response time value: communication delay and

the processing time on both MH and AMH. Although the

processing time on MH is constant and does not change

with different k values, the processing time on AMH as

shown in Fig. 16 is variable and it increases for larger

values of k. Moreover, SOAP-based MHWF requires more

response time than RESTful MHWF for the same k value.

This is because SOAP-based MHWF requires more

communication delay and processing time on MH than

RESTful-based MHWF.

Total Response time of SOAP basedMHWSF and RESTful MHWSF

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1
0

1
0
0

5
0
0

1
0
0
0

2
0
0
0

3
0
0
0

5
0
0
0

1
0
0
0
0

2
0
0
0
0

5
0
0
0
0

PI_fuction complexity

R
e
s
p

o
n

s
e
 t

im
e
 (

m
s
)

SOAP Based MHWSF

RESTful Based

MHWSF

Figure 15: Total response time for SOAP and RESTful-based Web

Services

Processing time of SOAP_AH And RESTful_AH during

Offloading WS

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

10 50
0

20
00

50
00

20
00

0

PI_funcation Complexity

P
ro

c
e
s
s
 t

im
e
 (

m
s
)

SOAP based AH

REST based AH

Figure 16: Processing time on Auxiliary Mobile Host for SOAP and

 RESTful-based MHWF

C. Results for Offloading Bandwidth Intensive Web

Service

The second application scenario is aimed to carry out

tests for applications requiring intensive bandwidth. The

String-Concatenation service used to evaluate the

architectures consumes network bandwidth and demands

CPU processing power depending on the size of the

concatenated string. The request contains an integer

parameter value l. l determines the number of iterations for

concatenating a specific string. The output of this service (a

concatenated string) is then returned to the client. The size

of the concatenated string is controlled by varying the value

of l. Consequently the size of response message payload is

increased by increasing the input value l.

The first set of experiments is conducted to examine the

amount of internal resources consumption for different

values of l. These resources include both MH memory and

MH processing power that are required during executing

and offloading incoming Web Service requests. Tests run

for both architectures. The memory consumption is

averaged over 50 requests. Memory is estimated by

calculating the difference between the total available

456

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

amount of memory on MH before processing incoming

requests and the available memory after processing requests

before sending them to clients. However, since the heap

memory size of mobile devices is variable, then a technique

for controlling the variation of mobile host memory is

applied. This is done by releasing the unused objects freeing

the memory heap before measuring the total available

memory. Results presented in Fig. 17 show that with

offloading, the memory consumed on the MH increases as

the response message size increases. MH allocates more

memory for storing the increased response before it is

forwarded to the corresponding client. Another observation

is that the REST implementation uses less memory than the

SOAP based architecture. This is due to the smaller

overhead of REST messages compared to the corresponding

SOAP messages. Then, the second examined resource is the

CPU load consumed by the MH. This is determined by

measuring the average process time on MH (averaged over

50 requests). Fig. 18 presents the effect of varying response

message lengths on the average processing time for the

SOAP- and REST implementations. The results show that

the MH spends more time receiving and reading responses

with larger payloads than those with smaller payloads.

Moreover, the average processing time needed by the SOAP

implementation to run a service is larger than the average

processing time needed by the REST implementation.

SOAP requests require comparatively heavy weight parsers

to un-wrap the SOAP envelope from the incoming HTTP

POST request while requests in REST use light weight

string-based parsers. Thus, the REST implementation

consumes overall fewer resources than the SOAP

implementation.

The second set of experiments designed to evaluate the

bandwidth required to offload and distribute the execution

of mobile Web Services between several mobile nodes. This

was accomplished through measuring the total amount of

information that is transferred between client, MH and

AMH. String-Concatenation service is used again, and as

the input value l increases, the size of the concatenated

string increases as well, which results in an increase of the

response message size. This is clearly shown in Fig. 19.

In this case SOAP needs more information than REST by

approximately 482 bytes to store the Web Service

parameters and method names inside the body of the HTTP

request. Therefore, SOAP messages require more wireless

bandwidth than REST messages.

 The third set of experiments measured the average

response time for different input values of l for both

architectures. Response time includes the processing time

spent on both MH and AMH for handling client request,

invoking the required Web Service, executing it, composing

the result and sending it back to the client. In addition, it

involves the transmission delay for messages to transfer

between the designated mobile nodes through socket

connections.

