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Abstract—P2P systems must handle unexpected peer failure
and leaving, and thus it is more difficult to implement than
server-client systems. In this paper, we propose a novel approach
to implement P2P systems by using virtual peers. A virtual peer
consists of multiple unstable peers. A virtual peer is a stable
entity; application programs run on a virtual peer are not
compromised unless a majority of the peers fail within a short
time duration. If a peer in a virtual peer fails, the failed peer
is replaced by another (non-failed) one to restore the number of
working peers.

The primary contribution of this paper is to propose a
method to form a stable virtual peer over multiple unstable
peers. The major challenges are to maintain consistency between
multiple peers, to replace a failed peer with another one, and
to communicate with a virtual peer, whose member peers are
dynamically changed. For the first issue, the Paxos consensus
algorithm is used. For the second issue, the process migration
technique is used to replicate and transfer a running process to
a remote peer. For the last issue, communication protocols based
on application level multicast are introduced. Furthermore, the
relation between the reliability of a virtual peer and the number
of peers assigned to a virtual peer is evaluated.

The proposed method is implemented in our musasabi P2P
platform. An overview of musasabi and its implementation is
also given.

Keywords—peer-to-peer systems; fault tolerance; Paxos con-
sensus algorithm; process migration; strong mobility

I. INTRODUCTION

In comparison to server-client systems, peer-to-peer (P2P)
systems provide superior fault tolerance because P2P systems
do not have servers, which are single points of failure.
However, because peers in a P2P system are unstable (they
fail or leave unexpectedly), P2P systems are more difficult
to implement than server-client systems. (In this paper, peer
leaving is considered a kind of peer failure and the two are not
distinguished.) For example, the following are common mea-
sures to achieve fault tolerance in P2P systems: peer failure
detection, data replication over multiple peers, and managing
multiple pointers as a precaution against peer failure. While
such measures are crucial for practical P2P applications to pro-
vide stable services, implementing such measures is delicate
work and a troublesome burden for developers.

In this paper, we propose a novel approach to ensuring fault
tolerance in P2P systems. In the proposed method, virtual
peers are formed by grouping multiple peers on a P2P network.
A virtual peer is an entity for running an application program.
Similar to mirroring on file systems, each peer of a virtual peer

serves as a part of a redundant system. The running application
on a virtual peer is not compromised when some of the peers
fail. In addition, when a peer fails, the number of peers is
restored by replacing the failed peer with another (non-failed)
one. Therefore, virtual peers rarely fail.

Using virtual peers in a P2P system is of great benefit.
Developing P2P systems based on virtual peers (i.e., using
virtual peers as a building block of P2P systems) is more
straightforward than conventional P2P systems; because the
possibility of virtual peer failure is negligible, P2P systems
constructed over virtual peers do not have to implement
measures against peer failures. Furthermore, virtual peers can
be used for the following applications.

• Replacing central servers on hybrid P2P systems: One
disadvantage of hybrid P2P systems is that central servers
are single points of failure. This single point of failure
can be eliminated by replacing the server with a virtual
peer.

• Using virtual peer as a super peer: In super peer-based
P2P systems, super peers have a more important role
than normal peers and are expected to be stable. Using
a virtual peer as a super peer reduces the possibility of
super peer failure and thus the system can be more stable.

The proposed method has been implemented in the proto-
type of our P2P platform musasabi1. Musasabi is implemented
in pure Java.

The rest of this paper is organized as follows. Section
II presents the proposed method. Section III provides an
overview of musasabi and an explanation of the implementa-
tion. Section IV describes communication protocols for virtual
peers. Section V discusses the proposed method. Section VI
gives related work, and Section VII summarizes our conclu-
sion.

II. PROPOSED METHOD

In the proposed method, multiple peers chosen from the P2P
network are grouped to form a virtual peer (Figure 1). The
peers that form a virtual peer are called member peers.

An application program running on a virtual peer is called a
virtual process. A virtual process corresponds one-to-one with
a virtual peer. A virtual process does not stop even if some of
the member peers fail. We describe the details below.

1Musasabi is a type of flying squirrel found in Japan.

206

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems



P2P Overlay Network

Peer

Virtual Peer A

Virtual Peer B

Figure. 1. Peers and Virtual Peers

A. Choosing member peers

In order to start a virtual peer, the initial member peers of
the virtual peer must be chosen. Currently, we assume that
no nodes in the P2P network decline to be a member peer of
any virtual peer. A single peer is allowed to be a member of
multiple different virtual peers.

