
Formal Logic Based Configuration Modeling and Verification for Dynamic
Component Systems

Zoltan Theisz
evopro Informatics and Automation Ltd.

Email: zoltan.theisz@evopro.hu

Gabor Batori
Software Engineering Group

Ericsson Hungary
Email: gabor.batori@ericsson.com

Domonkos Asztalos
Software Engineering Group,

Ericsson Hungary
Email: domonkos.asztalos@ericsson.com

Abstract—Reconfigurable networked systems have often
been developed via dynamically deployed software components
that are executing on top of interconnected heterogenous
hardware nodes. The challenges resulting from the complexity
of those systems have been traditionally mitigated by creative
ad-hoc solutions supported by domain specific modeling frame-
works and methodologies. Targeting that deficiency, our paper
shows that by involving a first-order logic based structural
modeling language, Alloy, in the analysis of component de-
ployment we could extend the limits of the generic domain spe-
cific metamodeling methodology developed for Reconfigurable
Ubiquitous Networked Embedded Systems.

Keywords-Alloy specification; formal model semantics; meta-
modeling; dynamic component system

I. INTRODUCTION

Reconfigurable networked component systems provide
a versatile platform for implementing highly distributed
autonomic peer-to-peer applications in domains of both real
sensor networks and autonomic computing [1] environments
such as e.g. intelligent network management that relies on
sensory and effectory facilities of multi-level control loops.
The building and verification of those applications in prac-
tice has turned out to be a rather challenging research topic
that could enormously benefit from the usage of domain
specific modeling approaches. One of the major results
of the Reconfigurable Ubiquitous Networked Embedded
Systems (RUNES) IST project was to establish a reflective
distributed component-based multi-platform middleware ar-
chitecture [2] for heterogeneous networks of computational
nodes, including metamodel-based software development
methodology [3] and graphical development framework. The
RUNES metamodel provides all the relevant concepts soft-
ware architects need to efficiently utilize the computational
resources within a reflective distributed component-based
environment. Due to the inherent complexity of distributed
reconfigurable component systems, we advocate the usage of
Alloy [4], a formal first order logic based language supported
by a fully automated analyzer that has been successfully
used to model various complex systems in a wide range of
application domains for domain specific model verification
purposes. Alloy has been applied in [5] for the analysis of

some critical correctness properties that should be satisfied
by any secure multicast protocol. The idea of using Alloy
for component based system analysis was suggested by
Warren et al. [6]. This paper shows OpenRec, a framework
which comprises a reflective component model and the Alloy
model of OpenRec. This Alloy model served as a basis for
our Alloy component model but our model is more detailed
which enables deeper analysis of the system behavior. More-
over, [7] demonstrates an Alloy model that identifies the var-
ious types of dynamic system reconfigurations. It provides
a good categorization of various problems and solutions
related to dynamic software evolution. Furthermore, Aydal
et al. [8] found Alloy Analyzer one of the best analysis tool
for state-based modeling languages.

Although individual application scenarios can be easily
expressed manually in Alloy we firmly believe that the syn-
ergy between metamodel driven design and first order logic
based practical model verification could result in a more
advantageous unified approach. Our approach, in a nutshell,
semi-automatically generates all the relevant RUNES de-
ployment configuration assets that have also been analyzed
within Alloy. By analyzing a significant subset of frequently
reoccurring configurations the boundary between valid and
invalid component configurations can be thoroughly investi-
gated against proper sets of model-based application and/or
middleware feasibility constraints. The analysis results can
be used to provide input to the runtime adaptive control logic
in order to extend the model-based software development
framework [3] with effective autonomicity.

