
Real World Evaluation of a New Environment Adaptive Localization System  
 

Ashok-Kumar Chandra-Sekaran2, Peter Schenkel1, Christophe Kunze2, Klaus D. Müller-Glaser1 
Institute for Information Processing Technology (ITIV), Karlsruhe Institute of Technology (KIT), 

Germany. 1.    FZI Research Centre for Information Technology, Karlsruhe2,   
(chandra,kunze)@fzi.de, peter.schenkel@igs-solution.de, kmg@itiv.uka.de,  

 
Abstract— In order to assist the responders during 
disaster management a self-organizing, scalable, 
heterogeneous and location aware WSN architecture 
called Disaster Aid Network (DAN) was proposed in our 
previous work. One of the main aspects of DAN is the 
localization aspect which deals with the development of a 
subsystem for patient localization at the disaster site. The 
patient localization is split into ranging and position 
estimation tasks. In this paper a new environment and 
mobility adaptive signal strength based ranging 
technique for range estimation is proposed and is tested 
using both close-to-reality simulations and empirical 
analysis. These range information is given as input to a 
particle filter based position estimation algorithm 
previously proposed by us to provide the location 
estimate of the patient. In this paper a new localization 
system is setup by implementing this ranging and position 
estimation technique in a ZigBee network. A real world 
evaluation of this localization system is undergone and its 
localization performance is analyzed. 
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position estimation; Localization system, Real world 
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1. Introduction 

In Wireless Sensor Networks (WSN) researchers are 
dealing with challenges like heterogeneous networks, 
scalability, self-organisation, self-sufficient operation, 
multi-hop communication, ad-hoc networks and 
localization. Some of the short range wireless 
communication standard based technologies that can 
be considered for WSN are Bluetooth, ZigBee [3], 
RFID, etc.  

The potential problems faced in the aftermaths of a 
disaster are: response capabilities of the local 
jurisdiction may be insufficient, large-scale 
evacuations from the disaster site, complications in 
implementing evacuation management strategy, 
disruption of critical infrastructure, large number of 
casualties, long duration to obtain an initial common 
operating picture [23]. 

We proposed a new emergency response system 
based on the Disaster Aid Network (DAN) architecture 

to improve emergency response at the disaster site in 
[2]. DAN is a self-organizing, scalable, heterogeneous 
sensor network (see figure 1) of 30-200 nodes 
comprising of: 

• Patient nodes with electronic triage tag and 
optional continuous vital sign monitoring. 
They are also called blind nodes [16] because 
their positions are unknown and have to be 
estimated. 

• Pseudo anchor nodes are patient nodes whose 
positions are already estimated. 

• Doctor nodes (mobile anchor nodes) are 
mobile nodes (Tablet PC) whose locations are 
known. 

• The monitor station is a collector node which 
collects the patients’ locations and visualizes 
them for the organization chief. 

• Static anchor nodes are nodes placed at fixed 
positions whose locations are already known. 

• Server: A server running a database for data 
collection and aggregation is placed at the 
management centre. 

Based on the functionalities and operational setup, the 
design and development of DAN system can be 
classified into four aspects as follows: communication, 
localization, data aggregation and visualization, and 
sensor-actuator. This paper focuses on the localization 
aspect of DAN which is critical for the DAN system.  
 
2. DAN Localization Aspect 

The localization aspect deals with the 
development of a subsystem for localization of patients 
at the disaster site. Each patient node localizes itself on 
the occurrence of an event and communicates its 
location along with other relevant patient information 
to the server. The monitor station runs a visualization 
software that receives a patient’s location from the 
database of the server and displays it on a disaster 
sitemap. The real time patient location information 
among others has two main use cases. 

• The responders can track each patient in real 
time. This avoids the time consuming search 
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for missing patients at the site (ex: minor 
injury patients can run away from the site 
without informing the responders) 

• The patient location helps to provide the 
responders with the number of patients 
belonging to each disaster site zone and 
patient flow rate between these zones leading 
to efficient resource (distribution of doctors, 
ambulances, etc.) planning. 

    This can improve situation awareness of the 
responders and assist in efficient resource planning and 
distribution. The organization of supply and service or 
logistics can be improved and the patients’ do not need 
to wait before being evacuated to the hospitals. 
 

 
Fig. 1. DAN System 

 
    In this paper, the specifications for the localization 
aspect are formulated and a patient localization 
methodology is proposed. A new environment and 
mobility adaptive ranging technique (to estimate the 
distance between a blind node and its neighbouring 
nodes) that suits our localization specification is 
developed and analyzed using both simulation and 
empirical analysis. This distance information is given 
to the position estimation algorithm of the patient node 
which estimates the actual location of the patient in 
two dimensions. A new position estimation technique 
that is already developed and tested via close-to-reality 
simulations is briefed in this paper. Furthermore, these 
range and position estimation techniques are 
implemented and its real world evaluation in an 
outdoor environment is performed.  
 
2.1 Patient Localization Specification 

The specifications for patient localization at the 
disaster site are: handle the different environments 
(both outdoor and indoor); use minimum or no special 
infrastructure (static anchor nodes) due to lack of 
deployment time; track 30-200 patient nodes moving 

with varying speed (0 to 3 m/s); attain an accuracy of 
around 10m; be scalable and robust. Even though 
accuracy is important the main challenge here is to 
handle the varying mobility and different environment 
with adverse RF conditions and also use minimum or 
no infrastructure.  

