
133

International Journal on Advances in Life Sciences, vol 8 no 1 & 2, year 2016, http://www.iariajournals.org/life_sciences/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Agile Medical Device Software Development

Introducing Agile Practices into MDevSPICE
®

Fergal McCaffery, Marion Lepmets, Kitija Trektere

Regulated Software Research Centre & Lero,

Department of Computing & Mathematics

Dundalk Institute of Technology

Dundalk, Co. Louth, Ireland

e-mail:{fergal.mccaffery, marion.lepmets,

kitija.trektere}@dkit.ie

Özden Özcan-Top

Information Systems, Informatics Institute

Middle East Technical University

Ankara, Turkey

e-mail: ozdentop@gmail.com

Minna Pikkarainen

Centre of Health and Technology

University of Oulu, VTT, Technical Research Centre of Finland

Oulu, Finland

e-mail: minna.pikkarainen@oulu.fi

Abstract— Medical device software is usually embedded within

the overall system as one of the sub-systems. It needs to be

integrated with other sub-systems such as the electrical and

mechanical for a functional medical device to be developed. In

order to develop a working medical device system through

integrating its sub-systems, the sub-systems’ requirements

have to be derived from the overall medical device system

requirements. The system requirements are continuously

collected, analysed and built from the needs of different

stakeholders such as patients, health professionals and other

companies offering relevant devices, interfaces and software

related to the medical device system under development.

Various regulatory requirements have to be achieved for a

medical device to be allowed market access. We have

developed and piloted a medical device software process

assessment framework called MDevSPICE® that integrates the

regulatory requirements from the relevant medical device

software standards. This paper describes how the

MDevSPICE® framework has been designed to enable medical

device software developers to produce software that will be

safe and easily integrated with other sub-systems of the overall

medical device. We also describe the lessons learned from

piloting MDevSPICE® in the medical device industry and

introduce an agile methodology together with its benefits and

challenges. This paper outlines how MDevSPICE® can be

extended to include agile practices to enable medical device

software development to be performed in a more flexible

manner.

Keywords- medical device software; MDevSPICE®; medical

device risks; medical device software development; agile

methods; agile software development practices.

I. INTRODUCTION

Safety-critical software systems are increasingly
affecting our lives and welfare as more and more software is
embedded into safety critical systems such as hospital
systems, medical devices, cars and airplanes. New
approaches and international standards are being developed

to ensure the safety of these systems before they are
delivered. The integration of software into the complete
medical device requires particular attention [1].

In order to market a medical device, the manufacturer has
to satisfy a number of regional regulatory requirements
commonly achieved by following international standards and
guidance issued by international standardizing bodies and
regional regulatory authorities. Additionally, in order for the
solution to sell, the medical device also needs to fulfil the
requirements of patients, health professionals and other
medical system interface providers.

To help software companies in the medical device
domain reach regulatory compliance, we have developed an
integrated framework of medical device software
development best practices called MDevSPICE

®
. This

framework integrates generic software development best
practices with medical device standards’ requirements
enabling robust software process assessments to be
performed while preparing for a regulatory audit. The
“SPICE” in MDevSPICE

®
 reflects its foundation in the

ISO/IEC 15504 (SPICE) [2] series of standards for process
assessment. In this paper we describe the validation of the
MDevSPICE

®
 framework that provides evidence of the

importance of traceability between the system and software
levels of development. We also explain how the
establishment of robust interface requirements for these two
levels supports more effective software integration

In Section II, we provide an overview of the regulatory
requirements medical device software development
companies face before they are able to market their devices.
In Section III, we describe the development of the
MDevSPICE

®
 framework. Section IV, outlines the lessons

learned when validating the framework in expert reviews and
in industry through MDevSPICE

®
 pilot assessments. We

also discuss the importance of traceability between system
and software development processes when developing an
embedded medical device software system as it increases the

134

International Journal on Advances in Life Sciences, vol 8 no 1 & 2, year 2016, http://www.iariajournals.org/life_sciences/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

safety and quality of the developed medical device. In
Section V, we introduce an agile methodology by outlining
its benefits, challenges and its suitability for medical device
software development. The paper concludes in Section VI
with areas of future research related to agile medical device
software development.

II. MEDICAL DEVICE REGULATIONS

A medical device can consist entirely of software or have
software as a component of the overall medical device
system. In order to be able to market a medical device within
a particular region it is necessary to comply with the
associated regulatory demands of that region. Two of the
largest global bodies responsible for issuing and managing
medical device regulation belong to the central governing
functions of the US and EU.

In the US, the Food and Drug Administration (FDA)
issues the regulation through a series of official channels,
including the Code of Federal Regulation (CFR) Title 21,
Chapter I, Subchapter H, Part 820 [3]. Under US regulation,
there are three medical device safety classifications: Class I,
Class II and Class III. The medical device safety
classification is based on the clinical safety of the device.
Class I devices are not intended to support or sustain human
life, and may not present an unreasonable risk of harm. A
thermometer is a Class I device. Class II devices could cause
damage or harm to humans. An example of a Class II
medical device is a powered wheelchair. Class III medical
devices are usually those that support or sustain human life,
and are of significant importance in the prevention of human
health impairment. An example of a Class III device is an
implantable pacemaker. All implantable devices are Class III
medical devices as the surgery required carries with itself
additional high risks from anaesthesia and possible infections
that go beyond the safety risks of the medical device.

In the EU, the corresponding regulation is outlined in the
general Medical Device Directive (MDD) 93/42/EEC [4],
the Active Implantable Medical Device Directive (AIMDD)
90/385/EEC [5], and the In-vitro Diagnostic (IVD) Medical
Device Directive 98/79/EC [6] - all three of which have been
amended by 2007/47/EC [7]. Similarly to the US, the EU
device safety is also based on the clinical safety of the device
embodying similar classifications and limitations, where
Class I in the EU corresponds to Class I in the US, Class IIa
and IIb to Class II, and Class III to Class III.