In this paper, we will describe how a first-order logic
based model of the RUNES middleware has been developed
in Alloy and how it has been integrated into the RUNES
domain specific modeling framework and methodology [3].
In the remainder of the paper, first in Section II, we briefly
overview Alloy, then, we also disseminate in detail how
the RUNES Metamodel has been formalized in it. Next,
Section III explains how the Alloy backed verification step
gets integrated into the general metamodel-based RUNES
application development methodology. Then, Section IV
presents a short introduction into the usage how verification
results can be incorporated into a full scale model-based

14

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

management approach. Next, in Section V, a simplified
real-life sensor application will be showcased in order to
visualize our approach via a tangible example. Finally, in
Section VI we conclude the paper and briefly highlight our
future research plans.

II. RUNES METAMODEL VERIFICATION WITH ALLOY

A. Alloy

Alloy [4] is a textual metamodeling language that is based
on structured first-order relational logic. A particular model
in Alloy contains a number of signature definitions with
fields, facts, functions and predicates. Alloy is supported by
a fully automated constraint solver, called Alloy Analyzer
[9], which can be used to verify model parameters by
searching for either valid or invalid instances of the model.

B. Applying Alloy for component system verification

The RUNES reflective component middleware has been
created as one of the most important software assets resulting
from the RUNES IST project. In general, it consists of
a component-based middleware that follows the currently
popular loosely-coupled paradigm of Service Oriented Ar-
chitecture [10]. The middleware is fully reflective, its API is
rigorously specified in various programming languages [11],
its elements are conceptually backed by multi-layer meta-
models and finally a metamodel driven, domain specific ap-
plication development methodology provides the guidelines
for its most effective application. All in all, the RUNES ap-
plication development is highly streamlined and it is carried
out mostly following strict model-based design principles
within a semi-automatic metamodeling environment. Al-
though the development techniques and the guiding process
have been streamlined, the verification and the validation
of the resulting modeling assets such as the application
models and the incorporated executable action semantics
have to be carried out manually or semi-automatically [12].
Model based test generation proved to be very effective
in some scenarios, though testing cannot replace, even in
industrial setups, the verification and/or validation efforts.
Our industry experience has also proved quite frequently
that modeling tasks are highly creative, thought intensive
activities which result in complex artifacts of great vari-
ability. Therefore, the verification and validation of model-
based solutions is a considerable challenge. Fortunately, in
reconfigurable sensor applications, the complexity of the
resulting system is slightly limited because the variability
of the system mainly originates only from the flexibility of
the underlying component model of the middleware, thus a
more formal way of verifying applications is within practical
reach. From the wide spectrum of verification paradigms
first-order logic is considered as one of the most rigorous
approaches. It has turned out that in our scenarios mostly the
independently acting sub-configurations of tightly coupled
components have usually caused the majority of the most

Figure 1. Kernel part of the metamodel

serious malfunctions; therefore, our aim had been mainly
directed towards their automatic elimination and avoidance
in the runtime deployment. The generic design principles of
Alloy [4] facilitates both easy meta-language creation that
complies with metamodel driven domain specific language
building concepts and formal verification of models. In
the following, we will formalize the semantics - from the
verification point of view - of our middleware metamodel in
Alloy in full accordance with the principle of the semantic
anchoring approach reported in [13].

C. Functional metamodel

The RUNES Metamodel specifies the formal metamodel
that represents the relevant elements of the RUNES mid-
dleware architecture [2]. Figure 1 illustrates the kernel part
of the metamodel, which defines the basic concepts of
Interfaces, Receptacles, Components and Bindings including
their relations and cardinalities. Combined with the associ-
ated OCL expressions the RUNES Metamodel establishes a
model-based application development environment in GME
[14], which enables rapid RUNES application development.
In order to be able to verify the proper configuration
sequence of a particular modeled application scenario the
RUNES Metamodel has to be semantically anchored to
a precise structural and behavioral formalism in Alloy.
Therefore, the following paragraphs will show how the
various metamodeling concepts have been reformulated in
Alloy so that application models could be verified against
configuration constraints.