Memory consumption of SOAP MH and REST MH during Offloading Web

services

0

0.5

1

1.5

2

2.5

10 100 200 300 400 500 1000 2000

x
1

0
6

Length of concatenated string

M
e

m
o

ry
 C

o
n

s
u

m
ti
o

n
 M

B

SOAP Mobile

Host

RESTful Mobile

Host

Figure 17: Memory Consumption of SOAP and REST mobile hosts

Processing time of SOAP_MH and RESTful_MH during Offloading Web

Services

0

20000

40000

60000

80000

100000

120000

140000

160000

10 100 200 300 400 500 1000 2000

Length of concatenated string

P
ro

ce
ss

in
g

tim
e

(m
s)

SOAP MH

RESTful MH

Figure 18: Processing time for SOAP and REST mobile hosts

BW consumption of SOAP and RESTful-based MHWF during offloading

process

0

5000

10000

15000

20000

25000

10 100 200 300 400 500 1000 2000

Length of concatenated string

A
m

o
u

n
t

o
f

in
te

ra
c
ti

o
n

(b
y
te

s
)

SOAP-based MHWF

RESTful MHWF

Figure 19: Bandwidth consumption of SOAP- and RESTful-based MHWF

during offloading

The results of this experiment are presented in Fig. 20. As

the size of the response message increases, the average

response increases. This is expected because for this

experiment, the response time is composed of the MH

processing time, which increases with increasing message

size as shown in Fig. 6. AMH processing time is another

component for the response time that also increases with

increasing message size as shown in Fig. 18.

457

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Total Response time of SOAP basedMHWSF and RESTful MHWSF

0

50000

100000

150000

200000

250000

300000

350000

400000

10 500 2000 5000

Length of concatenated string

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

SOAP Based MHWSF

RESTful Based

MHWSF

Figure 20: Total response time for SOAP- and RESTful-based Web

Services

Processing time of SOAP_AH And RESTful_AH during Offloading WS

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 0 0 0 0 0 0 0

Length of concatenated string

P
ro

c
e
s
s
 t

im
e
 (

m
s
)

SOAP based AH

REST based AH

Figure 21: Response time for SOAP/RESTful-based MHWF during

offloading

D. Offloading overhead Experimental Results

The overhead of distributing the execution of

conventional SOAP-based MHWF and the new RESTful-

based MHWF is examined in this section. The overhead is

caused by the coordination and management of the task

partitioning. The overheads include memory, processing,

response time and signaling/messaging. Moreover, this is

measured in for both implementations (as fore described). In

this set of experiments we implemented prototypes for both

architectures based on the typical original MHWF. Each of

these prototypes consists of a client simulated using Sun

Wireless Toolkits 3.0 emulator and n97 Nokia mobile host.

The mobile host and client are connected in a wireless

network. The test is carried out using the two

aforementioned resource intensive applications. (i.e., PI and

String-Concatenation)

In all experiments only one parameter is measured at a

time. Each client operates cyclically and sends one request

waits until it receives the response back then repeats the

cycle and sends the same request again. This cycle is

repeated 50 times for each experiment and the average of

these 50 measurements is calculated. Then the measured

parameters are compared with its corresponding parameters

that are measured during applying offloading mechanism.

As mentioned above these parameters include memory and

processing consumption on the MH that indicate the amount

of resource consumption overheads. Other parameters are

the amount of interaction and response time that indicate the

amount of communication/signalling overheads. RESTful-

based MHWF framework shows an inferior performance in

comparison to SOAP-based MHWF framework regarding

distribution of mobile Web Services. Fig. 22 and Fig. 23

emphasize this fact and prove that RESTful MHWF shows

smaller resource consumption and signalling overheads than

SOAP- based MHWF. RESTful MHWF is also preserve

approximately 42% more amount of memory than SOAP

MHWF for k=10 in PI application. Moreover, the difference

in overhead is more obvious for applications with more

processing and bandwidth intensity. For example, in String-

Concatenation test case REST-based implementation

requires approximately 70% less processing cycles, 68%

reduced delay and 59% fewer messages to provide the same

service in SOAP-based implementation.