A further safety classification applies to the software in
medical devices as outlined in IEC 62304:2006 [8], where
the safety classification is determined based on the worst
possible consequence in the case of a software failure. In the
case of failure of software that is of safety Class A, no injury
or damage to the health of a patient can occur. When
software of safety class B fails, injury may occur but it is not
serious or life-threatening. Class C medical device software
is the highest risk and in the case of failure of such software
death or serious injury can happen. Depending on the
functionality of software within the medical device, the
software safety classification may vary from the overall
medical device safety class. When software involves critical
functionality of the medical device, it will carry the same

classification as the device, i.e., Class C software in a Class
III device. The safety classification of software may be lower
but cannot be higher than the overall medical device safety
class, e.g., software of safety Class B, may be embedded in
Class III device but there cannot be software of safety Class
C, in a Class I or Class II device.

Medical device manufacturers in the US as well as in EU
must satisfy quality system requirements to market their
developed devices. In the medical device domain, ISO
13485:2003 (ISO 13485 from hereon) [9] outlines the
requirements for regulatory purposes from a Quality
Management System (QMS) perspective in medical device
domain. ISO 13485, which is based on ISO 9001 [10], can
be used to assess an organization’s ability to meet both
customer and regulatory requirements in the medical device
domain. ISO 13485 does not, however, include requirements
for software development. IEC 62304, which can be used in
conjunction with ISO 13485, does offer a framework for the
lifecycle processes necessary for the safe design and
maintenance of medical device software. As a basic
foundation, IEC 62304 assumes that medical device software
is developed and maintained within a QMS such as ISO
13485, but does not require an organization to be certified
against ISO 13485. Therefore, IEC 62304 can be considered
to be a software development specific standard supplement
to ISO 13485, similar to ISO 90003 for ISO 9001.

IEC 62304 is based on ISO/IEC 12207:1995 [11], which
although a comprehensive standard for software
development lifecycle processes, has effectively been
decommissioned following the publication of the more
extensive ISO/IEC 12207:2008 [12]. Furthermore, other
developments in the ISO and IEC communities for software
development, such as ISO/IEC 15504 [13], have provided
significant additional levels of software process detail to
support ISO/IEC 12207:2008. IEC 62304 is a critical
standard for medical device software developers as it is the
only standard that provides recommendations for medical
device software implementations based on the worst
consequences in the case the software failure causing
hazards. For general medical device risk management, IEC
62304 is used in conjunction with ISO 14971 [14] and IEC
80002-1 [15] that provides guidance on the application of
ISO 14971 for software development.

Since IEC 62304 considers a medical device system to
consist of software as a sub-system, the system or product
level requirements are not included within IEC 62304 but
instead within the medical device product standard of IEC
60601-1 [16]. Due to the increasing importance of usability
of devices within the medical device industry, organizations
should also adhere to the medical device usability
engineering process requirements outlined in IEC 62366
[17]. When the Medical Device Directives were amended in
2007 [6], this defined standalone software to be a medical
device in its own right. Previously, software had always been
seen as a subsystem embedded in a medical device. This
amendment revealed a gap in international standards as none
of the published standards were addressing the concerns for
standalone software as a medical device. Today, IEC CD
82304-1 [18] applies to the safety of healthcare software that

135

International Journal on Advances in Life Sciences, vol 8 no 1 & 2, year 2016, http://www.iariajournals.org/life_sciences/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is designed to operate on general purpose IT platforms and
that is intended to be placed on the market without dedicated
hardware, e.g., iPad applications.

All companies planning to market a medical device in the
United States need to register their product with the US
FDA. Most Class I devices can be self-registered but most
Class II devices require a 510(k) submission. For Class III
devices, a Pre-Market (PMA) submission is needed. To
support manufacturers in addressing the relevant guidance,
the FDA has issued an overview of their guidance documents
for medical device manufacturers and software developers
[19]. The FDA Guidance on Premarket Submissions [20]
provides guidance and recommendation for premarket
submissions for software devices, including standalone
software applications and hardware-based devices that
incorporate software. Premarket submission includes
requirements for software-related documentation that should
be consistent with the intended use of the Software Device
and the type of submission. The FDA Guidance on Off-The-
Shelf Software Use in Medical Devices [21] was published
in 1999 with the purpose of describing the information that
should be provided in a medical device application that uses
off-the-shelf (OTS) software. Many of the principles outlined
in this guidance document may also be helpful to device
manufacturers in establishing design controls and validation
plans for use of off-the-shelf software in their devices. The
FDA General Principles of Software Validation [22] outlines
general validation principles that the FDA considers to be
applicable to the validation of medical device software or the
validation of software used to design, develop, or
manufacture medical devices. This guidance describes how
certain provisions of the medical device Quality System
regulation apply to software. The scope of this guidance is
somewhat broader than the scope of validation in the strictest
definition of that term to support a final conclusion that
software is validated.

The challenge that software development companies in
the medical device domain face when they want to market a
device is in the adherence to a large number of regulatory
requirements specified in various international standards that
can often become overwhelming. In order to help these
companies better prepare for the demanding and costly
regulatory audits, we developed the MDevSPICE

®

framework. MDevSPICE
®
 includes requirements from all

the previously mentioned standards and FDA guidance
documents rendering the task of regulatory compliance much
less complex. Following is a description of the development
of the MDevSPICE

®
 framework that integrates the

requirements from various international medical device
standards and guidance documents with the generic software
development best practices while providing a possibility to
assess processes.

III. MDEVSPICE
®

 FRAMEWORK

This section describes the development of the
MDevSPICE

®
process reference model, the MDevSPICE

®

process assessment model, the support MDevSPICE
®

provides for software and system integration, and the

validation of the MDevSPICE
®

framework through pilot
assessments in medical device industry.