To choose a good member peer, the following criteria must
be considered: the peer’s stability, network distances to the
other member peers, network bandwidth, CPU speed and load
average, memory size, etc. However, we choose member peers
randomly for now.

Choosing a peer randomly can be implemented using a Skip
Graph overlay network [3]. We assume that each peer has
its own ID (peer ID). On initializing a peer, its peer ID is
registered in the Skip Graph, which is shared among all peers.
In order to randomly choose a peer, generate a random number
r and search for a peer from the Skip Graph whose ID is
closest to r.

B. Achieving fault-tolerance of virtual process

To make it possible for a virtual process to continue its
execution even if some of the member peers fail, the state of a
virtual process must be replicated over multiple member peers.
In order to make it easy to develop application programs, we
choose the following approach.

Each member peer of a virtual peer simultaneously and
redundantly executes the same application program, as a
process. Each of the processes has the complete replica of
the virtual process state. This is depicted in Figure 2.

In order to maintain the state of each process identically,
the process must be a state machine. The process state must
be changed only by external input (messages) that the process
receives. Moreover, the sequences of external input (messages)
received by each process are controlled to be completely iden-
tical. This approach is known as State Machine Replication
[4].

In this approach, application programs can be quite simple;
just process the received messages in order. No commit
protocol is required.

process

musasabi

process

musasabi

process

musasabi

member peer member peer member peer

Virtual Process
Virtual Peer

Figure. 2. Virtual peer and virtual process

C. Ensuring identical message sequences

When multiple nodes transmit messages to multiple receiv-
ing nodes via the Internet, the message sequences received
among the receiving nodes are not necessarily identical. In
order to ensure that multiple nodes receive messages in iden-
tical order (in other words, atomic broadcast or total order
broadcast), we use the Paxos consensus algorithm because it
is proven and well described in literature [4][5].

Paxos is a distributed algorithm to form a consensus be-
tween multiple participants (in this case, participants are peers)
on an unreliable network. Paxos ensures that all participants
(that have not failed) eventually choose a single value that one
of the participants proposed. In Paxos, a consensus is reached
when a majority of the participants accept the proposed
value. Paxos can be extended to a series of values (called
Multi-Paxos). In this paper, Paxos and Multi-Paxos are not
distinguished.

In order for the Paxos protocol to progress, values must be
proposed by only one peer (leader peer). The leader peer is
elected from the member peers by a leader election algorithm.
Note that the Paxos algorithm guarantees only one value is
chosen even if multiple leaders are present. (This is called the
safety property and is important because leader election may
fail to elect a single leader.)

An outline of the Paxos protocol is as follows. The leader
peer initially evaluates the current condition by broadcasting
Collect messages. (Message names are based on the literature
[5].) After the leader receives the Last message from a majority
of the peers, the leader peer can propose a value by broadcast-
ing Begin messages. A value is agreed upon when a majority
of the peers reply with an Accept message. If a value is agreed
upon, the leader broadcasts the Success message to announce
the consensus. Hereafter, consensus about a sequence of values
is reached by repeating the Begin–Accept–Success sequence.
Begin, Accept and Success messages contain a sequence num-
ber to identify each proposal.

As we will describe in Section IV, when a message is sent
to a virtual peer, its leader peer receives the message through
ALM (Application Level Multicast). In order to make the
message order received by each member peer identical, the
leader peer assigns a sequential number (i) to the message
and proposes the message as the ith value with the Paxos
protocol.

On each of the member peers, the agreed-upon message is
passed to the process in sequence number order. Note that
because the Paxos protocol runs asynchronously, consensus
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is not always reached in the sequence number order when
multiple proposals have been made simultaneously. Therefore,
if the sequence number of a received message is not continuous
with the previous one (i.e., if there is a gap between them),
the process must wait until the gap is filled. If the gap is not
filled for a long time, a retransmission request is sent to the
leader peer.

D. Handling peer failure

If a member peer fails, the remaining member peers must
replace the failed peer with another one to keep the number of
member peers constant. Otherwise, eventually the virtual peer
will evaporate.

In order to detect member peer failure, each member peer
carries out watchdog monitoring on the others. When a peer
detects that another peer has failed, the failed peer is replaced
by another one. As mentioned in Section II-A, a substitute
peer is randomly chosen from the peers in the P2P network.