2.2 Patient Localization Methodology 
At the beginning of the emergency response, the 

portable monitor station (typically a notebook is setup. 
The static reference nodes are deployed manually in 
such a way that the network coverage is provided to 
the entire disaster site. Each emergency doctor is 
typically equipped with a doctor node which acts as 
mobile reference node. Once a patient is found, the 
doctor provides a wearable patient node, which is a 
blind node in terms of localization and needs to be 
localized over time. Therefore each patient node runs a 
decentralized localization algorithm. The patient 
localization methodology is divided into two parts 
called ranging and position estimation. Each part is 
addressed separately before combining them to yield 
the final patient location estimate. The ranging part 
estimates the distance (range) between the blind node 
(node whose location has to be estimated) to its 
neighboring reference nodes (nodes whose locations 
are already known). These range estimates are input to 
a position estimation algorithm running on the blind 
node which provides two dimensional real time 
location estimations of the blind node (patient).  

 
2.2.1 Ranging Methodology 
    Range free techniques perform well when reference 
nodes are deployed uniformly throughout the site. As 
the nodes are deployed randomly and move randomly 
at the disaster site, range-based technique can be 
expected to offer a better accuracy compared to its 
range-free alternative [21]. In the range-based 
technique we selected RSSI based ranging technique 
as it needs less infrastructure compared to its 
counterparts like TOA (Time of Arrival), TDOA 
(Time Difference of Arrival) or Angle-of-arrival. Since 
offline (finger printing) based RSSI ranging techniques 
are time consuming, needs prior knowledge of the 
deployment site and repetition of finger printing for 
minor environmental changes, we use an online based 
RSSI ranging technique. Comparing with other signal 
sources (Infrared, ultrasound, etc) a radio frequency 
(RF) signal source is preferable because it is cost 
effective and provides a suitable transmission range 
indoor and outdoor. Therefore, we have selected an 
online RSSI-based ranging technique using the RF 
signal for distance estimation during patient 
localization [1]. 
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    Having selected an RSSI range-based technique for 
the distance estimation, a SOA analysis of RSSI based 
ranging algorithms has to be done. A new ranging 
technique for the patient localization has to be 
developed. A real world offline ranging database has 
to be built and given as input to the simulation model 
of the new ranging technique to obtain the distance 
estimates and their ranging performance has to be 
analyzed. The ranging technique developed has to be 
improved to exceed the limitations of the first stage of 
development. 
 
2.2.2 Position Estimation Methodology 
    The ranging methodology proposed in the previous 
section will provide the distance estimates to the 
position estimation part whose methodology is 
explained in this section.  
     The DAN system consists of anchor and patient 
nodes that are either static or mobile. The patient nodes 
can move (actively or passive) in an undefined manner 
(patients moving from one zone to another, patients 
running away from site, etc.) or be static (red or yellow 
triaged patients lying down, etc.). Thus, DAN is seen 
as a dynamic and mobile WSN whose topology 
changes during its operation time. Mobility makes a 
WSN delay intolerant i.e. information gathering and 
localization is done in real time, depending on the 
speed of the nodes [6]. Besides, a localization 
algorithm for mobile WSN should cope up with 
temporary loss of anchors. So position estimates based 
on simple techniques (ex: trilateration) is unsuitable for 
our scenario. Mobility should be directly taken into 
account when designing localization algorithms for 
mobile WSN and Monte Carlo Localization (particle 
filter) based algorithms are suitable [6]. 
    Our new system to localize patients at the disaster 
site can be characterised as a non linear and non 
Gaussian system with multimodal densities. Linear 
filters might even give good results for nonlinear, non-
Gaussian systems if the system can be approximated 
by a linear, Gaussian system but in general nonlinear 
filter techniques are required. A particle filter 
approximates the posterior with a finite set of samples 
drawn from the posterior thereby allowing the 
representation of a broad class of densities including 
multimodal distributions. In general, a particle filter 
has superior accuracy over the EKF (Extended Kalman 
Filter) and the UKF (Unscented Kalman Filter) but this 
comes at the cost of higher computational effort. Due 
to the above stated reasons a particle filter based 
solution is chosen for our position estimation. A new 
particle filter based patient position estimation 
algorithm that suits our localization specification has 
already been developed by us and its performance is 

analyzed using close-to-reality simulations [22]. In this 
paper this algorithm will be briefed. 
    The ranging and position estimation techniques have 
to be implemented in a ZigBee network and real world 
evaluated in an outdoor environment. This 
demonstrator is considered as a first release of the 
patient localization sub system for DAN.  
 
3. State of the Art Analysis of Localization 
in WSN 
    The state of the art (SOA) localization system and 
RSSI based ranging algorithms related to our work are 
analyzed in this section 
 
3.1 Localization Systems 
    Systems like Active Badge [8], Cricket [9], RADAR 
[10] required a lot of infrastructure. GPS [11] is not 
suitable for Indoor. In order to obtain a good GPS 
accuracy the following conditions have to be satisfied: 
proximity of GPS to buildings should be greater than 3 
meters, device should not be brought under dense 
trees, antenna should be held firmly above shoulder 
height (approximately 2 meter), and point to the open 
sky. It is impossible to follow the conditions 
mentioned above for localizing patients at a disaster 
site which is an unknown environment with adverse 
RF conditions. RFID based solutions like SpotON [20]  
are not suitable for us since they demand high anchor 
node density, works in short range and needs a fixed 
infrastructure. We did a primitive analysis of the 
CC2431 localization solution [13, 4] from Texas 
Instruments (TI) and it revealed that the blind node 
location estimation is unstable and needs large number 
of reference nodes for considerable performance. So 
this system is also not suitable for our scenario. 
Therefore we started developing a new localization 
solution for our scenario.  
 
3.2 RSSI Range-based Techniques 

The works in [15], [17], [18], [19] discuss about 
RSSI based ranging techniques. It is difficult to 
compare the results of different SOA works due to 
different preconditions and lack of generally agreed 
test beds and testing protocols for such networks being 
available yet. Besides most of the SOA results have 
been obtained via simulation and real life evaluation 
are rarely used. We therefore limit the analysis in this 
subsection only to those algorithms that might have 
usability for our patient localization. 