A. Development of the MDevSPICE
®

 Process Reference

Model

A process reference model (PRM) describes a set of
processes in a structured manner through a process name,
process purpose and process outcomes where the process
outcomes are the normative requirements the process should
satisfy to achieve the purpose of the process. In order to
develop a PRM that integrates requirements from various
standards allowing the processes to be evaluated in terms of
their achievement of their purpose statements, we followed
the format of the process description illustrated in ISO/IEC
24774 [23]. With that in mind, we first mapped and
integrated the requirements from ISO/IEC 12207:2008 and
IEC 62304 into what today is called the PRM for IEC 62304
that also reflects the updates to ISO/IEC 12207 from the
1995 to the 2007 version. A systematic approach of
memoing and constant comparison, which is based on the
principles of Grounded Theory [24] was followed when
developing the PRM, further details of which are to be found
in [25. The Process Reference Model of IEC 62304 was
published in June 2014 as IEC TR 80002-3 [26].

While IEC 62304 describes only the software lifecycle
processes, additional processes should be in place for system
development in the case where software is not embedded as
part of an overall medical device. These additional processes
were derived from ISO/IEC 12207:2008. Design and
development related requirements from ISO 13485 and ISO
14971 were also added to the MDevSPICE

®
 Process

Reference Model. Both ISO 13485 and ISO 14971 are de
facto standards for medical device software organizations.
ISO 13485 requirements are primarily related to system level
processes and ISO 14971 is concerned with risk management
(and therefore aligned with the Software Risk Management
process of the PRM.

The final MDevSPICE
®
 PRM consists of 23 processes of

which 10 are system lifecycle processes, 8 are software
lifecycle processes and the remaining 5 support both the
system and lifecycle processes as can be seen in Figure 1.

The MDevSPICE
®
 PRM was then extended with

additional elements to create a process assessment model
(PAM). The aim of the MDevSPICE

®
 PAM is to provide a

comprehensive model for assessing the software and systems
development processes against the widely recognized
medical device regulations, standards and guidelines that a
software development organization in the medical device
domain has to adhere to. The MDevSPICE

®
 PAM, similar to

ISO/IEC 15504-5 (SPICE) [26], has two dimensions – a
process dimension and a capability dimension. The process
dimension lists three groups of processes from various
models and standards, i.e., systems lifecycle processes,
software lifecycle processes and support processes. Each
process is described in terms of a Process Name, Process
Purpose, Process Outcomes, Base Practices, Work Products
and Work Product Characteristics.

136

International Journal on Advances in Life Sciences, vol 8 no 1 & 2, year 2016, http://www.iariajournals.org/life_sciences/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Processes of MDevSPICE® PRM

B. Development of the MDevSPICE
®

 Process Assessment

Model

The MDevSPICE
®
 PRM is based on IEC 62304,

ISO/IEC 12207:2008, ISO 14971 and ISO 13485. The
MDevSPICE

®
 PAM then extends this PRM with base

practices and work products, some of the latter also being
normative as they are described in IEC 62304, ISO 14971 or
ISO 13485 as requirements. Where process outcomes are
derived from ISO/IEC 12207:2008, their corresponding base
practices and work products are derived from ISO/IEC
15504-5. Where process outcomes are derived from ISO
14971, their corresponding base practices are derived from
IEC 80002-1. In addition to these sources, FDA guidance on
premarket submissions, software validation and off-the-shelf
software have been added to the informative base practices
where the base practice did not already address the
requirements of the corresponding FDA guidance. Product
safety requirements have been added to the MDevSPICE

®

PAM from both IEC 60601-1 and IEC CD 82304-1, while
the usability engineering requirements have been
incorporated from IEC 62366.

The capability dimension of the MDevSPICE
®
 PAM is

derived directly from ISO/IEC 15504 together with the
Capability Levels, Process Attributes, Generic Practices,
Generic Resources and Generic Work Products.

While integrating processes from different standards and
guidance documents for the MDevSPICE

®
 PRM and PAM ,

a focus on the traceability between and within system and
software lifecycle processes was maintained [27]. Both the
FDA General Principles of Software Validation [22] and

ISO/IEC 12207 [12] incorporate traceability of risks,
changes and requirements throughout the development
lifecycle. This interaction and traceability of requirements is
a key enabler of subsequent integration, and it has a vital role
to play in raising the safety of medical device software.

C. MDevSPICE
®

 Framework’s support for integration

The MDevSPICE
®
 framework contains key facilities for

integrating medical device software. Since MDevSPICE
®
 is

grounded in IEC 62304, the software sub system
decomposition is consistent with the requirements of IEC
62304, meaning that the language of a software unit, a
software item and a software system is adopted.

A software system is the integrated collection of software
items to accomplish a specific function or set of functions; a
software item is any identifiable part of a computer program;
and a software unit is a software item that is not subdivided
into other items. This software system hierarchy has an
important role to play when a software developer wishes to
decompose a system into parts of varying software safety
classification. A benefit of such decomposition is that those
parts of the software subsystem that are vital for safety (and
which require additional safety activities when under
development) can be isolated until they are later integrated
with the other software components. It is also important that
when the components are integrated that the safety
implications are reflected in test cases that are pre-defined,
then tested and the results are checked to ensure that they
match the expected results. Otherwise sign-off cannot take
place at the various levels – unit tests, integration tests and
system tests.

Integration activities in the MDevSPICE
®
 framework

start by integrating software units into software items, and
thereafter software items are further integrated with each
other (and possibly with other units as well) into the software
subsystem (which in turn is integrated into the overall
medical device system). In other words, there are several
levels of integration and they must take into consideration
the safety implications at each step. It is further the case that
the bi-directional traceability of requirements (including
requirements related to safety) from the product level right
down to the individual software unit level is supported in
MDevSPICE

®
 thus further enhancing medical device

software safety at the integration stage and beyond.