All of the member peers must maintain a consistent view
of the member configuration. Paxos is also used to change the
peer configuration in order to ensure consistent updating of
this view. The procedure is as follows.

i) If the failed peer is the leader, a new leader is elected
(as explained later in Section III-D).

ii) The leader peer chooses another peer p from the P2P
network.

iii) The leader peer proposes a peer configuration change
(swapping the failed peer with p) using Paxos.

iv) When the proposal has been agreed upon, the peer
configuration is changed by all of the member peers.
If the consensus fails, return to 2) after waiting briefly.

v) p must execute the same process, whose state must
be identical to the ones on other member peers. For
this reason, the process migration technique is used to
replicate the running process on the leader peer to p (see
Section III-A).

In order to reach consensus in Paxos, a majority of the peers
must be functional while replacing a failed peer. Otherwise,
the virtual peer fails. Reliability of virtual peers is discussed
in Section V-A.

Note that some of the member peers might not be aware
that the configuration has been changed, partly because the
Success message is lost, and partly because only a majority of
member peers are required to reach a consensus. If such a peer
becomes the leader, consensus might not be reached because it
may not be able to reach a majority of member peers. To avoid
this situation, member configuration is periodically exchanged
among the member peers. The details of this issue is out of the
scope of this paper. We will describe this in another article.

E. Communication with a virtual peer

Communication protocols for virtual peers are separately
discussed in Section IV because they require much space.

III. P2P PLATFORM musasabi

We implemented the proposed method in the prototype of
our musasabi P2P platform. Musasabi is written in Java and

Process 2

musasabi

Base Operating System
Windows, MacOS X, Linux...

Java VM

Process 1

PIAX

Process 3

Figure. 3. Configuration of musasabi

is intended to be a platform for implementing P2P services.
Each instance of musasabi can be regarded as a peer.

On musasabi, an application program, also in Java, can be
executed as a process. To implement a P2P service using
musasabi, a process on musasabi communicates with other
processes on remote musasabi peers.

Because a process may be transferred from a remote peer
using process migration, measures against malicious programs
are necessary in order to protect a local node. For this reason,
processes are executed in the Java sandbox mechanism.

Musasabi uses another P2P platform, PIAX [6], for P2P
networking. Among the functions provided by PIAX, the Skip
Graph overlay network and the ALM service are important for
musasabi. The configuration of musasabi is shown in Figure 3.

Musasabi supports the virtual peer mechanism described
above; we describe the details below.

A. Implementation of process migration

In order to implement a virtual peer, process migration, a
function to transfer a running process from a node to another
node, is required.

Process migration techniques are classified into two classes:
weak mobility and strong mobility [7]. In weak mobility, only
program code and data fields (the values of global variables)
are transferred, whereas in strong mobility, in addition to these,
the execution context of threads (the contents of the thread
stack and the value of its program counter) is also transferred.
Strong mobility makes it possible to describe mobile programs
in a natural form. Musasabi supports strong mobility, whereas
the standard Java does not.

Musasabi provides the following APIs for process migra-
tion. An example of their use is shown in Figure 4.

go(peer)
The calling process is migrated to the specified peer.

fork(peer)
The calling process is replicated and the replicated
process is transferred to the specified peer. This API
resembles the fork system call in UNIX.

1) Implementation of strong mobility: Some research has
been done on implementing strong mobility in Java. As stated
above, in order to achieve strong mobility, program code,
data fields, and execution contexts must be transferred. The
program code can be transferred as class (or jar) files. The Java
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// start on peer p0
PeerId p1 = ...;
go(p1); // move to peer p1
...; // run on p1
PeerId p2 = ...;
// duplicate the process and transfer to peer p2
if (fork(p2) == null) {
...; // run on p2

} else {
...; // run on p1

}

Figure. 4. A sample program to demonstrate process migration APIs of
musasabi

class MyClass() implements Runnable {
public void run() {
block1;
Continuation.suspend(); // suspend here
block2;

}
};
// start from MyClass#run().
// it will be suspended after executing block1 and
// the executing state is saved to c.
Continuation c
= Continuation.startWith(new MyClass());

// resume from block2.
c = Continuation.continueWith(c);

Figure. 5. A sample program of Javaflow’s Continuation

serialization mechanism can be used to transfer the data fields.
The remaining problem is the method for transferring the
execution context. The following methods are known [8]: (1)
modifying the Java Virtual Machine (JVM) [9], (2) extending
JVM using the Java Native Interface that is provided by JVM
[10], (3) translating Java byte code [8][11], and (4) translating
Java source code [12].