In [7], Kamin Whitehouse et. al. mentions that RSSI 
localization in unknown or changing environments 
needs to adjust system parameters such as signal 
strength and calibration coefficients automatically. In 
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[12] Erin-Ee-Lin Lau et. al. proposes a centralized 
ranging technique using RSSI  smoothing and a 
position estimation technique. The CC2431 ranging 
technique [13]  from CC2431 localization solution 
(from Texas Instruments) estimates the range between 
a blind node and a reference node by measuring the 
average RSSI value between them which is used 
directly for the distance estimation.  

 

4. New Ranging Technique   
    In this section a new method named Ranging using 
Environment and Mobility Adaptive RSSI method 
(REMA) for patient localization during disaster 
management is proposed [1]. Based on the simulation 
results of REMA this technique is further improved to 
propose “Improved REMA” technique. The 
localization specifications (see section 2.1) imply that 
the blind node movement is arbitrary, blind node 
velocity changes over time, the environment conditions 
change over time, and an approximate node density of 
around 300 m² /reference node.  
 
4.1 Ranging using Environment and Mobility 
Adaptive RSSI method (REMA) 
    To combat both the static and mobile variations of 
RSSI during range measurements effectively, we 
propose REMA which divides the problem space into 
two and address them separately before combining 
them to yield the final distance estimation. 

• Static variations compensation:  by applying 
online path loss estimation 

• Mobile variations compensation: by applying 
smoothing algorithm on the static variations 
compensated distance 

The key takeaways from SOA algorithms that act as a 
base for REMA are as follows. We have used the 
smoothing algorithm from Erin-Ee-Lin Lau et. al. [12] 
as an initial step. From our experiments and the 
experimental results of Kamin Whitehouse et. al. [7] 
we have understood the need for calibration of path 
loss coefficients to reflect environmental changes. 
Along with these key takeaways, we have introduced 
the following main new features in the REMA: 

• A range estimation concept that combines 
calibration of path loss coefficient technique 
and distance (or range) smoothing. 

• Online path loss estimation: The path loss co-
efficient estimation is carried out throughout 
the life of the network, to closely track the 

environment changes around the reference 
node. The existing reference node setup is 
used to estimate the path loss coefficient for 
each reference node. 

• An offline RSSI database built through indoor 
and outdoor real world experimentations is 
used to analyze the algorithm’s performance.  

    Each blind node runs the REMA for estimating its 
distance to each of its one hop anchor nodes. This 
estimated distance is fed as input to a position 
estimation algorithm running on the same blind node. 
Figure 2 shows the steps carried out in REMA method  
which are explained as follows. 
 

 
Fig. 2. REMA Flow Diagram 

 
 
4.1.1 RSSI Calculation  
    Each blind node broadcasts a burst of packets to its 
one hop reference nodes and requests the reference 
nodes to compute the average RSSI value. When the 
reference node receives a packet it will automatically 
add an RSSI value to the received packet. The RSSI 
value is always averaged over the 8 first symbol 
periods (128 μs) [13]. The reference node computes 
the average RSSI value by simply averaging the RSSI 
of all the received burst of packets (from the blind 
node). In addition to the RSSI value, each reference 
node is also requested to send its latest online path loss 
coefficient value estimated at that point of time.                                        
 
4.1.2 Online Pathloss Estimation 

Using a single offline static path loss coefficient for 
all the reference nodes during range estimation does 
not reflect the changes in environment over time. So 
we propose an online position estimation technique 
where each reference node calculates the path loss 
coefficients online and periodically updates them. 
Now, each reference node repeats this pathloss 
estimation procedure in a time interval of say ‘Tn’ time 
units. A low value of ‘Tn’ results in more accurate 
distance estimation, for the cases of varying 
environment conditions. On the other hand, a low 
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value of ‘Tn’ slightly increases the communication 
overhead. So a trade-off between the reference node 
communication overhead (battery lifetime and 
available communication bandwidth) and distance 
estimation accuracy has to be achieved. When the path 
loss coefficients of all such reference nodes are 
combined over a given period of time, it represents the 
online path loss modelling of the entire environment 
(disaster site). Hence, our path loss estimation can be 
visualized as a discrete online path loss modelling. We 
consider it to be environment adaptive as it quickly 
updates the path loss model for the environment 
changes.  

We propose an online path loss estimation technique 
called ‘averaging path loss’ for REMA. A reference 
node i broadcasts a burst of packets to its one hop 
reference nodes. A one hop reference node j computes 
the average RSSI value ( ijRSSIavg. ), and the 

pathloss coefficient ijn  between the reference node i 

and its one hope neighbour j. The ijn   is calculated by 

substituting the actual distance ( ijd ), ijRSSIavg. , 

and the RSSI at one meter distance from a reference 
node ( A ) in equation 1. Similarly the pathloss 
coefficients between i and all its one hop reference 
nodes are calculated and averaged (periodically) to 
obtain the averaged path loss coefficient in  that 
reflects the environment around i.  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

ij

ij
ij d

ARSSIavg
n

10log10
.  

           (1) 

 
4.1.3 RSSI Correction 
    RSSI correction is a two step process which 
transforms the RSSI into a estimated distance   
between a reference node and a blind node. These 
steps are as follows: 
Step I: The blind node requests and collects the RSSI 
and averaged path loss co-efficient n from each of its 
one-hop reference nodes. 
Step II: The blind node computes its distance estimate 

estd  to each of its one-hop reference node using 
equation 2. 
   ( ) ( )( )nARSSI

estd ×−= 10/10                  (2) 
 
4.1.4 Smoothing Filter 
    After RSSI correction phase, the smoothing filter of 
Erin-Ee-Lin Lau et. al. is adapted for our scenario and 
applied on the estimated distance to get the final 
smoothened distance. These point to point distance 

estimation values are fed as input to the position 
estimation algorithm. This distance smoothing 
algorithm assumes: 

• The blind node does not move arbitrarily in 
the test bed 

• The blind node moves with a constant 
velocity  

The distance (range) smoothing algorithm is a four 
step process as explained below: 
Step 1: The estimated range for the thi update is given 
by equation 3. 
 