D. Piloting the MDevSPICE
®

 Framework

The MDevSPICE
®

framework has been validated in
various stages of its development by different parties through
both international expert reviews and industrial trials. The
foundation of the MDevSPICE

®
 PAM, IEC TR 80002-3 (the

development of which was led by the authors), was
published after several iterations of development and
analysis by the standardization working group responsible
for the publication of IEC 62304 (i.e., ISO/IEC Sub-
Committee 62A, Joint Working Group 3). An international
standard is published only after the national delegates of the
standard’s working group have agreed on every detail of that
standard.

137

International Journal on Advances in Life Sciences, vol 8 no 1 & 2, year 2016, http://www.iariajournals.org/life_sciences/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In addition to working with the international medical
device standards community, the MDevSPICE

®
 PAM has

also been developed together with and analysed by experts of
the Working Group 10 of ISO/IEC Joint Technical
Committee 1, Sub-Committee 7, responsible for the
development and maintenance of the series of process
assessment standards. These standards are currently being
revised from ISO/IEC 15504 series to ISO/IEC 330xx series
of standards. MDevSPICE

®
 framework keeps abreast of

these updates as well as with the updates of any other
standard and guidance document information, which is
contained in the MDevSPICE

®
 framework.

Upon successful completion of international expert
reviews, the MDevSPICE

®
 process assessment framework

was then validated in the medical device software industry
through pilot assessments over the past two years.
MDevSPICE

®
process assessments were conducted in

different types of organizations: (1) a small software
company wishing to supply software to a large medical
device manufacturer who wants them to demonstrate that
they are capable of developing safe medical device software
and provide the medical device manufacturer with a feeling
that they will not jeopardize the safety of their overall
medical device or the reputation of their organization; (2)
three different assessments (across a 2 year period) were
performed in two different international sites of a
multinational medical device manufacturer who wants to
ensure that they are incorporating best practices within their
software development processes to not only achieve
regulatory compliance but also reduce the likelihood of
recalls through developing better quality and more robust
software; (3) a software development company seeking to
achieve regulatory compliance against IEC 62304 so that
they can become medical device software suppliers; and (4)
a large automotive manufacturer experienced in developing
safety-critical embedded automotive software now wishing
to also develop embedded medical device software.

IV. LESSONS LEARNED FROM PILOTING MDEVSPICE
®

As a result of the MDevSPICE
®
 pilot assessments we

have witnessed different types of needs and challenges that
companies face in medical device software development.

Companies that manufacture medical devices as well as
develop embedded software for their devices, manage
traceability and integration between systems and software
lifecycle processes well. This might be due to systems and
software engineers working closely together in building a
safe medical device where the software developers are aware
of the system risks and requirements.

For companies that develop and supply software to large
medical device manufacturers it can be very difficult to
become aware of the overall system level requirements
including the requirements of end users, e.g., patients, health
professionals and related interfaces, as well as the risks
before the software development project commences.
Medical device manufacturers working on innovative
devices are sometimes reluctant to provide their software
subcontractors with the details of their device design and end
user requirements as this could jeopardize device novelty or

competitive advantage. Yet, the safety risks related to the
performance of medical devices can outweigh such business
risks when the medical device manufacturer has a proper
legal know-how and proficiency about the market needs.
When the system requirements are not provided to the
software developers, the traceability engineering and
integration of the sub-systems of the medical device will be
hindered. Therefore, we would recommend medical device
manufacturers to communicate with their software
subcontractors more openly in order to best support risk and
requirements management throughout their device design –
even if this only encompasses those product requirements,
which are related to the software requirements (and
especially those, which are safety related). Although there is
a potential issue in capturing, managing and changing
requirements throughout the development of a medical
device, the ultimate goal for all device manufacturers is to
have a safe medical device on the market and not risk
liability or damage of their brand as a result of a recall of a
faulty device.

V. AGILE FOR MEDICAL DEVICE SOFTWARE

DEVELOPMENT

 It is generally believed that technology will
automatically improve health care efficiency, quality, safety,
and cost, however, few people consider that technologies
may also introduce errors and adverse events. Nearly 5,000
types of medical devices are used by millions of health care

providers around the world [28]. While this technology
holds much promise, the benefits of the technology are not
always realized due to poor technology design that does not
adhere to human factors, a poor technology interface with
the patient or environment and an inadequate plan for
implementing a new technology into practice [29].
 Future trends indicate that medical software and devices
in which clinical decisions will be guided by individual
patient preferences, combined personal and medical data as
well as specific needs and values [30]. In this case,
continuous requirements collection and involvement of
different stakeholders such as patients, health professionals
and interface providers can be seen as essential for the
future success of medical device software development.
However, the development of medical devices that target the
needs of either the patient or the health professional can be
difficult when adopting a traditional, plan-driven software
development approach where all system requirements
should be known at the beginning of the development
process. We believe that agile software development
methodologies could provide support in achieving this
challenge when delivering medical device software. In the
next sub-sections we describe agile software development
together with its benefits, the challenges it presents when
adopted in the medical device domain and a brief
justification as to why agile practices should be integrated
into the MDevSPICE

®
 framework.

A. What is Agile?

In recent years agile software development
methodologies have gained significant interest in the IT

138

International Journal on Advances in Life Sciences, vol 8 no 1 & 2, year 2016, http://www.iariajournals.org/life_sciences/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

community with proposed solutions to the problems of
traditional, plan-driven software development approaches.
“It’s a framework, attitude, and approach to software
delivery that is lean, fast, and pragmatic. It’s no silver
bullet, but it dramatically increases your chances of success
while bringing out the best your team has to offer” [31].