Offloading and Communication overhead comparision between SOAP

and RETful-based MHWF (k =10) for PI ws

0

500

1000

1500

2000

2500

3000

3500

Process power

overhead (ms)

Response time (ms) Amount of interaction

(bytes)

D
if

fe
re

n
c
e
 A

m
o

u
n

t

SOAP-based MHWF

REST-based MHWF

Figure 22: Offloading and Communication overhead for SOAP and

RESTful-based MHWF (N=10) for PI Web Service

Offloading and Communication overhead comparision between SOAP and

RETful-based MHWF (l= 10) for StringConcat ws

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Process power

overhead (ms)

Response time (ms) Amount of interaction

(bytes)

D
if

fe
re

n
c
e
 A

m
o

u
n

t

SOAP-based MHWF

REST-based MHWF

Figure 23: Offloading and Communication overhead for SOAP and

RESTful-based MHWF (N=10) for String-Concatenation Web Service

458

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Performance Improvement Experimental Results

The performance of distributing the execution of

conventional SOAP-based MHWF and the new RESTful-

based MHWF has been further analyzed and examined in

this section. This analysis is carried out to critically measure

the amount of REST over SOAP performance improvement

gained from offloading. The parameters that are used for

measuring performance improvement include amount of

memory, response time and total message length

enhancement. These parameters are evaluated for both Web

Service samples (PI and String-Concatenation). Results in

Fig. 24 and Fig. 25 show that offloading and distributing

RESTful Web Services can achieve more performance

improvement over its corresponding SOAP Web Services

compared to the improvement that can be achieved in non

distributed environments. In addition, the amount of

processing power enhancement is slightly more for

computational intensive. On the other hand, the amount of

communication delay enhancement is more for bandwidth

intensive applications.

REST/SOAP performance imprvement

0

0.1

0.2

0.3

0.4

0.5

0.6

M
em

or
y

C
on

su
m

pt
io
n

ra
tio

P
ro

ce
ss

 ti
m

e
ra

tio

R
esp

ons
e ti

m
e
ra

tio

M
es

sa
geL

en
gt
h ra

tio

(x
1
0
0
)% REST:SOAP(offloading)

REST:SOAP (non offloading)

Figure 24: REST/SOAP performance improvement for offloading and non-

offloading Web Services (PI Web Service)

REST/SOAP performance improvement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
em

or
y

C
on

su
m

pt
io
n

ra
tio

P
ro

ce
ss

 ti
m

e
ra

tio

R
esp

ons
e ti

m
e
ra

tio

M
es

sa
geL

en
gt
h ra

tio

(x
1
0
0
)

%

REST:SOAP (Offloading)

REST:SOAP(Non Offloading)

Figure 25: REST/SOAP performance improvement for offloading and non-

offloading Web Services (String-Concatenation Web Service)

VIII. DISCUSSION

 RESTful- versus SOAP-based mobile Web Service

distribution are evaluated based on four main parameters.

These parameters constitute an essential infrastructure used

for selecting the most appropriate WS provisioning

framework for providing distributed mobile Web Services.

One of the most vital parameters is performance, which

always forms the main goal for building efficient

frameworks

 Performance is measured by testing the average

processing time on the main mobile host in addition to the

average response time for Web Service requests. Results

meet our expectations and show that RESTful-based MHWF

provides improved processing time and response time over

its corresponding SOAP-based Web Services. This is

because SOAP-based Web Services require heavy weight

parsers to un-wrap incoming request and extract the hidden

SOAP envelope from the body of HTTP request. But

RESTful Web Services require light-weight parsers based on

string manipulator. This String-based parser is needed to

extract the information required for invoking Web Services.

This information resides explicitly on HTTP request.

 Moreover, the improvement achieved in the average

processing time is more for offloading case than non-

offloading case. This is due to the distribution of Web

Services and partial execution of Web Services on MH.

Results have also shown that the processing time for Web

Services with fixed length message payloads is almost steady

state in the offloading environment and does not vary with

increasing the processing power complexity. This is because

processing time on MH consisted of reading the incoming

request, identifying the parameters required for invoking a

Web Service such as method name, service name and related

parameters, forwarding these parameters to AMH, reading

incoming responses from AMH, comparing the response and

sending it to client. Thus, processing Web Service on MH

depends mainly on the size of the incoming and outgoing

respective requests and responses. Processing time on MH

does not depend on the complexity of the Web Service logic

that will be executed remotely on AMH. Similarly, RESTful-

based MHWF provides better average response time than

SOAP-based MHWF due to support for caching. In addition,

response time involves processing time on MH, processing

time on AMH and communication delay.

 As illustrated earlier processing SOAP requires

comparatively heavy-weight parsers and consumes more

time. Furthermore, communication delay is directly

proportional to the size of transferred message, which is

larger for SOAP than REST. The second dominant parameter

is scalability and reliability of the developed framework.