( ) ( ) ( ) ( )( )ipredipreviprediest RRaRR ˆˆˆ −+=                           (3) 
 
Where, ( )iestR̂ = the ith smoothed estimate range, 

        ( )ipredR̂ = the ith predicted range, 

( )iprevR = the ith measured range, 
The filter constant ‘a’ attenuates the large deviations or 
ignores the large deviations between the measured and 
predicted range values.  
Step 2: The estimated range rate for the thi update is 
given by equation 4 where, b is a filter constant. Range 
rate estimation works identical to the range estimation 
explained in Step 1.   

( ) ( ) ( ) ( )( )iprediprev
s

iprediest RR
T
bVV ˆˆˆ −+=

 
(4) 

 
 
Where, 

( )iestV̂ = the ith smoothed estimate range rate, 
         

( )ipredV̂  = the ith predicted range rate, 

   
sT      = time segment upon the thi  update. 

Step 3: The predicted range ( )1
ˆ

+ipredR  for the 
thi 1+ update is given by the equation 5.  

( ) ( ) ( ) siestiestipred TVRR ˆˆˆ
1 +=+

 (5) 

Step 4: The predicted range rate 
( )1

ˆ
+ipredV for the 

thi 1+ update is given by the equation 6. 
                    

( ) ( )iestipred VV ˆˆ
1 =+

                          (6) 
    One of the main limitations in this smoothing filter 
is the selection of filter gain constants ‘a’ and ‘b’. The 
filter gain constants are configured as a = 0.0625 and b 
= 0.0625 for both indoor and outdoor environments by 
performing offline data analysis using a sample 
dataset.  
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4.2 REMA Ranging Simulation 
    The REMA model that uses ‘averaging path loss’ 
technique for online path loss estimation and Erin’s 
smoothing filter for distance smoothing is simulated 
(via Matlab) in an outdoor and indoor test bed ranging 
database and the results are presented in this section. 
For simplicity the ‘average path loss’ technique 
estimates the path loss coefficient for each reference 
node only at the beginning of the data collection in the 
test beds i.e. a one time static path loss value is 
estimated for each reference node individually. The 
simulation results of REMA are compared with that of 
the SOA range estimation technique ‘CC2431-
Ranging’ (see section 3.2). The ‘CC2431-Ranging’ 
uses a single static offline path loss value for all 
reference nodes which is selected as 3.25 (optimal) 
empirically. 
 
4.2.1 Offline Ranging Database 
    This subsection explains the formation of a metadata 
based offline database by collecting ranging data at 
outdoor and indoor NLOS test beds. A ZigBee-
compliant TI CC2430 node (see [5]) is used either as 
static reference nodes elevated at 1.5m height or a 
single mobile RSSI collector node. Reference 
localization systems are used to capture the actual path 
traced by a single mobile RSSI-collector node during 
experimentation. A test person carries a reference 
localization system and a single collector node and 
walks around (approximately 1m/s) in the test bed. At 
any time during our experiment duration of 50 
minutes, the actual position of the collector node (from 
the reference localization system) and the RSSI from 
the static reference nodes are collected to form the 
ranging database. 
    Outdoor test bed: A 100x25m (approximately) 
outdoor parking space (see google image of outdoor 
test bed in figure 3) is setup with 8 reference nodes 
dispersed by 25m NLOS.  The test bed comprises of 
static or mobile obstacles like people, cars, bikes, tree, 
trucks, bicycles, metal containers and rods. A 
differential GPS device acts as a reference localization 
system and is benchmarked at the test bed to obtain an 
average accuracy error of less than 2m. 
    Indoor test bed: A 23m x 12m (approximately) 
indoor area covering seven rooms and a corridor in the 
second floor of an office building (see figure 4) is 
setup with 7 reference nodes (one node in each room).  
The test bed comprises of static or mobile obstacles 
like people, computers, coffee machines, printers, 
walls, etc. The CC2431 location engine solution from 
TI [4,13] acts as a reference localization system (due to 
its availability with us, though not an optimal reference 
system) and is benchmarked at the test bed to obtain an 

average error of 3.1m, maximum error value of 4.8m 
and minimum error value of 1.5m.   
 

       
Fig. 3. Outdoor test bed  Fig. 4. Indoor test bed   
 
4.2.2 Results using Outdoor Database 
    The average ranging error (in terms of % of error in 
distance estimations) obtained using ‘CC2431-ranging’ 
and REMA method, during the distance estimation 
over time between the mobile node and each of the 
reference nodes R1 to R4, are as follows: 

• R1, ‘CC2431-ranging’: 59.80% and REMA 
filter: 21.81% 

• R2, ‘CC2431-ranging’: 80.05% and REMA 
filter: 42.04% 

• R3, ‘CC2431-ranging’: 85.93% and REMA 
filter: 38.18% 

• R4, ‘CC2431-ranging’: 74.39% and REMA 
filter: 38.69% 

In all above cases (R1 to R4) REMA outperforms 
‘CC2431-ranging’ in the outdoor environment.  

Figure 5 plots the frequency distribution of distance 
estimation error in outdoor environment of all 
reference nodes combined together over the error 
intervals (in meters). Comparing the frequency 
distribution of error of CC2431 ranging and REMA 
filter, it is found that the REMA filter shows high 
probability of getting low error values and low 
probability of getting high error values. This indicates 
that the distance estimation of REMA filter is more 
accurate than that of the CC2431 ranging in the 
outdoor environment. 