Agile software development is a set of principles and
practices used by self-organizing teams to rapidly and
frequently deliver customer-valued software. It follows an
Incremental and Evolutionary lifecycle, emphasizing close
collaboration between the software development team, the
customer, and other stakeholders. It is adaptable,
emphasizing the need to adjust the principles and practices
to fit the context and environment in which the software is
being created [32].

B. Benefits of Agile

A priority of an agile methodology is to “satisfy the
customer through early and continuous delivery of valuable
software” [33]. There are many benefits that an agile
methodology promotes, such as, improved quality,
sustainable development, continuous attention to technical
excellence as well as changing to this sort of approach is
welcomed even late in the development. By adopting agile
practices, the speed to market is improved, supporting the
achievement of competitive advantage in the market.

Agile principles also dictate that “working software is
the primary measure of progress” [33]. Unlike the extensive
upfront planning and heavyweight processes and
bureaucracy required for plan-driven development; agile
development focuses on delivering highest business value to
the customer through: short time-boxed iterations; receiving
and providing fast feedback; collaborating with
stakeholders, making use of self-organizing teams,
embracing requirements changes, balancing up-front and
just-in-time work, and favouring adaptive and exploratory
development approaches [33]. A key factor in the agile
process of system delivery is the close collaboration
between clients (i.e., clinicians, patients and related
interface providers) and developers, which assists decision
making and optimizes the market value of the developed
solution. The client–developer collaboration and the
continuous requirements prioritization are also important
parts of a typical agile requirements engineering (RE)
approach [34].

C. Challenges with Agile Adoption

Despite the abovementioned benefits of agile methods in
software development, the experience reports and case
studies indicate that there are several challenges to adopting
agile methods in the medical device development domain.
These challenges can broadly be grouped into the following
three groups:

1) Challenges in relation to the perceived unsuitability

of agile software development approaches for safety critical

domains because of the conflicts with satisfying regulatory

requirements;

2) Challenges in relation to the tailoring of agile

practices to conform with the regulatory requirements;

3) Challenges in relation to the acceptability of agile

adoption when conflicts occur between executives/high level

managers and development teams.
In this subsection, we are going to address the problems

related to the perception of adopting agile practices for
medical software development and we aim to change this
perception through providing empirical support. We title
each section with a different misconception:

1) Undisciplined nature of agile software development

2) Approaches vs the demands of a highly regulated

medical device development domain:
“Discipline” against “agility” was first used by Boehm

and Turner in 2003 in their book titled “Balancing Agility
and Discipline: A Guide for the Perplexed” [3]. The
traditional software development methods and quality
standards (SW-CMM at that time) were defined as the
disciplined side of the contradiction. They clearly stated that
“agility is the counterpart of discipline. Where discipline
ingrains and strengthens, agility releases and invents” [36].
Ambler, the author of the disciplined agile delivery
approach, states that when “properly executed, agile is not an
excuse to be undisciplined” [37]. High ceremony procedures
of traditional approaches such as formal document reviews
or formal document approval are a sign of bureaucracy rather
than discipline [37]. The misperception of agile being an
undisciplined approach could be due to its empirical nature,
self-organizing teams and an emphasis on less
documentation. On the contrary, agile software development
methods have to focus more on establishing discipline than
other approaches to achieve built-in quality and to remove
the cost of non-conformance in the first instance. Ambler
states that discipline in agile projects is what makes the
difference between successful and unsuccessful agile
adoption [37].

The discipline, which also means consistency is
established in agile software development by people
applying a set of rules and practices. One of the significant
practices of agile software development such as continuous
integration brings commitment and discipline to
development teams. It was stated by Humble and Farley that
when the necessary discipline for this practice is not adopted,
the improvements in quality will not be as expected [38].
Continuous integration requires being disciplined in;
refactoring, ensuring that the mainline is never broken,
coding automated tests, and maintaining acceptance tests
over a long term [38]. Having focused people, trusting and
respecting each other in a safe environment where there is no
hesitation to share ideas or no fear to fail is the start of the
disciplined agile environments [37]. Therefore, the
undisciplined nature of an agile software development
approach is an expression of belief, not an expression of
fact.

3) Documenting the evidence required by regulatory

standards vs little emphasis of agile on documentation:
In medical device development projects, evidence is

required in order to prove that the executed process ensures a

139

International Journal on Advances in Life Sciences, vol 8 no 1 & 2, year 2016, http://www.iariajournals.org/life_sciences/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

safe and reliable product. Essential phases of software
development process including requirements, architecture,
design and test phases are recorded in a traceable way from
initiation to release of the product. In the CFR 21:820
Quality System Regulation of FDA, it has been stated that
design and development planning, design inputs, design
outputs, design reviews, design verification, design
validation, process validation, design changes, traceability
and much more have to be established, which means
“defined, documented (in writing or electronically), and
implemented” [3].

One of the four values of the agile manifesto states that
working software is preferred over comprehensive
documentation [33]. This would suggest that following an
agile software development method would not support the
development of sufficient documentation necessary to
achieve regulatory approval or it could be misinterpreted that
an agile approach emphasises “no documentation”. From
either of the perspectives, it would be reasonable to accept
that the documentation required for regulatory purposes
needs to be developed regardless of the SDLC (Software
Development Life Cycle) adopted in the company [32].