In general, the functional specification of any RUNES
application must be organized around Components and
Bindings. The Components represent the encapsulated units
of functionality and deployment. The interactions amongst
them take place exclusively via explicitly defined Interfaces
and Receptacles. The dynamic behavior of the components
are automatically generated from Message Sequence Charts
(MSC) and the results are formalized via concurrent Finite
State Machines (FSM) [15]. Therefore, a generic RUNES
Component is defined as a signature whose fields consist
of at most one state machine and a set of Interfaces and
Receptacles, respectively.

15

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

abstract sig Comp{
state_machine:set StateMachine,
provided: set Interface,
required: set Receptacle,

}{
lone state_machine

}

Both the Interface and the Receptacle inherit the common
characteristics of an Interaction Point, which is defined by a
set of related operation signatures and associated data types.
The Interface represents the "provided", the Receptacle the
"required" end of a component-to-component connection,
respectively.

abstract sig Signature{}
abstract sig InteractionPoint {

signatures: set Signature
}
sig Interface extends InteractionPoint{}
sig Receptacle extends InteractionPoint{}

Bindings ensure that connections between Interfaces and
Receptacles are set up consistently, according to their proper
definitions. Hence, a Binding is defined as a signature that
contains fields for one Interface and one Receptacle and one
non-identical, component correct mapping that connects the
previously mentioned two items.

abstract sig Binding{
mapping:Comp -> Comp,
interface: one Interface,
receptacle: one Receptacle

}{
one mapping
no (mapping & iden)
receptacle in (Comp.∼(mapping)).required
interface in (Comp.mapping).provided

}

The Receptacle must always represent a requirement
which is a ’subset’ of the operations (signatures) provided
by the Interface it intends to be bound to via the Binding.
That fact has to be made explicit in Alloy to allow only
correct Bindings in the model.

all b:Binding| b.receptacle.signatures in b.interface.signatures

D. Deployment metamodel

Figure 2 shows those relevant deployment concepts of
the RUNES Metamodel that determine the runtime aspects
of a RUNES component application. The key element of the
metamodel is the Capsule that represents the generic middle-
ware container, which on the one hand provides direct access
to all the functionalities of the runtime API [11], on the other
hand it manages a robust fault recovery and redundancy
facility. Deploying a component into a capsule in generic
terms means that it must be ensured that adequate resources
are available for loading in the component in a particular
instance of time. The deployed components and bindings
might change in time, hence their temporal representation
must take into account the explicit definition of Time, too.
The Capsule also possesses a distributed, peer-to-peer, fully
reflective meta-data repository that can be used for both
application and middleware specific purposes. A Capsule in
Alloy is defined as a signature having fields representing the
temporal evolution of deployed components, bindings and
a middleware related resource pool plus the time invariant
capsule topology information.

open util/ordering[Time] as TO
sig Time{}
abstract sig Capsule {

Figure 2. Deployment part of the RUNES Metamodel

comps: DeployedComp -> Time,
bindings: DeployedBinding -> Time,
comp_capacity: Int -> Time,
neighbours: some Capsule

}{
all t:Time|int[comp_capacity.t] >= #(comps.t)
all t:Time|comp_capacity.t >= Int[0]

}

A deployed component incorporates all the necessary
information that stores the active process aspect of the com-
ponent’s functionality including explicit definition of state
transitions in time. In other words, the deployed component
can be considered as a dynamic instance of a component
in accordance with its "ModelProxy" declaration in GME
depicted in Figure 2. The temporal aspect of the state
transitions are defined by the fire and the current_state fields
of the DeployedComp signature.

sig DeployedComp{
deploy: one Comp,
fire: Transition -> Time,
current_state: State -> Time

}{
deploy in FunctionalConf.comps
all t:Time|lone fire.t
all t:Time|lone current_state.t

}

A deployed binding does not declare time explicitly,
however, it contains a mapping field between the two
participating deployed components, hence, it is also time
dependent. The compatibility of the deployed binding is
checked based on the functional definition of the connection.

sig DeployedBinding{
mapping: DeployedComp -> DeployedComp,
deploy: one Binding

}{
one mapping
(DeployedComp.∼mapping).deploy =
Comp.∼(deploy.mapping)

