
Rethinking Traditional Web Interaction:
Theory and Implementation

Vincent Balat
Univ Paris Diderot – Sorbonne Paris Cité – PPS, UMR 7126 CNRS, Inria – Paris, France

Email: vincent.balat @ univ-paris-diderot.fr

Abstract—In recent years, Web sites evolved into ever more
complex distributed applications. But current Web program-
ming tools are not fully adapted to this evolution, and force
programmers to worry about too many inessential details. We
want to define an alternative programming style better fitted to
that kind of applications. To do that, we propose an analysis of
Web interaction in order to break it down into very elementary
notions, based on semantic criteria instead of technological ones.
This allows defining a common vernacular language to describe
the concepts of current Web programming tools, but also some
other new concepts. We propose to use these new concepts to
create new frameworks for programming Web applications. This
results in a significant gain of expressiveness. The understanding
and separation of these notions also makes it possible to get strong
static guarantees, that can help a lot during the development
of complex applications, for example by making impossible the
creation of broken links. We show how most of the ideas we pro-
pose have been implemented in the Ocsigen Web programming
framework. Ocsigen makes possible to write a client-server Web
applications as a single program and the interaction model we
propose is fully compatible with this kind of applications.

Keywords–Typing; Web interaction; Functional Web program-
ming; Continuations

I. INTRODUCTION

Nowadays, Web sites behave more and more like real
applications, with a high-level of interactivity on both the
server and client sides. For this reason, they deserve well-
designed programming tools, with features like high-level
code structuring and static typing. These tools must take into
account the specificities of that kind of application. One of
these specificities is the division of the interface into pages,
connected to each other by links. These pages are usually
associated to URLs, which one can bookmark. It is also
possible to turn back to one page using the back button. This
makes the dynamics of the interface completely different from
a regular application. Another specificity is that this kind of
applications is highly dependent on standards as they will be
executed on various platforms.

Web programming covers a wide range of fields, from
database to networking. The ambition of this paper is not to
address them all, nor to deal with the full generality of service
oriented computing. We concentrate on what we will call Web
interaction; that is, the interaction between a user and a Web

Work partially supported by the French national research agency (ANR), PWD project,
grant ANR-09-EMER-009-01, and performed at the IRILL center for Free Software
Research and Innovation in Paris, France

application, through a browser interface [1]. Web applications
communicate with one or several servers, and sometimes need
the ability to make part of the computation in the browser.
A few similar Web interaction systems have already been
described before (for example Links [2], or Hop [3]). The goal
of this paper is to improve the way we program Web interaction
using one feature that has been very rarely addressed before,
namely: service identification. That is: how the service to
handle a request is chosen. We will show that a good service
identification mechanism can help programmers a lot, and
that the concepts we present here allow to take into account
very concrete needs of Web developpers that are usually not
addressed by more theoretical works.

Through an analysis of existing programming frameworks
and Web sites, we will give a semantic description of the
diverse behaviours we want to have. This language will lead
to the definition of a vernacular language for describing Web
interaction. This will allow to understand the concepts and
to propose new ones to increase the expressiveness of Web
frameworks.

Our second goal is the safety of programming. By using well
defined concepts and static checking, it is possible to eliminate
a lot of programmer’s errors and make the application much
more reliable thus simplifying by a lot the maintenance work
and evolutions of the site.

The concepts we present here have been implemented in
the Ocsigen Web programming framework [4], [5], [6], [7]
(Eliom project). It allows to program fully in OCaml both the
server and client parts of a Web application, with a consistent
abstraction of concepts. A compiler to Javascript is used to run
the client parts in the browser [8], [9].

A. A common vernacular language for Web interaction
Web development is highly constrained by technologies.

First, it relies on the HTTP protocol, which is non-connected
and (mainly) stateless (on the applicative layer – even if
many solutions have been proposed to circumvent this). Then,
Web applications must be executable in various browsers that
implement more or less accurately common standards and
recommendations.

One of our goals is to remove these constraints and focus
on the programming of Web interaction. Obviously, this is
also a question of taste. But rather than proposing yet another
programming model from scratch, we start by analyzing com-
mon Web programming practices, in order to understand the
notions they use. Then we decompose them in very elementary

63

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

notions that can be used to describe the features of Web
programming tools, from PHP to JSP or Miscrosoft.NET
Web Forms, etc. Some frameworks impose some artificial
restrictions, like the shape of URLs. Ideally, we would like
to give a generic language, flexible enough to describe all
possible behaviours, without imposing any artificial restriction
due to one technology.

We will then see how to implement this with current
technology, when possible, and how it would be interesting
to make technologies evolve.

We place ourselves at a semantic level rather than at a tech-
nical one. Moving away from technical details will allow to
increase the expressiveness of Web programming frameworks.
In the domain of programming languages, high-level concepts
have been introduced over the years, for example genericity,
inductive types, late binding, closures. They make easier the
implementation of some complex behaviours. We want to do
the same for the Web. For example the notion of “sending
a cookie” benefits from being abstracted to a more semantic
notion like “opening a session” (which is already often the
case today). Also it is not really important for the programmer
to know how URLs are formed. What matters is the service we
want to speak about (and optionally the parameters we want
to send it).

This abstraction from technology allows two things:
• First, it increases the expressiveness of the language by

introducing specific concepts closer to the behaviours
we want to describe (and irrespective of the way they
are implemented). From a practical point of view, this
allows to implement complex behaviours in very few
lines of code.

• Having well-designed dedicated concepts also allows
to avoid wrong behaviours. We forbid unsafe technical
possibilities either by making them inexpressible, or by
static checking.