It should be noted that plan-driven methods such as the
V-model and waterfall model are well-suited to the
addressing the documentation needs as the SDLC phases and
process outputs are in correlation. Agile software
development methods do not undermine the value of
necessary documentation. In a user story mapping approach,
it is stated that a story-driven process needs lots of
documents to work but those documents don't always look
like traditional requirements documents [39]. Furthermore,
there is also no clear emphasis on traceability of the software
development process either in the agile manifesto or in agile
principles. Evidence obtained from the literature suggests
that documentation and traceability concerns in agile projects
are resolved by managing the artefacts with appropriate
tailoring and using software tools effectively [40], [41], [42].
For example, to ensure that all the necessary documentation
is achieved within a sprint, a person who is responsible for
documentation and support was established as a permanent
member of an agile project at the QUMAS medical company
[41]. This enables both adherence to regulations and
standards without slowing down the process. Also, living
traceability was achieved with the support of the integrated
tools of Atlassian in the same company, which enabled an
accurate snapshot to be provide of the system in real-time.

Rottier and Rodrigues report that a Use Case document
can be used for the validation of the medical product in an
agile project with a supplement to a Software Requirements
Specification (SRS) document, which details non-functional
requirements [43]. Obviously, use of use cases instead of
traditional requirement specifications makes a difference for
Cochlear in terms of agility as it was mentioned. At this
point, the agility level that was achieved with use cases
needs to be evaluated. Manjunath, Jagadeesh and Yogeesh
mention that user stories acquired from customers were
documented in the SRS in another agile medical project [42].
The founders of a user story mapping approach, Patton and
Economy, make an important statement for the use of user

stories as software requirements: “Stories in agile software
development get their name from how they should be used,
not what you write down. If you are using stories in
development and you are not talking together using words
and pictures, you are doing it wrong” [39].

D. Agile in Medical Domain

Based upon the Chaos Report of Standish Group, among
1500 software projects developed between 2011 and 2015,
39% of all the software projects that were developed using
agile software development methods were successful [44].
While agile software development projects were 3 times
more successful than waterfall projects, the ratio of the
“challenged projects” (52% and 60% for agile and waterfall
projects, respectively) cannot be underestimated. Those
challenged projects refer to projects that were delivered with
incomplete functionality, or exceeded the planned budget or
schedule. The ratios present that there are challenges in
relation to adoption and adaptation of the agile practices,
interpretation of the agility principles and mindsets in the IT
and medical community.

The regulatory requirements and audits, that safety
critical projects are subject to, bring more concerns about the
applicability of the agile approaches in the field and increase
the challenges. For Class II and Class III type projects and
some of Class I type projects, the FDA requires formal
approval of most of the steps and items in the SDLC. The
reason why traditional approaches like waterfall or V-model
are being used in medical device domain could be explained
with the rigid predictability and linear flow that the models
present. On the other hand, Sutherland states that according
to the leading research and analysis firms, such as Gartner,
Forrester Research and Standish Group [45], the old style
work characterized by command and control and rigid
predictability is obsolete.

Regulatory issues are not a barrier for the

implementation of agile approaches [46]. It is indicated in a

mapping study [46] that SCRUM practices could be

successfully used in medical device software development.

Similarly, Perline [47] recommends agile methods like

SCRUM for lightweight and proven framework for

managing work in the complex software development

projects like those in the safety-critical domains.
The Association for the Advancement of Medical

Instrumentation (AAMI) published a guidance for the use of
agile practices in the development of medical device
software [32]. The report (AAMI TIR45:2012) provides
high level guidance of agile practices, which have been
found useful and appropriate for medical device software
development. The report is a good resource that states major
challenges for the agility implementation such as review and
verification activities, use of documentation, managing the
change, risk and traceability. However, the guidance was
kept at an abstract level.

Evidence shows that agile development approaches in
medical domain are being widely used with proper
adoptions and tailoring [1], [42], [46], [48], [49], [50], [51],
[52]. For instance, it has been indicated that user stories can
be used as an up-front planning technique; iterative testing

140

International Journal on Advances in Life Sciences, vol 8 no 1 & 2, year 2016, http://www.iariajournals.org/life_sciences/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and test driven development to assure that all the software
will be fully tested before releasing; and configuration
management is used to perform necessary traceability
between initial requirements and released solutions [46].

E. How can MDevSPICE
®

be improved by using Agile

practices

The sequential flow of development processes in the
MDevSPICE

®
 framework might suggest that the V-model

could be best suited for medical device software
development, making the software development process long
and tough on budget, especially when requirements changes
are introduced later in the lifecycle. When integrating agile
practices into the MDevSPICE

®
 framework, the overall

medical device software development process could become
more flexible and faster. It will take some time to gather the
best agile practices that would be most suitable for
MDevSPICE

®
, but once done – this framework will be a

comprehensive guide to all medical device software
companies.

MDevSPICE
®
, similarly to international medical device

standards and FDA guidance documents, does not dictate or
recommend the use of any specific software development
lifecycle approach. MDevSPICE

®
 is an integrated set of

regulatory requirements, practices to achieve these
requirements and work products that need to be delivered in
order to be allowed to sell the software on the market. With
the reported and abovementioned benefits of agile methods
in safety-critical software development, a medical device
software development organization needs to select the most
appropriate agile practices that their organization should
follow and integrate them into the development lifecycle
model applied in their organization [53]. It is important for
the medical device software organizations to realize that the
key values of the agile manifesto [33] are not contradictory
but can be aligned to be complimentary to the development
of medical device software, resulting in a quality
management system that produces high-quality medical
device software [32].

VI. CONCLUSION

Safety-critical domains are characterized by heavy
regulatory demands that companies have to adhere to before
they can place their devices on the market. Regulatory audits
are conducted regularly to evaluate these companies and the
safety of their devices. In order to pass these audits, medical
device manufacturers have to ensure that all regulatory
requirements have been adhered to in the design and
development of each of the medical device subsystems.