148

International Journal on Advances in Life Sciences, vol 1 no 4, year 2009, http://www.iariajournals.org/life_sciences/



 

 
Fig. 5. Frequency distribution of error  

 
4.2.3 Results using Indoor Database 
    The average ranging error (in %) obtained using 
‘CC2431-ranging’ and REMA, during the distance 
estimation between the mobile node and each of the 
reference nodes R4 to R7, are as follows: 

• With respect to R5, ‘CC243-ranging’: 73.5% 
and REMA filter: 40.89% 

• R4, ‘CC243-ranging’: 59.05% and REMA 
filter: 40.89% 

• R6, ‘CC2431-ranging’: 65.05% and REMA 
filter: 36.84% 

• R7, ‘CC2431-ranging’: 82.30% and REMA 
filter: 66.84% 

In the above cases (R4 to R7) REMA filter 
outperforms ‘CC2431-ranging’ in the indoor 
environment as well. The distance estimation error for 
indoor setup is worse than that of the outdoor 
approximately by a factor of two.         
 
4.2.4 Summary 

The REMA ranging method (with ‘averaging path 
loss’ and Lau et. Al. smoothing algorithm) is simulated 
using an offline ranging database and the results are 
that REMA reduces the overall average range 
estimation error by about 31% when compared to the 
SOA ‘CC2431-ranging’ [1]. The results indicate that 
RSSI based ranging is a feasible solution for the 
patient localization at least in outdoor environments 
even though considerable estimation errors at certain 
areas remain, while in indoor the performance is 
severely affected. The REMA method is a suitable 
base for patient localization even though further 
improvements have to be done towards achieving the 
targeted final accuracy.   

4.3 Improved REMA Method 
In this section the REMA method that uses 

‘averaging path loss’ and Lau et. Al. smoothing 
algorithm is discussed and a concept to improve the 
online path loss estimation and smoothing filter is 
proposed leading to “Improved REMA”. 

4.3.1 Online Path loss Technique Improvement 
The ‘averaging path loss’ technique proposed for 

online estimation in REMA method (see section 3.1.2) 
is only a simple approach. We have an exponential 
correlation between the path loss coefficient n and the 
distance d (see equation 1). So small changes in the 
path loss coefficient accounts for large changes in the 
distance. We therefore consider the accuracy of the 
path loss coefficient to be a critical issue for distance 
estimation and only a simple approximation by 
averaging is not sufficient for our purpose. So in this 
section we introduce a new online path loss estimation 
strategy to represent the real path loss value between 
blind node and reference node, which we call dynamic 
path loss estimation strategy (DYPES). The idea is to 
estimate an individual path loss for each blind node, 
depending on the area it is in. This strategy can be 
divided into 3 phases as follows: 

• Each reference node collects signal strength 
and location from all other reference nodes 
with known location 

• A blind node broadcasts the location of the 
reference node from which it receives the 
highest RSSI value (see Fig. 6 (a)), assuming 
that the distance is minimal. 

• Each reference node sends an individual path 
loss to the blind node which is the path loss 
between itself and the reference node closest 
to the blind node (see Fig. 6 (b)). 

Assuming the blind node is at the same position as a 
reference node the path loss calculation is optimal, the 
farer away from any reference node the worse the path 
loss estimation. We consider the accuracy of the path 
loss coefficient to be a function of the distance 
between blind node and nearest reference node. Figure 
6 illustrates the new path loss estimation strategy.   
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a) Phase two  

 

 
       b)  Phase three 

Fig. 6. DYPES method 
 

 
4.3.2 Smoothing Filter Improvement 

Erin Lau et. Al. smoothing algorithm is unsuitable 
with arbitrary movement, changes in directions and 
velocity of the blind node. Another critical issue is the 
parameter (filter gain constant) tuning as it is difficult 
to configure a generalized value that is versatile. 
Therefore in this section we check the three candidate 
filters to meet our requirements: handle arbitrary 
movement, handle different velocities, handle outliers 
and fluctuations of RSSI, and generalized parameters 
without further adaption. These three candidate filters 
are as follows: 

• best-of-k filter, which uses the best obtained 
RSSI measurement from the previous k 
measurements as shown in figure 7. 

• Erin’s smoothing algorithm as described in 
section 4.1.4 

• combination of best-of-k and Erin’s 
smoothing filter 

 

 
Fig. 7. Best-of-k filter scheme 

 

We consider the best-of-k filter to be theoretically 
best-suited for our requirements as it attenuates 
fluctuations by ignoring up to k−1 outliers. We assume 
that a radio signal cannot be strengthened passively. 
Let α be the upper bound for the received signal 
strength between 2 nodes, separated by a distance d 
and n be the path loss coefficient. Assuming a good 
estimation of n (an optimal estimation of n would 
naturally lead to the exact distance estimation if using 
α), the critical issue is to receive k RSSI measurements 
where at least one measurement is close to α. The 
value of k is chosen such that it is large enough and 
doesn’t impose too much delay to the system.  

In the evaluation section, the three filters mentioned 
above will be evaluated using a real world RSSI 
database to select the best-suited filter. Even though 
distance smoothing is used in REMA, the Improved 
REMA (best-of-k and DYPES) uses RSSI smoothing. 
The method of Improved REMA is as shown in figure 
8. 

 
Fig. 8. Improved REMA method 

 
5. Position Estimation Technique 
    In this section a new particle filter based position 
estimation algorithm for patient localization called 
Improved Range-Based Monte Carlo Patient 
Localization (IMPL) that was already proposed by us 
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in [22] is briefed. The distance estimates obtained by 
Improved REMA that works on a blind node is given 
as input to the IMPL which provides the patient 
position estimate. IMPL maintains a weighted sample 
set in order to estimate the patient node’s position. 
IMPL undergoes three main steps: Prediction, 
weighting and resampling which are explained below.   

Prediction: The prediction step depends on whether 
there’s already an established sample set (after 
initialization) or not (during initialization).  