Since RESTful Web Services are idempotent, therefore,

sending repeated request to compensate for reliability is safe

and simple. On the other hand, reliability of SOAP is

achieved by using a WS- reliability standard that encounters

459

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

some implementation complexity and augments the size of

the original SOAP message. Results present more scalability

with RESTful-based MHWF and more requests can be

executed concurrently than the conventional SOAP-based

MHWF. This is because REST requests are stateful and

reduce the need for the MH to maintain communication

state. RESTful-based MHWF is also more scalable, because

its corresponding requests are smaller in size and occupy less

space waiting in the server queue than SOAP requests.

Another parameter that is addressed by that evaluation is the

amount of consumed resources: internal and external

constrained mobile resources. Results have proved that

RESTful-based MHWF preserves more processing power,

memory storage space and network bandwidth than SOAP-

based MHWF. This is because processing SOAP requests

requires more extensive processing power for parsing and

serializing SOAP object. More memory is also needed to

load parser libraries and to store temporary parsed objects.

 Furthermore, in comparing SOAP and REST requests we

can easily notice a significant reduction in requests payload.

Hence, RESTful-based MHWF consumes less network

bandwidth during transmission of smaller REST message

payloads. This result is more trivial with bandwidth intensive

applications where the amount of interaction reduction

increases approximately from 54%-97%.

The last parameter is the overhead caused by adding

offloading module to the existing framework. Results have

shown that RESTful-based MHWF intercepts less overhead

than SOAP-based MHWF. This is due to less total amount of

interactions, processing time, response time and memory

requirement.
However, there are some limitations with RESTful Web

Services. First they are only used for HTTP transport layer.
In addition, transaction and federation are not supported by
REST. SOAP is more suitable for complex Web Services
that require a contract in advance between client and
Web Service provider.

IX. CONCLUSION AND FUTURE WORK

Mobile Web Services are provided from resource
constrained mobile hosts in an intermittent wireless network.
Thus, so far there were clear limitations in terms of
complexity and size of the services that may be executed on
mobile hosts. Providing adaptive mobile Web Services is
vital to allow reliable provision of complex Web Services
from resource limited mobile devices to overcome resource
constraints.

This paper has explored one of the mechanisms used to
facilitate the provisioning of adaptive mobile Web Services.
The explored mechanism is known as offloading. This is
accomplished by extending the two frameworks SOAP-
based MHWF and RESTful-based MHWF developed in [1].
The novelty of this work to the best of our knowledge is that
it is the first work that investigates provisioning of RESTful-
based distributed Web Services from mobile devices.

The two frameworks are extensively tested and analyzed
using two types of applications, process intensive application
and bandwidth intensive application.This analysis is needed
to select the most appropriate implementation technology
that suits adaptive and distributive mobile Web Services.

Our preliminary work shows that extended RESTful-
based MHWFs outperform SOAP-based MHWFs.
Moreover, RESTful-based MHWF has less offloading and
interaction overhead. In addition, it has more performance
improvement over SOAP-based MHWF and less resource
consumption in offloading environment than in non-
offloading environment.

The level of resources consumption improvement
depends on the type of application. Performance
enhancement is obvious for resource intensive applications.

 In addition, RESTful-based MHWF supports caching;
this saves the limited network bandwidth and increases
reliability and scalability. It also reduces consumption of
mobile resources. Another feature of RESTful Web Services
is the loosely coupled relation between the server and client
because of the uniform interface that adds a balance towards
using it for distributed mobile Web Services.

Regarding future work, the first area of interest is to
investigate other schemes for offloading Web Services such
as the Bounce-offload strategy. Another interesting issue is
to define a general structure for implementing Web Service
logic to facilitate partitioning it and build an interface for
orchestrating the services [20]. Moreover, distributing and
offloading Web Services in dynamic mobile environment
must consider multiple, possibly contradictory, issues. For
example, executing a code component on a remote AMH
might reduce MH energy usage at the cost of increasing
execution time. Moreover, due to the variable nature of the
environment, it is not feasible to use static policies to
determine when and where to remotely offload services as
the current resource situation may make any statically chosen
policy obsolete.

REFERENCES

[1] Moessner, K. and AlShahwan, F., "Providing SOAP Web Services
and RESTful Web Services from Mobile Hosts," in ICIW 2010 Fifth
International Conference on Internet and Web Applications and
Services, 2010, Barcelona, pp. 174-179.