In this paper, we have explained the medical device
regulatory requirements and the related standards and
guidance documents. We have described how MDevSPICE

®

addresses all concerns regarding regulatory requirements in a
single medical device software framework. The key to
developing this framework was an acknowledgement that the
overall medical device requirements have a direct impact on
the safety of the device, and it is therefore critical that top
level product requirements are fully realized in the software
system and its related requirements. This can be especially

difficult to achieve in environments where device
manufacturers decide to outsource software development
without necessarily sharing all top level product
requirements with the subcontractors. To address this critical
interface, the MDevSPICE

®
 framework incorporates not just

software development lifecycle processes but also the system
level processes. Hence, system requirements that have an
impact on software requirements are identified in
MDevSPICE

®
, and through the implementation of bilateral

requirements traceability, decisions taken during the
software subsystem development are fed back to the top
level system requirements – thus providing a closed loop for
requirements management, which can help to increase the
overall safety of the device.

In this paper we have argued that agile practices such as
iterative development cycles, continuous integration, sprint
planning meetings and continuous requirements
prioritization should be tested when assuring the
development of better technology design and technology
interfaces. We have also illustrated the benefits and the
challenges of agile practice integration into traditional
medical device software development. Through providing
empirical support to these challenges we have established the
basis for our future research work in which we will decide
upon the most appropriate agile practices that will be
integrated into the MDevSPICE

®
 framework. We will then

integrate the selected agile best practices into the
MDevSPICE

®
 framework to shorten the medical device

software development lifecycle as well as the time to market
for the resulting medical devices.

ACKNOWLEDGMENT

This research is supported by the Science Foundation
Ireland under a co-funding initiative by the Irish Government
and European Regional Development Fund and by Lero - the
Irish Software Research Centre (http://www.lero.ie) grant
10/CE/I1855 & 13/RC/20194. The research is also supported
by Digital Health Revolution project and Tekes, Finnish
Funding Agency for Innovation.

REFERENCES

[1] F. McCaffery, M. Lepmets, and P. Clarke, “Medical device
software as a subsystem of an overall medical device: The
MDevSPICE experience,” The First International Conference
on Fundamentals and Advances in Software Systems
Integration FASSI, Aug. 2015, Venice, Italy,
doi:10.1002/smr.1731

.[2] ISO/IEC 15504-5. Information technology - process
assessment - Part 5: an exemplar process assessment model.
2012. p. 211.

[3] FDA. Chapter I - Food and drug administration, department
of health and human services subchapter H - Medical devices,
Part 820 - Quality system regulation. Available from:
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFR
Search.cfm?CFRPart=820. Last date accessed - 26.05.2016.

[4] Directive 93/42/EEC of the European Parliament and of the
Council concerning medical devices. 1993. European
Commission, Brussels, Belgium. p. 43.

[5] Council directive 90/385/EEC on active implantable medical
devices (AIMDD). 1990. Brussels, Belgium. p. 35.

141

International Journal on Advances in Life Sciences, vol 8 no 1 & 2, year 2016, http://www.iariajournals.org/life_sciences/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] Directive 98/79/EC of the European Parliament and of the
council of 27 October 1998 on in vitro diagnostic medical
devices. 1998. Brussels, Belgium. p. 43.

[7] Directive 2007/47/EC of the European Parliament and of the
Council concerning medical devices. 2007. EC: Brussels,
Belgium. p. 35.

[8] IEC 62304: Medical device software - software life-cycle
processes. 2006. IEC: Geneva, Switzerland. p. 151.

[9] ISO 13485: Medical devices - quality management systems -
requirements for regulatory purposes. 2003. ISO: Geneva,
Switzerland. p. 57.

[10] ISO 9001:2000 - Quality management systems -
requirements. 2000. Geneva, Switzerland. p. 27.

[11] ISO/IEC 12207:1995 - Information technology - software
life-cycle processes. 1995. ISO/IEC: Geneva, Switzerland. p.
106.

[12] ISO/IEC 12207:2008 - Systems and software engineering -
Software life cycle processes. 2008. ISO/IEC: Geneva,
Switzerland. p. 138.

[13] ISO/IEC 15504-2:2003, Software engineering - Process
assessment - Part 2: Performing an assessment. ISO: Geneva,
Switzerland. 2003.

[14] ISO 14971 - Medical devices - Application of risk
management to medical devices 2009. ISO: Geneva,
Switzerland. p. 82.

[15] IEC TR 80002-1 - Medical device software - Part 1: Guidance
on the application of ISO 14971 to medical device software.
2009. IEC: Geneva, Switzerland. p. 58.

[16] IEC 60601-1 - Medical electrical equipment – Part 1: General
requirements for basic safety and essential performance 2005.
IEC: Geneva, Switzerland. p. 20.

[17] IEC 62366 - Medical devices - Application of usability
engineering to medical devices. 2007. IEC: Geneva,
Switzerland. p. 104.

[18] IEC 82304-1: Health software -- Part 1: General requirements
for product safety. 2012. IEC: Geneva, Switzerland. p. 30.

[19] FDA Guidance documents (medical devices and radiation-
emitting products), 2015. FDA: USA.

[20] FDA Guidance for the content of premarket submissions for
software contained in medical devices. 2005. FDA: USA. p.
20.

[21] FDA's Guidance for industry, FDA reviewers and compliance
on - Off-the-shelf software use in medical devices. 1999.
FDA: USA. p. 26.

[22] FDA's General principles of software validation; final
guidance for industry and FDA Staff. 2002. FDA: USA. p. 43.

[23] ISO/IEC 24774 - Systems and software engineering - Life
cycle management - Guidelines for process description. 2010.
Geneva, Switzerland. p. 15.

[24] B. Glaser, and A. Strauss, "The discovery of grounded
theory: strategies for qualitative research", Ed: A.d. Gruyter.
Hawthorne, NY, USA, 1976.

[25] M. Lepmets,P. Clarke, F. McCaffery, A. Finnegan, and A.
Dorling, "Development of a process assessment model for
medical device software development," in Industrial
Proceedings of the 21st EuroSPI Conference, 2014,
Luxembourg, pp. 2.25-2.35.