 

 
Fig.9. Forming the anchor box 

 

In prediction during initialization, first the area to be 
sampled from is constrained to an anchor box. The 
region covered by the transmission range r  of each 
one-hop anchor is approximated to a box as shown in 
figure 9. The overlapping area of all the boxes (shaded 
area in figure 9) forms the anchor box. Then a sample 
set of 40 uniformly distributed samples are drawn from 
the anchor box. In prediction after initialization, we 
take each sample from the previous time step and form 
a circle of radius additionv +max  centered at that 
sample’s position. From every circle one new sample 
is drawn. 

Weighting: A weight is calculated (based on the range 
measurements) for each sample in the sample set, to 
know if they are good or bad representations of the 
actual location of a blind node. In order to weigh a 
sample i  of a blind node, all the range measurements 
of this blind node to its one-hop anchors are selected. 
Consider a range measurement jrm  between a blind 

node with a sample i and its one-hop neighbor j , then 

a partial weight j
iwp  is computed as shown in 

equation 7. Here the range measurement jrm  is 
projected onto a Gaussian distribution (see Fig. 10) of 
mean 

vd μμ +=  (where d  is the distance between the 
sample and the one-hop neighbor) and standard 
deviation

vσ . The 
vσ  and 

vμ  of a Gaussian random 
variable v  are the systematic and random error of the 
range measurement error model (of the environment). 

Their values are deduced from the environment i.e. all 
anchor nodes within the transmission range of each 
other compute the error between their actual distance 
and their estimated distance. All these values are 
collected in a single node to calculate the 

vσ  and
vμ .  

 
Fig. 10. Calculating the partial weight 

 
The total weight iw  for sample i  is the product of 

all partial weights. 

( ) ( ) 22 /5.02/1 vjrm
v

j
i ewp σμπσ −⋅−⋅=             (7) 

Resampling: After normalizing the weights of the 
sample set to one, samples are redrawn from the 
normalized sample set with a probability proportional 
to their weights. The size of the new sample set 
remains the same. 

The position estimate ( )yx,  of the blind node is 
calculated as the weighted mean of the sample set. The 
closeness value for blind node p  with N  samples is 
computed as in equation (7). 

( ) ( )∑ =
−+−=

N

i iiip Nyyxxwcloseness
1

22 /                       (8)   

where ( )ii yx ,  denotes the position of sample i , iw  
denotes the weight of the sample i  and ( )yx,  is the 
current location estimate of node p . The closeness of 
an anchor node is set to 0. 

IMPL has to be initialized with a set of parameters:  
• Systematic and random error (

vσ  and
vμ ) of 

the range measurement error model. 
• the transmission range r of the nodes 
• the maximum velocity of the mobile node and  

additional factor which increases the circle to 
draw the samples ( additionv +max ) 

• the upper and lower bounds for the coordinate 
system 

These parameters have to be found heuristically or 
can be set in an initialization phase automatically. 
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6. Real World Evaluation  
In this section our new ranging and position 

estimation techniques for patient localization are 
implemented and the position estimation performance 
is evaluated in a realistic scenario. We compare the 
obtained results with a state-of-art localization system 
from Texas Instrument in section 7. 

6.1 Test Bed 
For evaluating our system we implement our 

ranging and position estimation algorithm on a 
ZigBee-ready hardware node of the CC2520ZDK 
development kit from TI. This ZigBee-ready node 
comprises of a MSP430F2618 16-bit ultra-low power 
micro controller connected to a 2.4 GHz IEEE 
802.15.4 RF transceiver, SMA antenna. Each device is 
either used as reference node or blind node in our 
experiment. Each reference node is placed in a 
transparent plastic box mounted on a tripod at a height 
of 1.5m and are distributed on the experiment site. The 
SX2 Hemisphere DGPS is used as a reference. A 
person carries a DGPS mounted on top of a rucksack 
and also a single blind node mounted next to the DGPS 
antenna in a transparent plastic box and walks 
randomly in the experiment site. At any time during 
the experiment, the actual position of DGPS and the 
estimated position of the blind node are recorded. 
Accuracy error is plotted as Euclidean distance 
between the recorded DGPS position and the estimated 
position of our system. 

We define two experimental test beds. A line-of-
sight area (LOS) and a non-line-of sight area (NLOS). 
The LOS area is a football field of around 80m x 45m 
with a reference node density of around 450m²/node 
and is an obstacle free area with line of sight between 
all nodes as shown in the google image in Fig. 11. The 
NLOS area is around 60m x 30m with a reference node 
density of around 225m²/node. This area includes a 
parking lot and a walking pathway with trees. It has 
obstacles such as metal containers, cars, fences and 
trees as shown in the google image in Fig. 12. The 
black dots within the experiment area represent the 
positions of the localized reference nodes. All our 
experiments explained in this chapter are done in these 
test areas unless otherwise stated. In order to compare 
the data of LOS and NLOS areas, experiments are 
done with exactly the same setup and the data is 
recorded in the same session.   

    Since DGPS is used as reference system its accuracy 
is benchmarked at our experiment site and an average 
accuracy error of less than two metres is obtained. We 
therefore conclude that DGPS is a suitable reference 
system in this area. The reference node localization 

and placement are topics of concern. In our experiment 
the reference nodes are localized using DGPS. The 
reference nodes are localized by first setting DGPS to 
zero on a certain reference node (origin) and 
programming the remaining reference nodes locations 
with respect to the origin. For each chosen reference 
node it is checked that the DGPS position does not 
fluctuate more than 2m by observing the DGPS 
position for 60 seconds at a specific position. The 
reference nodes are placed near the edges and within 
our experiment area, without any special placement 
strategy. 
 