(DeployedComp.mapping).deploy = Comp.(deploy.mapping)
}

Our main goal of applying Alloy has been oriented
towards configuration verification, thus we must represent
a deployed RUNES application in Alloy as a collection of
capsules which register the temporal evolution of each of
the components and the bindings. Alloy’s trace statements
help us verify the time evolution of the application against
feasibility constraints and the successful runs can also be
visualized for human inspection, too.

sig DeploymentConf{
capsules: some Capsule

}

The RUNES middleware API supports a set of component
management operations such as [un]loading, [un]binding

16

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

and migrating components. The operations require time
to execute their functionality, they usually modify only
local states of the distributed application and keep the rest
unchanged. In Alloy, we serialize the potentially concurrent
atomic API operations in such a way that one and only one
of them can be carried out in one particular instance of time.
Due to size constraints only the definition of the migrate
operation is presented here in detail. The other operations
have been defined applying similar specification techniques.

Component migration is carried out between two cap-
sules by moving an already deployed component between
two consecutive points of time. First the preconditions are
checked if it is a real migration between two different
capsules and there are enough resources available in the
receiving capsule. Then, local states of the two respected
capsules are to be updated and, finally, three constraints are
to be satisfied so that the rest of the application state remains
unchanged.

pred migrate(c_src,c_dst:Capsule,d:DeployedComp,t,t’:Time){
c_src != c_dst
#(c_dst.comps.t) < int[c_dst.comp_capacity.t]
c_dst.comps.t’ = c_dst.comps.t+d
c_src.comps.t’ = c_src.comps.t-d
all capsule:Capsule|capsule.bindings.t’=capsule.bindings.t
all capsule:Capsule-c_src-c_dst| capsule.comps.t’=capsule.comps.t
all capsule:Capsule| capsule.comp_capacity.t’ = capsule.comp_capacity.t

}

Above all those previous definitions, the RUNES Meta-
model also enforces a couple of RUNES specific restrictions
over the possible component configurations in order to
safeguard that only semantically correct component recon-
figurations are permitted. In the metamodel (see Figure 1
and Figure 2) those rules are expressed either via cardinality
constraints or via OCL expressions. Therefore, the Alloy
formalism must incorporate the corresponding definitions,
too. Here only the most important elements of that constraint
set are summarized.

• A Binding or a Component must be contained within
at most one single Capsule

no disj capsule1,capsule2:Capsule|
some (capsule1.bindings) & (capsule2.bindings)

no disj capsule1,capsule2:Capsule|
some (capsule1.comps) & (capsule2.comps)

• Two Bindings of the same type must not be deployed
if they share the same Receptacle.

no disj b1, b2:DeployedBinding| (b1.deploy = b2.deploy)
and (b1.mapping.DeployedComp = b1.mapping.DeployedComp)

• There must not be such a Binding within a Capsule that
has a connected Component which is not deployed in
any of the Capsules

no deployedBinding:DeployedBinding|some t:Time|
deployedBinding in Capsule.bindings.t and
(deployedBinding.mapping.DeployedComp not in Capsule.comps.t
or deployedBinding.mapping[DeployedComp] not in Capsule.comps.t)

E. Behavior metamodel

The internal dynamics of the components’ functional
behavior is modeled in Alloy by an explicitly specified Finite
State Machine (FSM) that takes into account all changes of
the internal state of vital components, the conditionality of
state transitions and the necessary action semantics required
when a new state has been entered. Our FSM definition in

Alloy mirrors the formal mathematical model following the
generic principle of semantic anchoring [13].

abstract sig State{}
abstract sig Transition{

trans: State -> State
}{

one trans
}
abstract sig StartState extends State{}
abstract sig StartTransition extends Transition{}
pred transition[d:DeployedComp,t,t’:Time]{

(d.fire.t).trans.State = d.current_state.t
(d.fire.t).trans[State] = d.current_state.t’

}
abstract sig StateMachine{

states: some State,
startState: one StartState,
transitions: some Transition,
startTransition: one StartTransition,