[2] Srirama, N., Vainikko, E., Sor, V., and Jarke, M. "Scalable Mobile
Web Services Mediation Framework," in 2010 Fifth International
Conference on Internet and Web Applications and Services,
Barcelona, Spain 2010.

[3] Ayyagari, D., Yongii, Fu., Jingping, Xu., and Colquit, N., "Smart
Personal Health Manager: A Sensor BAN Application: A
Demonstration," in Consumer Communications and Networking
Conference, 2009. CCNC 2009. 6th IEEE, 2009, pp. 1-2.

[4] S.-A. Ong and N. R. Center. 2006, A Mobile Webserver-Based
Approach for Tele-Monitoring of Measurement Devices.
Available:http://www.sigmobile.org/mobisys/2006/demos/Ong.pdf,
Access:03.01.11

[5] SOAP Definition. Available: http://en.wikpedia.org/wiki/SOAP,
Access:03.01.11

[6] Fielding, R., "Architectural styles and the design of network-based
software architectures," PHD, University of California, Irvine, 2000.

460

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] Berger, S., McFaddin, S., Chandra, N., and Mandayam "Web services
on mobile devices-implementation and experience," in Mobile
Computing Systems and Applications, 2003. Proceedings. Fifth IEEE
Workshop on, 2003, pp. 100-109.

[8] Asif, M. and Majumdar, S.,"Performance analysis of Mobile Web
Service Partitioning Frameworks," in ADCOM 2008, 16th IEEE
International Conference on Advanced Computing and
Communications, 2008., 2008, pp. 190-197.

[9] L. Luqun, "An Integrated Web Service Framework for Mobile Device
Hosted Web Service and Its Performance Analysis," in HPCC '08,
10th IEEE International Conference on High Performance Computing
and Communications, 2008, pp. 659-664.

[10] Srirama, N., Jarke, M., and Prinz, W., "A Mediation Framework for
Mobile Web Service Provisioning," in Enterprise Distributed Object
Computing Conference Workshops, 2006. EDOCW '06. 10th IEEE
International, 2006, pp. 14-19.

[11] Aijaz, F., Adeli, S., and Walke, B., "Middleware for Communication
and Deployment of Time Independent Mobile Web Services," in
ICWS 2008, IEEE International Conference on Web
Services,2008,pp. 797-800.

[12] Majumadar, S., Asif1, M., and Dragnea2, R., "Partitioning the WS
Execution Environment for Hosting Mobile Web Services," in SCC
2008, IEEE International Conference on Services Computing, 2008,
vol. 2, pp. 315-322.

[13] Asif, M., Majumadar, S., and Dragnea, R., "Hosting Web Services on
Resource Constrained Devices," in ICWS 200, IEEE International
Conference on Web Services, 2007, pp. 583-590.

[14] Kim, Y.-S. and Lee, K.-H.,"A light weight framework for mobile web
services " Computer Science - Research and Development, pp. 199-
209, May 2009.

[15] Saad, M., Hamad, H., and Abed, R., Computer Engineering
Department, Palestine, "Performance Evaluation of RESTful Web
Services for Mobile Devices" International Arab Journal of e-
Technology vol. 1, p. 7, January 2010.

[16] Aijaz, F., Ali, S., Chaudhary, M., and Walke, B., "Enabling High
Performance Mobile Web Services Provisioning," in Vehicular
Technology Conference Fall (VTC 2009-Fall), 2009 IEEE 70th,
2009, pp. 1-6.

[17] Aijaz, F.,Ali, S., Chaudhary, M. A., and Walke, B., "Enabling
resource-oriented Mobile Web Server for short-lived services," in
Communications (MICC), 2009 IEEE 9th Malaysia International
Conference on, 2009, pp. 392-396.

[18] Corroy, S., Beiten, J., Ansari, J.,Baldus, H., and Mahonen, P.,
"Selection of Computing Elements for Energy Efficiency in Wireless
Sensor Networks using a Statictical Estimation Method,"
International Journal on Advances in Networks and Services vol. 2, p.
10, 2009.

[19] Available: http://en.wikipedia.org/wiki/Pi,Access:03.01.11

[20] Pietschmann, S., "A Model-Driven Development Process and
Runtime Platform for Adaptive Composite Web Applications,"
International Journal on Advances in Internet Technology, 2009, vol.
2, pp. 277-290.

461

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