  
Fig. 11. LOS test bed with reference node 

positions  
 

 
Fig. 12.  NLOS test bed with reference node 

positions 
 
6.2 Evaluation Results 

In this section we present the results of different 
intermediate evaluation steps, leading to the testing of 
our final localization system in a NLOS test area. In 
the first subsection we test different RSSI smoothing 
filters in simulation to determine their performance. In 
the second subsection we test our ranging technique by 
combining a smoothing filter and DYPES. In the third 
subsection we test our position estimation 
performance.     
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6.2.1 RSSI Smoothing Filter  
An RSSI database is given as input to a simulation 

model to test filters such as best-of-k, REMA using 
Erin’s smoothing algorithm, ‘REMA using Erin’s 
smoothing algorithm and best-of-k combined’ (see 
section 4.3.2). The ranging error is evaluated as 
Euclidean distance of the DGPS position to a reference 
node and the estimated distance. 

Offline Outdoor RSSI Database 
An offline database is collected by recording RSSI 

values each second with a blind node which moves 
randomly in the LOS test area as described in section 
6.1 and figure 11).  The data for each time step 
consists of the actual position of the blind node 
recorded by DGPS and accordingly the recorded RSSI 
value. In total the database consists of 10,251 such 
tuples divided into 8 subsets, each containing the 
collected data received from one reference node.  

Simulation of RSSI Smoothing Filters 
For determining the free filter parameter values (to 

be defined later in this section) we use a cross-
validation with up to 5 randomly chosen subsets for 
training, and 3 randomly chosen subsets, excluding the 
training data,  for evaluating the quality of an obtained 
set of filter parameters. An exhaustive search over 
possible values is performed.  

This search also leads to an evaluation of the 
influence of these parameters as well as their 
robustness in a LOS environment. The values of the 
following parameters have to be estimated: 

• A : the parameter which describes the signal 
strength at 1m distance (in dBm) 

• k : the number of past RSSI values used for 
the best-of-k filter  

• a : filter gain constants (distance) for Lau et. 
Al. smoothing algorithm   

• b : filter gain constants (speed) for for Lau et. 
Al. smoothing algorithm  

• path loss : the path loss coefficient suited best 
for the data obtained data 

Figure 13 shows the mean ranging error of the three 
filters, obtained by varying the number of training sets 
used to estimate the parameters. With an increasing 
number of training sets the average range error 
decreases for each of the tested filters, as the parameter 
estimation is more general with each added set of data. 
However, at the right end of the plot, we see an 
increasing error for all filters except the best-of-k 

filter. We consider this effect as a result of over fitting; 
the parameters have been adapted too much to the 
training set, such that its power to generalize to unseen 
data decreases. With an increasing number of 
estimated parameters, over fitting becomes a critical 
issue. The filter with the highest number of parameters 
(‘REMA using Erin’s smoothing algorithm and best-
of-k combined’: 5 parameters) performs significantly 
worse after reaching a certain amount of training data. 
REMA using Erin’s smoothing algorithm (4 
parameters) performs better, but as well we can see the 
same tendency. The best-of-k (3 parameters) is almost 
unaffected by the amount of training data.   

 
Fig. 13. Mean ranging error for different filters 
 
Conclusion 

Filters with a small number of free parameters need 
less time to converge and are more robust in terms of 
the amount of training data for LOS environments. 
Therefore we select the best-of-k filter for RSSI 
smoothing for Improved REMA Ranging. 

6.2.2 Ranging using Improved REMA 
We implement an Improved REMA that comprises a 

best-of-k filter for RSSI smoothing in the blind node 
and DYPES for online path loss estimation (see section 
4.3.1) and evaluate its performance in our LOS and 
NLOS test area as described in section 6.1. The 
parameter 'A' should be determined by measurement 
but due to the fluctuating signal strength it cannot be 
defined clearly. We therefore use A = 48dBm as this 
showed best performance and k = 3 for the best-of-k 
filter for all evaluations further on, as this is a good 
trade-off between latency of the system and for 
discarding outliers. The range and path loss is updated 
every second. However, we are aware of the fact that 
this setting comes along with a large amount of traffic 
in the network but consider it as a good benchmark 
setting to achieve maximum accuracy. 

In the LOS test area the mean ranging error obtained 
is 12.21m, in the NLOS area the mean ranging error is 
10.93m. We call the Improved REMA’s performance 
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out-of-the-box as there is no parameter tuning 
necessary before deploying the system. Table 1 shows 
the results obtained in the ranging experiments. 
Against our expectations the ranging error in the 
NLOS area is smaller than in the LOS area. We believe 
that this is due to the deployment area for both 
experiments. The node coverage in the NLOS area is 
twice as high (225m²/reference node) compared to  the 
LOS area (500m²/reference node). 

Test area Area RN Mean 
error 

LOS 80m×45m 8 12.21m 

NLOS 60m×30m 8 10.93m 

Table 1. Ranging performance summary 
 
6.2.3 Localization using Improved REMA and 
IMPL  

We implement an Improved REMA consisting of a 
best-of-k filter for RSSI smoothing and DYPES for 
online path loss estimation. For position estimation we 
use IMPL (see section 5). The performance of the 
system is evaluated in our LOS and NLOS test area as 
described in section 6.1. The experiments as described 
in section 6.2.2 and 6.2.3 are done in the same session 
for each test area (LOS and NLOS) so that we can 
compare the ranging and position estimation error for 
similar environmental conditions. Figure 14 shows a 
complete scheme of the localization process. 

 

 
Fig.14. Complete scheme for localization with 

two reference inputs 
 
    We use the following parameters for all experiments 
if not explicitly stated different. The Improved REMA 
parameters are signal strength at 1m distance: A = 
48dBm, number of past RSSI measurements for the 
best-of-k filter: k = 3, sample set size for localization is 

set to 40 particles. The IMPL parameters (obtained 
heuristically) are measurement error mean: 1m, 
measurement error standard deviation: 20m, the 
maximum nodes speed is given as 2m/s plus an 
additional uncertainty factor of 1m. The localization 
and path loss updates are done each second.  We refer 
to this system as a first version of our patient 
localization system (PLoc- V1). 
 