}{
no (states & startState)
no (transitions & startTransition)

}
fact Traces{

...
all t:Time-TO/last[],d:DeployedComp|let t’=TO/next[t]|
some d.fire.t => (transition[d,t,t’])

all t:Time|some DeployedComp.fire.t
}

To round up the section, Figure 3 depicts a concrete model
that instantiates the above introduced RUNES Metamodel
in Alloy. It shows a snapshot from a dynamicly evolving
component configuration of a sensor network scenario where
the components have been deployed over a cross shaped
capsule topology - indicated by green arrows - within which
the resource pools are also capacity limited. The mapping
of the components and bindings onto the capsules in a
particular instance of time is visualized by the brown and
red arrows respectively.

Figure 3. Scenario analysis snapshot

III. PROCESS

The RUNES application development process has a well
defined five-layer architecture [3] that guides the application
developer through the Scenario, the Application Modeling,
the Platform, the Code Repository and the Running Sys-
tem stages. The presented Alloy based model verification
approach builds on a first-order logic based formalism,
which extends the RUNES development process. As Figure
4 shows, the extension has been realized by two additional
model transformations that turn RUNES Component Models
and corresponding RUNES Deployment Models into con-
figuration scenarios that can be verified within the Alloy

17

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

Figure 4. Software Development Process extended with Alloy verification

Analyzer. The model transformations produce configuration
scenarios which contain both structural and behavioral spec-
ifications of the application. However, only those parts of
the FSM action semantics are kept from the total dynamic
behavior which directly relate to the internal control logic
of the scenario. These parts precisely specify when and with
which parameters the application invokes the runtime APIs
provided by the RUNES middleware.

The verification of a particular scenario investigates the
evolution of the application from the point of view of
the component reconfigurations enabled by the RUNES
middleware which are mainly restricted by the resource
availability within the capsules along the time. The results
of the verification provide input to the runtime autonomic
control mechanisms that manage pre-calculated adaptive
component reconfiguration. The approach is usually iterative
and the convergence criteria are decided on a case-by-case
basis.

IV. METAMODEL-DRIVEN COMPONENT MANAGEMENT

Metamodel-driven component management is an interest-
ing new way of generalizing policy-based network manage-
ment [16] in such a way that the information model used
by the network management infrastructure mirrors those
software assets of the component based system that are
produced by the model translators. In effect, the model
based system design is kept intact and extended by elab-
orated action semantics. From the point of view of model-
based application control, the most important element in the
RUNES runtime architecture is the Deployment Tool, which
establishes a soft real-time synchronization loop between the
GME model repository and the running component appli-
cation. The schematics of the Deployment Tool based re-
configurability is shown in Figure 4. The Deployment Tool,
a protocol independent abstraction of GANA’s Decision
Making Element [17], first deploys the initial component

configuration of the application then it constantly readapts
the component configuration by listening to both applica-
tion and middleware notifications and by continuously re-
evaluating the configuration in hand. The core of the control
logic is based on the verification results from previous
Alloy analyzes. Moreover, it visualizes the actual compo-
nent configuration of the system in a metamodel compliant
view within GME and also takes indirect corrective actions
by modifying the resource availability of the capsules via
RUNES middleware API invocations. Currently, the control
logic is not automatically generated from a batch of Alloy
verifications; however our aim is to adopt the GANA [17]
control meta-model and to populate it via an automatic
model transformation directly from the instantiated RUNES
metamodel in the Alloy verification phase. With the control
logic properly established, the Deployment Tool is capable
to function both as a re-active or a pro-active component
reconfigurator as reported in [3], [18].

V. SIMPLIFIED SCENARIO EXAMPLE

In this section, a simplified example will demonstrate
how Alloy helps the model verification. For the sake of
easy comprehension, here, only a simplified configuration
example has been chosen, which incorporates merely two
capsules and 8 deployed components. Although this logic
based approach, in general, is rather resource intensive, real-
istic scenarios by a magnitude larger in size are still possible
to be analyzed successfully in this manner. Nevertheless,
large reconfiguration setups must be optimized individually;
therefore our current approach is, in virtue, semi-automatic.