In a P2P network, because each peer is independently
managed, it is difficult to use a non-standard JVM or native
code. Thus, (1) and (2) are rejected. Musasabi adopts method
(3), using Javaflow, a library for realizing Continuation in
Java, because it is publicly available [13]. The idea of using
Javaflow for implementing strong mobility is also described
in the literature [8].

Javaflow allows Java programs to save a program execu-
tion context as an object called continuation, which contains
information of the stack frame of a thread. Saved context
can be restarted later (Figure 5). To make it possible to save
and restore an execution context, Javaflow translates the byte
code of the program based on certain rules. Both Javaflow and
translated byte codes run on a standard JVM.

Because continuation of Javaflow is Serializable, it is pos-
sible to restart the saved context on a different node. Thus,
strong mobility can be implemented using Javaflow. (Note
that to serialize a continuation, all objects stored in the saved
context also must be Serializable.)

2) Migration of a multi-threaded process: When a multi-
threaded process is migrated by using the strong mobility
model, the execution contexts for all of the threads must be
stored and recovered. However, by using a method in which
JVM is not modified (including the case of using Javaflow),
the execution context cannot be forcibly acquired from outside
of the thread; in order to acquire the execution context of a

thread, the thread itself must call an API to capture the context.
Therefore, it is difficult to migrate all the threads in a process
when a thread requests a process migration.

Musasabi solves this problem by providing Coroutines
instead of Java threads. Coroutines are a unit of parallel
processing, similar to threads. While threads may be exe-
cuted simultaneously (in parallel), coroutines are executed in
turn. While context switching between multiple threads is
preemptive, context switching between coroutines is voluntary.
When a coroutine is running, other coroutines are not executed
until the running coroutine itself yields the execution right
(by executing yield() or some other API). Therefore, when
a coroutine requests process migration, all other coroutines
should have yielded, and thus the execution state of all the
coroutines can be transferred to the destination peer. The APIs
for coroutines in musasabi are similar to the standard Java
thread APIs.

Javaflow is also used to implement coroutines in musasabi.
Context switching between coroutines is done by saving a
coroutine context and restoring another coroutine context. A
simple coroutine scheduler is also implemented.

B. Application Level Multicast

As we will describe in Section IV, the proposed method
uses ALM for sending messages to a virtual peer. Musasabi
uses the ALM service of PIAX, which is built on top of Skip
Graph. The implementation of ALM is simple. If a peer joins
a multicast group whose ID is g, the peer registers g as a key
in the Skip Graph. A message sent to the multicast group g
is routed over the Skip Graph and distributed to all peers that
registered the key g.

Note that communication within a virtual peer is directly
performed on the IP layer.

C. Starting a virtual peer

A virtual peer (and the corresponding virtual process) is
started as follows. First, a user starts a normal (non-virtual)
process on a peer on which musasabi is running. This peer
will be the initial leader. The process requests musasabi to
become a virtual process. An ID for the virtual peer is assigned
using a random number generator. Then, in order to form a
virtual peer, musasabi randomly chooses the specified number
of member peers from the P2P network. The initial leader peer
joins the multicast group whose ID is the same as the ID of
the virtual peer.

D. Leader election

If a leader peer fails, the Paxos protocol needs a new leader.
In musasabi, a new leader is elected as follows.

Failure of a member peer is detected by timeout of the Keep
Alive message, which each of the member peers periodically
sends to others. Each member peer maintains the (Alive or
Dead) status of the other member peers.

Each member peer has a unique number, mnum (member
number). All member peers know the mnum of the others.
If the number of the member peers is n, the mnum of each

209

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems



initial n peer will be 0, 1, . . . , n−1. When a peer replacement
is agreed upon, the mnum of the new peer must be assigned
without duplication. In order to guarantee the uniqueness of
mnum even in a multiple leader situation, we use the Paxos
sequence number which is used in the replacement proposal as
the new mnum. (The initial Paxos sequence number is adjusted
not to be duplicated with the initial mnums.)

If a leader peer fails, the next leader is the member peer that
is alive and whose mnum is the smallest. When a member peer
detects that the leader peer has failed, the peer determines
whether the peer should be the next leader (check whether
the peer itself has the smallest mnum among all live member
peers). If the peer believes that it is the next leader, the peer
broadcasts Collect messages (Section II-C). If the peer receives
Last messages from a majority of the peers, it joins in the
multicast group of the virtual peer and broadcasts IamLeader
messages to announce that it is the new leader. If the peer fails
to collect enough Last messages (this could happen if another
peer also believes that it should be the next leader), and no
IamLeader message has been received from other member
peers, the peer retries broadcasting Collect messages after
waiting for some random period.