[26] IEC TR 80002-3: Medical device software -- Part 3: Process
reference model of medical device software life cycle
processes (IEC 62304). 2014. IEC: Geneva, Switzerland. p.
23.

[27] G. Regan, M. Biro, F. McCaffery, K. McDaid, and D. Flood,
"A traceability process assessment model for the medical
device domain, " in EuroSPI, Luxembourg, 2014, pp. 206-
216, doi: 10.1007/978-3-662-43896-1_18.

[28] J. Gaev,"Technology in healthcare. in: clinical engineering
handbook, " Ed: Dyro, Joseph F., p.342, 2004.

[29] G. Powell-Cope, A. Nelson, and E. Patterson, "Patient safety
and quality: an evidence-based handbook for nurses," Chapter
50. Hughes RG, Ed. Rockville (MD): AORN
Journalvol.90(4), pp.601-602, 2008.

[30] M. Dulin, C. Hugh-Jones, M. Pitts, and G. Hughes,
"Applying data to improve patient-centric and personalized
medicine," Conclusions Paper, 10th Annual Health Care &
Life Sciences Executive Conference, SAS, 2013.

[31] J. Rasmusson, The Agile samurai: how agile masters deliver
great software, Pragmatic Bookshelf, 2010.

[32] AAMI, AAMI TIR45:2012 -- "Guidance on the use of agile
practices in the development of medical device software,"
2012.

[33] (2001). Agile Manifesto. Available from:
www.agilemanifesto.org. Last date accessed: 26.05.2016.

[34] M. Daneva, E. van der Veen. C. Amrit, S. Ghaisas, K. Sikkel,
R. Kumar, N. Ajmeri, U. Ramteerthkar, and R.Wieringa,
"Agile requirements prioritization in large-scale outsourced
system projects: An empirical study, " The Journal of Systems
and Software, vol. 86(5) , pp.1333– 1353, 2013.

[35] B. Boehm and R Turner. "Balancing agility and discipline: A
guide for the perplexed," Addison-Wesley Professional, 2003.

[36] B. Boehm and R. Turner. "Balancing agility and discipline:
Evaluating and integrating agile and plan-driven
methods," 26th International Conference in Software
Engineering (ICSE), 2004, pp. 718-719.

[37] A. Scott W. and M. Lines, Disciplined agile delivery: A
practitioner's guide to agile software delivery in the
enterprise, IBM Press, 2012.

[38] J. Humble and D. Farley, Continuous delivery: reliable
software releases through build, test, and deployment
automation, Pearson Education, 2010.

[39] J. Patton and P. Economy, User story mapping: Discover the
whole story, build the right product, O'Reilly Media, Inc.,
2014.

[40] U. Upender, "Staying agile in government software projects,"
in Agile Conference Proceedings, July 2005, pp. 153-159,
doi: 10.1109/ADC.2005.41.

[41] B. Fitzgerald, K.-J.Stol, R. O'Sullivan, and D. O'Brien,
"Scaling agile methods to regulated environments: An
industry case study," 35th International Conference in
Software Engineering (ICSE), May 2013, pp. 863-872.

[42] K.N. Manjunath, J. Jagadeesh, and M. Yogeesh, "Achieving
quality product in a long term software product development
in healthcare application using Lean and Agile principles:
Software engineering and software development,"
International Multi-Conference on Automation, Computing,
Communication, Control and Compressed Sensing (iMac4s),
March 2013, pp. 26-34, doi: 10.1109/iMac4s.2013.6526379.

[43] P.A. Rottier, and V. Rodrigues "Agile Development in a
Medical Device Company," in Agile Conference Proceedings,
pp.218-223, Aug. 2008, doi: 10.1109/Agile.2008.52

[44] Chaos Report, Standish Group, based upon Jeff Sutherland
Scaling Agile course notes, 2015, Boston.

[45] J. Sutherland, Scrum: The Art of Doing Twice the Work in
Half the Time, Crown Business, 2014.

[46] M. McHugh, F. McCaffery, and V. Casey, "Barriers to
adopting agile practices when developing medical device
software," in Software Process Improvement and Capability
Determination Proceedings, vol.290, pp. 141-147, 2012, doi:
10.1007/978-3-642-30439-2_13.

[47] J. Pelrine, "On understanding software agility - A social
complexity point of view," E:CO. vol.13(1-2), pp. 26-37,
2011

142

International Journal on Advances in Life Sciences, vol 8 no 1 & 2, year 2016, http://www.iariajournals.org/life_sciences/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[48] Z.R. Stephenson, J.A. McDermid, and A.G Ward, "Health
modelling for agility in safety-critical systems development,"
in the 1st Institution of Engineering and Technology
International Conference Proceedings, June 2006, pp. 260-
265, doi: 10.1049/cp:20060225.

[49] J. Sutherland."Future of scrum: parallel pipelining of sprints
in complex projects," in Agile Conference Proceedings, July
2005, pp. 90-99, 24-29.

[50] M. Sumrell, "From waterfall to agile - how does a qa team
transition?," in Agile Conference Proceedings, Aug. 2007, pp.
291-295, doi: 10.1109/AGILE.2007.29.

[51] J. W. Spence "There has to be a better way! [software
development]," in Agile Conference Proceedings, July 2005,
pp. 272-278, doi: 10.1109/ADC.2005.47.

[52] K. Weyrauch, "What are we arguing about? A framework for
defining agile in our organization," in Agile Conference
Proceedings, July 2006, pp. 213-220, doi:
10.1109/AGILE.2006.62.

[53] M. McHugh, F. McCaffery, and V. Casey. "Adopting agile
practices when developing software for use in the medical
domain," Journal of Software: Evolution and Process,
vol.26(5), pp. 504-512, 2014, doi: 10.1002/smr.1608.