In Figure 5, the Alloy representation of the functional
configuration of the component system is depicted.

Figure 5. Functional configuration of the example system

The functional view of the investigated system contains
five different component types, namely, the network related
three components (NetworkDriver, CommA and CommB)
and the two application specific components (Publish and
FireDet). CommA and CommB implement two different
communication paradigms relying on the functionality of
the common NetworkDriver component through Binding1
and Binding2. The Publish component’s main functionality
is to broadcast different sensory measurement data towards
the processing end points. The FireDet component is the
control component which reconfigures the other components

18

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

whenever it has detected fire situation. The main goal of the
reconfiguration is to keep the sensor system in operation
even in case of extreme fire conditions. The reconfiguration
is carried out by migrating the application functionalities
to other capsules, which are located in the neighborhood.
By decreasing the generic capacity parameter of the current
capsule other capsules will not be able to immediately push
back newly migrated components. Both the NetworkDriver
and the FireDet components possess proper state machines
which are represented by the diamonds in Figure 5.

Figure 6. NetworkDriver component state machine

Figure 6 shows the state machine of the NetworkDriver
component. The black ellipse shows the start state, while
the white rectangle represents the transition from the start
state to another state, which is called state_commA in this
particular case. Via the transition from state_commA to
state_commB, through a temporal state_toB1, the unbinding
of component CommA from NetworkDriver and the binding
of component CommB to NetworkDriver take place. This
state change clearly represents the reconfiguration of the
communication paradigm.

Figures 7–10 show an Alloy trace sequence. The resulting
model is projected over Time in such a way that the
relations rooted in Time are represented through a sequence
of models. More precisely, one Time instance is connected
to one particular Model snapshot.

Figure 7. Component binding step

Figure 7 presents the first step of the sequence. When
SM1_startTrans is activated the circle with the Bind tag
points to the deployed binding B0. The deployed component
D0 and D5 will be bound in the following step (see Figure
8).

In Figure 8 the first reconfiguration of the system can be
seen. The FireDet component’s state machine is activated,

Figure 8. Component reconfiguration (unload) step

hence the migration of the application functionality has been
started. Since the Publish component has been deployed to
the neighboring capsule, the FireDet component, instead of
migrating the marked component, is going to unload the
Publish component from the second capsule. Furthermore,
it will decrease the capacity of the capsule.

Figure 9. Component unbinding step

In Figure 9, the reconfiguration of the NetworkDriver
component from CommA to CommB has started. In Figure
10, the second migration attempt is demonstrated. In this
case, component CommA is migrating to the first capsule
because this required functionality has not been deployed to
that capsule so far.

Figure 10. Component reconfiguration (migration) step

This simplified example indicates the way how a particu-
lar verification session takes place using the Alloy Analyzer.
It helps generate configuration sequences which comply with
application constraints. The current verification approach
mainly focuses on the problem domain of component re-
configurability; thus, it assists the run-time control logic by

19

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

identifying situations with serious capacity limitations of the
deployed capsules.

VI. CONCLUSION

This paper presents a new way of combining domain spe-
cific metamodeling techniques with first-order logic based
metamodel verification so that model building could fa-
cilitate later run-time control mechanisms of the modeled
system. We have introduced the semantical foundations of
our approach and detailed its applicability in the case of re-
configurable component based sensor networks. A simplified
example has been disseminated to illustrate the benefits of
the approach. Our current work is to combine the RUNES
meta-model and the GANA meta-model and to automate
the generation of the adaptive control logic, based on the
verification of the model based component configurations, to
manage the deployed system. We are aware of the scalability
issues of our approach, so further studies will be carried out
in this regard. Moreover, the results of these studies will get
incorporated, as best practices guidelines, into model trans-
lators that are supposed to produce the majority of the Alloy
specifications. Ultimately, our aim is to create a generic
framework which iteratively and interactively modifies and
verifies the component model of sensor application scenarios
and continuously indicates the most probable correct run-
time configuration sequences thereof.