E. Replacing a failed peer

When a configuration change proposal (swap the failed peer
with a substitute peer p) is agreed-upon, the leader peer uses
the fork() API to replicate the process running on the leader
peer onto peer p.

An outline of a replacement sequence for a failed peer
is shown in Figure 6. The leader peer detects that Peer#2
has failed because of a Keep Alive timeout, and chooses
Peer#3 as a substitute. The leader proposes replacing Peer#2
with Peer#3. When the proposal is agreed upon, the member
configuration is changed in each member peer. In addition,
the leader peer replicates (fork) the process onto Peer#3.
Subsequently, the virtual peer (process) is served by peers #0,
#1, and #3.

F. Interaction between application programs and Paxos

Interaction between application programs and Paxos is
depicted in Figure 7. Messages that the leader peer receives
via ALM are not automatically proposed by musasabi. All
messages received via ALM are sent to the process on the
leader to determine whether the message should be proposed
or not. This is because messages that do not affect the process’
status, such as simple read requests, may be processed without
proposing. (However, not all read requests can be processed
without proposing; if multiple leaders are present, a leader
cannot guarantee that it has the latest state. Therefore, only
messages that do not depend on the latest state can be
processed without proposing.)

IV. COMMUNICATION PROTOCOLS FOR VIRTUAL PEERS

To implement services using virtual peers, virtual peers must
be able to communicate with other peers (either virtual or
non-virtual). Communication between virtual peers is a kind

Peer #0

(Leader)
Peer #1 Peer #2 Peer #3

K e e p  A l i ve

K e e p  A l i ve
Ke e p  Aliv e

Ke e p  Aliv e

B e g i n

S u cce ss

Fo r k

Ac c e p t

Do Swap Peer#2 with #3

Propose

Swap Peer#2 with #3

Peer#2 Timeout

Pickup Peer#3

Fail!

Figure. 6. Sequence for replacing a failed peer
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Figure. 7. Interaction between Applications and Paxos

of group communication, which is a means for multi-point
to multi-point communication. In this section, we describe
communication protocols for virtual peers.

To clearly distinguish the two, we call a peer that is not
a virtual peer a normal peer. We assume that a peer (either
normal or virtual) sends a request message to a virtual peer and
receives a response message. We also assume that messages in
the underlying network may be delayed or lost. In our proto-
cols, communication channels between a sender and a receiver
are not FIFO, i.e., if multiple messages are asynchronously
sent, their order at the receiver may be changed.

The structure of our protocols is depicted in Figure 8. Note
that basically each application in the figure is executed on a
different node.

We describe the communication protocol between a normal
peer and a virtual peer in Section IV-A, and between virtual
peers in Section IV-B.

A. Communication between a normal peer and a virtual peer

First, we discuss the protocol in the case where a normal
peer p sends a message m to a virtual peer v and v returns a
response message q to p.

1) Delivery message to a virtual peer: As described in
Section II-D, member peers of a virtual peer are not fixed.
Thus, it is not a straightforward task to deliver messages to a
virtual peer from outside of the virtual peer.
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Figure. 8. Protocol Structure

This issue can be solved using ALM. All peers of a virtual
peer join in a multicast group specified by the ID of the virtual
peer. When a peer sends a message to a virtual peer, the peer
multicasts the message over the multicast group of the virtual
peer. The sender peer does not have to know the addresses
of each member peer. (Note that multicast is required because
there might be multiple leaders in a single virtual peer (See
Section II-C).)

2) Retransmission of message: When the leader peer of
v receives m through ALM, it proposes m with the Paxos
protocol, as described in Section II-C. (All the other peers of v
do not propose m). Each process of each member peer receives
and processes the agreed-upon message in sequence number
order. However, proposed messages might not be agreed upon
because, for example, the message might be lost, or even if
the message arrives at the leader, the leader might leave before
proposing the message. For this reason, p has a response timer
and periodically retransmits the message m until p receives q.