LOS Test Area 

We obtain a mean position estimation (localization) 
error of 13.93m.  The average number of visible 
reference nodes during localization is around 6. It is 
observed that mean position estimation error is higher 
than the mean ranging error (12.21m, see table1). We 
believe this is due to the sensitivity of IMPL if fed 
with wrong ranging information. One wrong distance 
severely affects the position estimation of the system, 
whereas the mean ranging error is less affected by one 
wrong distance. 

NLOS Test Area 
In this experiment we test our localization system 

(PLoc-V1) in a realistic test area that reflects the 
attributes of a disaster site. The accuracy error plot is 
shown in figure 15. The blue dots show the number of 
visible nodes for each time step. For clarity reasons the 
number of visible nodes is multiplied by 10 to be 
shown in the same graph as the position error.  

 

 
Fig. 15. NLOS test area position estimation 

error 
 

The mean position error is 11.51m and the average 
number of visible reference nodes per time step is 5.  
The corresponding mean ranging error is 10.93 as in 
table 1. We can see that the accuracy is not severely 
affected by receiving less reference nodes inputs over 
certain time instances. The surface plot in figure 16 
shows the mobility path of the blind node in NLOS test 
area and the corresponding position estimation error 
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(difference between actual position obtained from 
DGPS and the estimated position from PLoc) in 
different colours at each location of this mobility path. 
The surface plot plots locations with error less than 
approximately 20m in green colour. 

 

 
Fig. 16. NLOS test area position estimation 

error- surface plot 
 
PLoc-V1 Localization Results Summary 
Table 2 shows the localization results of Ploc-V1. We 
state that an average node visibility of 5 reference 
nodes per position estimation is sufficient for not 
affecting the position estimation accuracy 
significantly. 
 

Test 
area Area RN Mean 

error Comment 

LOS 80m×45m 8 13.93m out-of-the-box 

NLOS 60m×30m 8 11.51m out-of-the-box 

Table 2. PLoc-v1 Localization performance 
  
 

7 Comparison of PLoc-V1 and CC2431 
Location System 

In this section the performance of PLoc-V1 is 
compared with the state-of-the-art localization system 
CC2431 from TI. The google image with reference 
node positions in figure 17 shows the experiment setup 
in a non line of sight environment with an area of 61 x 
55m with 8 reference nodes deployed over the whole 
area. The area includes a parking lot, a walking 
pathway and has obstacles such as metal container, 
cars, fences and trees. We lowered the height of the 
reference nodes to 1m and placed a couple of nodes 
behind cars or other obstacles to simulate changing 
signal conditions. Compared to the test area used in the 
previous experiments (see figure 12) the non line of 
sight effect in this experiment area is larger and also 
includes additional lowering of the reference node 
height, to reflect adverse RF conditions. Two ZigBee 

networks (one for PLoc-V1 and other for CC2431 
system) operating in different channels are setup and a 
test person carrying the DGPS (actual position), the 
PLoc-V1 blind node and CC2431 blind node walks 
randomly in the test area with different speed and 
records the data. A static path loss coefficient has to be 
programmed upfront for the CC2431 system. It took 
around half an hour to select an optimized path loss 
coefficient (3.375) by testing the accuracy of this 
solution at different locations of the test area.   

 

 
Fig. 17. Test bed for comparison of PLoc-v1 

and CC2431 
 

From the comparison of CC2431 and PLoc 
localization error in figure 18, it can be clearly seen 
that PLoc performs better in terms of average position 
error and outliers.  

 
Fig. 18. PLoc vs. CC2431 localization error 

 
It is observed in figure 18 that CC2431 error has 

frequent peaks with harsh error values which corrupt 
the range estimation. On the contrary PLoc error peaks 
are of lower values. This shows that CC2431 does not 
adapt to environmental changes leading to high 
distance variances. The localization error results are 
summarized as shown in table 3.  
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System Path loss Area(m) Mean 
error 

CC2431 3.375 61×55 31.93m 

PLoc Dynamic 61×55 14.72m 

Table 3. PLoc-v1 vs. CC2431 Localization 
performance 

 
    The mean localization error for PLoc-v1 is higher in 
these experiments compared to the NLOS experiment 
mentioned in table2 due to the larger test area and 
lowering the reference node height which introduces 
additional signal fluctuations. The mean localization 
error of PLoc-v1 is 53% better than that of CC2431.  
 
   
8. Conclusion and Future Works 

In this paper a new algorithm called Ranging using 
Environment and Mobility Adaptive RSSI (REMA) is 
proposed. From the ranging experimentations in indoor 
and outdoor environments, we found that RSSI based 
ranging is a feasible solution for the localization in our 
scenario. With our proposed REMA, we are able to 
reduce the overall average range estimation error by 
about 31% when compared to that of the state of the 
art ‘CC2431-Ranging’. This REMA acts as a suitable 
base and is further improved to propose the Improved 
REMA method for range estimation during patient 
localization at the disaster site.  

A new RSSI based localization system (first release 
of PLoc-V1) is evaluated using a demonstrator. The 
mean localization error of PLoc-v1 that uses Improved 
REMA (best-of-k and DYPES) for ranging and IMPL 
for position estimation in a realistic test bed that 
reflects the attributes of a disaster site is 11-14m, 
which is closer to the accuracy specification for patient 
localization. Comparing the performance of PLoc-v1 
with state of the art RSSI based localization system 
CC2431 in a realistic environment shows that the 
accuracy of PLoc is 53% better than the CC2431 
system. Moreover, PLoc-v1 is an out-of-the-box 
system as it can dynamically calculate the path loss 
coefficient and adapt to environmental changes while 
CC2431 uses a static path loss and requires high 
installation time.  

Further improvement of PLoc first release (ranging 
and position estimation techniques in terms of 
accuracy, scalability) for outdoor environment and 
testing of this system at indoor environment will be 
part of future work. 
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