REFERENCES

[1] “An architectural blueprint for autonomic computing.” Auto-
nomic Computing, IBM White Paper, June 2005.

[2] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachari-
adis, “The runes middleware: A reconfigurable component-
based approach to networked embedded systems,” Proc. of the
16th Annual IEEE International Symposium on Personal In-
door and Mobile Radio Communications (PIMRC’05), Berlin,
Germany, September 2005.

[3] G. Batori, Z. Theisz, and D. Asztalos, “Domain specific mod-
eling methodology for reconfigurable networked systems,”
ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2007), 2007.

[4] D. Jackson, Software Abstractions: Logic, Language, and
Analysis. The MIT Press, London, England, 2006.

[5] M. Taghdiri and D. Jackson, “A lightweight formal analysis
of a multicast key man-agement scheme,” Formal Techniques
for Networked and Distributed Systems (FORTE 2003), vol.
2767 of LNCS., pp. 240–256, 2003.

[6] I. Warren, J. Sun, S. Krishnamohan, and T. Weerasinghe, “An
automated formal approach to managing dynamic reconfigu-
ration,” 21st IEEE International Conference on Automated
Software Engineering (ASE 2006), Tokyo, Japan, pp. 37–46,
September 2006.

[7] D. Walsh, F. Bordeleau, and B. Selic, “A domain model
for dynamic system reconfiguration,” ACM/IEEE 8th Interna-
tional Conference on Model Driven Engineering Languages
and Systems (MoDELS 2005), vol. 3713/2005, pp. 553–567,
October 2005.

[8] E. G. Aydal, M. Utting, and J. Woodcock, “A comparison of
state-based modelling tools for model validation,” Tools 2008,
June 2008.

[9] D. Jackson, “Alloy analyzer,” http://alloy.mit.edu/, 2008.

[10] T. Erl, “Soa principles of service design,” Prentice Hall, 2007.

[11] G. Batori, Z. Theisz, and D. Asztalos, “Robust reconfigurable
erlang component system,” Erlang User Conference, Stock-
holm, Sweden, 2005.

[12] G.Batori and D. Asztalos, “Using ttcn-3 for testing platform
independent models,” TestCom 2005, Lecture Notes in Com-
puter Science (LNCS) 3502, May 2005.

[13] K. Chen, J. Sztipanovits, S. Abdelwahed, and E. Jackson,
“Semantic anchoring with model transformations,” European
Conference on Model Driven Architecture -Foundations and
Applications (ECMDA-FA), Nuremberg, Germany, November
2005.

[14] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi,
“The generic modeling environment,” In Proceedings of
WISP’2001, Budapest, Hungary, pp. 255–277, May 2001.

[15] I. H. Krueger and R. Mathew, “Component synthesis from
service specifications,” In Proceedings of the Scenarios:
Models, Transformations and Tools International Workshop,
Dagstuhl Castle, Germany, Lecture Notes in Computer Sci-
ence, Vol. 3466, pp. 255–277, September 2003.

[16] L. Lymberopoulos, E. Lupu, and M. Sloman, “An adaptive
policy-based framework for network services management,”
Journal of Network and Systems Management, vol. 11 , Issue
3, pp. 277 – 303, 2003.

[17] A. Prakash, Z. Theisz, and R. Chaparadza, “Formal methods
for modeling, refining and verifying autonomic components
of computer networks,” Advances in Autonomic Computing:
Formal Engineering Methods for Nature-Inspired Computing
Systems, Springer Transactions on Computational Science
(TCS), Expected Publication: Winter 2010 (accepted).

[18] G. Batori, Z. Theisz, and D. Asztalos, “Configuration aware
distributed system design in erlang,” Erlang User Conference,
Stockholm, Sweden, 2006.

20

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