3) Message ID: As messages might be retransmitted, a
receiver may receive duplicated messages. In order to detect
such duplicated messages, a message ID is assigned to each
message. To uniquely assign a message ID to a message,
message IDs are generated by combining the peer ID of p
and the sequence number of the message. Message IDs are
also used on sender peers for finding a request message from
a received response message.

4) Sending response: On receiving m on v, each process
on v must call an API to send a response message q to p.
Note that all the responses that each process produces must
be identical in our execution model (see Section II-B). To
reduce network traffic, only the leader peer actually sends the
response.

5) Retransmission of response: Response messages from
the leader peer also might be lost. In such a case, p retransmits
m to v when the response timer expires. However, since
m has already been processed by v in this case, v should
not reprocess the retransmitted message and just resend the
response message previously sent. For this reason, v keeps
response messages that it has sent for a while.

6) Protocol: We propose the following protocol based on
the discussion above.

Behavior of sender: The peer p generates a message ID
for m and multicasts m to the multicast group of v. The peer p
retransmits m if no response message for m is received within
a fixed period of time.

Behavior of a receiver: The algorithm for a receiver
virtual peer is implemented on each member peer.

On each member peer, a history table, which keeps the
status of received messages, and a response table, which
keeps response messages, are maintained. These are used for
preventing the processing of the same message more than
once. These tables can be implemented as hash tables whose
key is a message ID. The entry of the history table is one of
the following:

INITIAL
The message has not yet been received (default).

PASSED
The message has been passed on for processing.

REPLIED
The message has been passed on for processing and
its response message has been sent.

The algorithm of a receiver is shown below.
i) On receiving m through ALM, only the leader peer

executes the following steps. (all other peers just ignore
m).

a) Get the status of m from the history table.
b) If the status is INITIAL, then propose m using

Paxos.
c) If the status is PASSED, then just ignore m.
d) If the status is REPLIED, then send the response

message recorded in the response table to p.
ii) On receiving the Success message of m (notification of

agreement), all the member peers execute the following
steps.

a) Get the status of m from the history table.
b) If the status is INITIAL, then (1) record the status

of m as PASSED in the history table, and (2) pass
m to the process on the peer.

c) If the status is not INITIAL, then just ignore m.
iii) The process that received m must call an API to send

a response message q to p. In the API, following steps
are executed.

a) Record the status of m as REPLIED in the history
table.

b) Record q in the response table.
c) Only the leader peer sends q.

7) Examples of the message sequence: An example of
message sequence in which no message retransmission occurs
is shown in Figure 9, and another example in which message
retransmission occurs is shown in Figure 10. The bold short
dashed lines in the figures mean the period the process is
handling the message.

B. Communication between virtual peers
Next, we discuss the protocol in the case where a virtual

peer s sends a message m to another virtual peer r and r

211

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems



Virtual Peer v

Normal
Peer p

Peer #0
(Leader)

Peer #1 Peer #2

m
m

m
Begin(m, 100) Begin(m, 100)

Accept(100)
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00)

Success(m, 100) Success(m, 100)

q

Multicast m 
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Pass m to process

Calls API to send 
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Figure. 9. Example of message sequence between a normal peer and a virtual
peer (without retransmission case)
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Figure. 10. Example of message sequence between a normal peer and a
virtual peer (with retransmission case)

returns a response message q to s. Note that if s sends m
to r, s must have received a trigger message M , which has
been agreed upon, because virtual processes are executed in
message-driven models. We assume that each process of s
calls an API to send m to r by receiving M .

Communication between virtual peers is basically the same
as that between a normal peer and a virtual peer. A leader
peer of s plays the role of a sender peer p in Section IV-A. In

addition to that, the following points should be considered.
1) Sending response: A response message from a virtual

peer r also must be sent with ALM because member peers of
s may be changed while s is communicating with r.

2) Agreement of response: Response messages also must
be ordered identically at all of the member peers because
message receiving order may affect the internal state of a
virtual process. Therefore, the leader of s must propose
every received response message with the Paxos protocol. A
response message is processed after it is agreed upon.

3) Member peers change: Here we consider a case where
the leader peer sl of s leaves before receiving a response mes-
sage from r, after M is agreed upon. Suppose the following
scenarios.

• sl leaves before sending m to r: this includes the two
cases shown below.

– (Case 1a) The next leader s′l of s has processed M
(i.e., M has been passed to the process on s′l) before
it becomes a leader.
In this case, when s′l called the API to send m to r,
no messages were actually sent by s′l because it was
not a leader at that time. However, when the response
timer expires, s′l must actually send m this time. For
this reason, all the peers should record their sending
messages whether they are leaders or not.

– (Case 1b) s′l processes M after it becomes a leader.
In this case, m is sent to r by s′l when it processes
M .

• sl leaves after m is sent to r: it is possible to classify it
into two groups as follows.

– (Case 2a) s′l has been elected as a leader when q
arrives from r:
In this case, s′l simply proposes q with Paxos.

– (Case 2b) sl has already left but no leader has been
elected when q arrives:
In this case, because no peer in s proposes q and
thus q is lost, the next leader (s′l) retransmits m to
get q as soon as it is elected.

4) Protocol: We propose the following protocol based on
the discussion above.

Behavior of sender: The algorithm for a sender virtual
peer is implemented on each member peer.

i) In the API to send m to r, the following steps are
executed. (Note that all the processes in s call this API
on receiving M .)

a) In our execution model, all member peers must in-
dependently generate the same message m. There-
fore, the message ID of m also must be identical.
Thus, message IDs are generated based on not the
ID of each member peer but the ID of virtual peer
s.

b) Only the leader peer multicasts m to the multicast
group of s.

c) Record m for retransmitting and start the response
timer.

d) When the response timer expires, only the leader
peer retransmits m.
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ii) On receiving q through ALM, s processes q according
to the receiver protocol i) and ii) described in Section
IV-A6. All the member peers of s stop the timer after
step ii).

If the leader peer that sent m leaves and the new leader
detects that no response message for m has been received, the
new leader retransmits m, as described in Section IV-B3.

Behavior of receiver: The behavior of receiver r is
almost the same as that of receiver v described in Section
IV-A6, except that the leader peer of r multicasts the response
message to the multicast group of s.

5) Example of message sequence: An example of a mes-
sage sequence between virtual peers is shown in Figure 11.

V. DISCUSSION

A. Reliability of virtual peers

In this section, we discuss the relation between the reliabil-
ity of a virtual peer and the number of its member peers.

Let t be elapsed time since the start of a virtual peer, m the
number of member peers, and T the maximum time required
to swap a failed peer (from the moment of a peer failure until
fork() is done). Because the Paxos protocol requires that a
majority of member peers survive to reach a consensus, and
because Paxos is used for changing a peer configuration, a
virtual peer looses its functionality when b(m+1)/2c (denoted
as n) peers have failed during T . Assuming that each peer
fails independently and that the intervals of peer failure are
exponentially distributed, let λ′ be the peer failure rate per
unit of time. λ′ can be expressed using the duration of half
of the peers failing (denoted as thalf ), as eλ′thalf = 0.5. The
reliability of a single peer R′(t) is expressed as R′(t) = e−λ′t.
Because the probability that n peers fail within time duration T
is (1−R′(T ))n, the failure rate of a virtual peer λ is expressed
as λ = (1 − R′(T ))n/T . Note that the reliability of a virtual
peer R(t) is given by R(t) = e−λt.

The value of T mainly depends on the Keep Alive message
interval. We pessimistically assume that T = 60 (sec).

Now, we show two graphs (Figure 12 and Figure 13).
Figure 12 shows the reliability of virtual peers for a different
number of member peers versus t. Because the peer failure
rate depends on the environment, here we assume thalf = 1
(hour). In this case, a virtual peer is practically stable if it
consists of seven member peers.

Next, we vary the peer failure rate and show the resulting
MTTF (Mean Time To Failure) of a virtual peer (expressed
as λ−1) in Figure 13. Note that the x-axis is expressed in
thalf . The graph indicates that, even in the high peer failure
rate environment, virtual peers can be practically stable by
increasing the number of member peers. (We modestly assume
that in the real environment thalf > 10 (min) because only
1.56% of peers remain after one hour if thalf = 10, which
seems too pessimistic.)

B. Overhead of the proposed method

In this section, we discuss the overhead of the proposed
method.
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1) Overhead of the Paxos: The Paxos protocol imposes
latency on processing a request sent to a virtual peer. The
latency is mostly affected by the RTT (Round Trip Time)
between the leader and other member peers. (Note that the
latency is not proportionally increased with the number of
member peers because a leader peer can send Begin messages
to each member peer without waiting.)

2) Overhead of communication: The ALM, used for send-
ing a message to a virtual peer, also imposes extra overhead.
Because musasabi uses ALM built on Skip Graph, sending
a message over ALM requires O(log n) hops where n is
the number of virtual peers. This overhead is common in
P2P systems but can be reduced if a peer subsequently
communicates with the same virtual peer. A peer first uses
ALM to send a message and receives the configuration of the
virtual peer; subsequent messages can be sent directly to the
leader peer (until it fails).

3) Overhead of watchdog monitoring: If one wants to make
the maximum time required to swap a failed peer below 60
seconds (see Section V-A), the period for sending Keep Alive
messages will be around 20 to 30 seconds. This overhead is
small and will not be a problem, we believe.
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Figure. 11. Example of message sequence between virtual peers

4) Coroutines and byte code translation: The performance
of coroutines is inferior to that of threads, especially on
multi-CPU machines. In addition, the byte code translation
technique used for achieving strong mobility may degrade
the performance of application programs. We believe these
will not be a problem unless virtual peers are used for
computational purposes (such as in P2P-Grid).

C. Leader failure

If the leader peer fails, execution of the virtual process
stops until the new leader is elected. Therefore, leader failure
must be quickly detected. Multi-coordinated Paxos [14], which
allows multiple leaders and thus improves the availability of
the system, may relax this problem.

D. Network partitioning

If network partitioning occurs and no fragment of the
network contains a majority of the member peers, the virtual
peer looses its functionality. (We assume an odd number of
member peers.) In this case, the virtual peer must wait until
the network has recovered. Note that this situation happens
only if the network is split into three or more fragments.

E. Scalability

Using a virtual peer does not contribute to scalability
problems of P2P systems. Scalability can be obtained by using
multiple virtual peers.

F. Security

A virtual peer might be compromised either if a malicious
node is selected as the leader peer or if a member peer violates
the Paxos protocol. The Byzantine Paxos protocol [15] may
ameliorate this issue but this kind of protocol imposes big
overhead. This is beyond the scope of this paper and will be
investigated in the future.

VI. RELATED WORK

There are few research efforts that use the Paxos algorithm
in P2P-related contexts. Scalaris, a distributed transactional
key/value store written in Erlang, uses an adapted Paxos
protocol to implement replication and ACID properties (atom-
icity, concurrency, isolation, durability) [16]. In the field of
cloud computing, Google’s Chubby, an implementation of
distributed lock service, uses Paxos in order to make a fault-
tolerant distributed database with multiple computers [17][18].
However, these systems do not provide fault-tolerance of
general applications.

In the field of Grid computing, Vigne, a grid middleware
for dynamic large scale grids, uses similar techniques (such as
execution on redundant nodes, state machine replication using
atomic multicasting over the Paxos protocol) to achieve fault-
tolerance of its Application Manager [19]. The distinguished
differences are that (1) Vigne uses the Pastry overlay network
[20] for routing messages to the manager node (which cor-
responds a leader peer in musasabi), whereas musasabi uses
ALM over Skip Graph, and that (2) replicas of the manager
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node are selected from the leaf set (peers whose ID’s are close)
of Pastry. The drawbacks of this approach are that there is
less flexibility on choosing replica members and that it incurs
reconfiguration of replica members not only in case of node
failure but also in case of node addition (in the leaf set) [19].

In the literature [21], Mena et al. proposes a group com-
munication scheme based on consensus. While their protocol
stack is similar to ours, their discussion is generic and not
specific for P2P network. The contribution of our paper is that
we revealed the detail of how to implement such architecture
in P2P network.

VII. CONCLUSION AND FUTURE WORK

P2P systems must handle unexpected peer failure and leav-
ing, and thus they are more difficult to implement than server-
client systems.

In this paper, we proposed a method to construct a stable vir-
tual peer from multiple unstable peers. An application program
running on virtual peers is not compromised unless a majority
of the underlying unstable peers fail within a short time
duration. Moreover, application programs of this method can
be quite simple. Virtual peers achieve superior fault-tolerance
by integrating the Paxos consensus algorithm and process
migration technique. In addition, we proposed communication
protocols for virtual peers based on application level multicast,
and analyzed the relation between the reliability of a virtual
peer and the number of peers assigned for a virtual peer. The
result indicates that our method appears promising.

The proposed method can be used for reducing development
costs, and for improving stability, of P2P systems.

The proposed method has some overhead as described in
Section V-B. Quantitative evaluation of each overhead is one
of our future work. Other future work includes: (1) improving
the method for choosing good member peers, (2) analyzing
and improving security of virtual peers, and (3) evaluating the
method on the Internet.
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