B. Improving the reliability of Web applications

As Web sites are currently evolving very quickly into com-
plex distributed applications, the use of strongly and statically
typed programming languages for the Web becomes more and
more helpful. Using scripting languages was acceptable when
there was very little dynamic behaviour in Web pages, but
current Web sites written with such languages are proving to
be very difficult to evolve and maintain. Some frameworks
are counterbalancing their weaknesses by doing a lot of
automatic code generation (for example [10]). In the current
state of knowledge, we are able to do much better, and Web
programming must benefit from this.

Static validation of pages: One example where static typing
revolutionizes Web programming concerns the validation of
pages. Respecting W3C recommendations is the best way to
ensure portability and accessibility of Web sites. The novelty
is that there now exist typing systems sophisticated enough to
statically ensure a page’s validity [11], [12], [13]. Whereas
the usual practice is to check the validity of pages once
generated, such typing systems make it possible to be sure

that the program that builds the XML data will always generate
something valid, even in the most particular cases.

For example, even if a programmer has checked all the pages
of his site in a validator, is he sure that the HTML table he
creates dynamically will never be empty (which is forbidden)?
What if for some reason there is no data? He must be very
conscientious to think about all these cases. It is most likely
that the evolutions of the program will break the validity of
pages. In most cases, problems are discovered much later, by
users.

In lots of cases, such errors will even make the generated
output unusable, for example for XML data intended to be
processed automatically. The best means to be sure that this
situation will never happen is to use a typing system that will
prevent one from putting the service on-line if there is the
slightest risk for something wrong to be generated.

For people not accustomed to such strong typing systems,
this may seem to impose too much of a constraint to pro-
grammers. Indeed, it increases a bit the initial implementation
time (by forcing to take into account all cases). But it also
saves such a huge amount of debugging time, that the use
of such typing systems really deserves to be generalized. For
now, these typing systems for XML are used in very few cases
of Web services, and we are not aware of any major Web
programming framework. Our experience shows that it is not
difficult to use once one get used to the main rules of HTML
grammar, if error messages are clear enough.

Validity of Web interaction: Static checking and abstraction
of concepts can also benefit in many other ways to Web
programming, and especially to Web interaction. Here are a
few examples:
• In a link, do the types (and names) of parameters match

the types expected by the service it points to?
• Does a form match the service it points to?
• Do we have broken links?
It is not so difficult to have these guarantees, even if almost

no Web programming framework are doing so now. All what
is needed is a programming language expressive enough (in
the sense we explained above).

Improving the ergonomics of Web sites: Lots of Web devel-
opers are doing implementation errors resulting in reduced ease
of use (wrong use of sessions or GET and POST parameters,
etc.). Take as example a famous real estate Web site that allows
to browse through the results of a search; but if someone sets
a bookmark on one of the result pages, he never goes back
to the same page, because the URL does not refer to the
advertisement itself, but to the rank in the search. We will see
that a good understanding of concepts can avoid such common
errors.

C. Overview of the paper
Sections II and III are devoted to the definition of our

vernacular language for describing the services provided by
a Web application. Section II explains the advantage of using
an abstract notion of service instead of old-fashioned page-
based programming and string URLs. Section III presents a
new service identification and selection method. It shows how

64

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

powerful this notion of service can be made, by separating it
into several kinds. This results in a very new programming
style for Web interaction.

Section IV explains how to ensure correct use of these
services using static typing. Then, Section V shows how
these notions of services interact with sessions. Finally, some
hints on the implementations of these concepts are given in
Section VI.

II. ABSTRACTING SERVICES

As explained above, our goal is to formalize Web interac-
tion, that is, the behaviour of a Web application in reaction to
the actions of the user. What happens when somebody clicks
on a link or submits a form? A click often means that the user
is requesting a new document: for example a new page that
will replace the current one (or one part of it). But it can also
cause some actions to take place on the server or the client.
Let us enumerate the different kinds of reactions. A click (or a
key strike) from the user may have the following main effects:

1) Modifying the application interface. That is, changing
the page displayed by the browser (or one part of the
page), or opening a new window or tab with a new
page,

2) Changing the URL displayed by the browser (protocol,
server name, path, parameters, etc.),

3) Doing some other action, like the modification of a state
(for example changing some database values),

4) Sending hidden data (like form data, or files),
5) Getting some data to be saved on the user’s hard disk.
Two important things to notice are that each of these items

is optional, and may either involve a distant server, or be
processed locally (by the browser).

This decomposition is important, as a formalization of Web
interaction should not omit any of these items in order not to
restrict the freedom of the programmer. All these items are
described semantically, not technically.

A. The role of URLs
The item “Changing the URL” above is a really significant

one and is one key to understand the behaviour of Web
applications. This section is devoted to the understanding of
that notion. URLs are entry points to the Web site. Changing
the URL semantically means: giving the possibility to the user
to turn back to this point of interaction later, for example
through bookmarks.

Note that, unlike many Web sites, a good practice is to keep
the URL as readable as possible, because it is an information
visible to users that may be typed manually.

1) Forgetting technical details about URLs: The syntax of
URLs is described by the Internet standard STD 66 and RFC
3986 and is summarized (a bit simplified) here:
scheme://user:pwd@host:port/path?query#fragment

The path traditionally describes a file in the tree structure
of a file system. But this view is too restrictive. Actually, the
path describes the hierarchical part of the URL. This is a way
to divide a Web site into several sections and subsections.

The query string syntax is commonly organized as a se-
quence of ‘key=value’ pairs separated by a semicolon or an am-
persand, e.g., key1=value1&key2=value2&key3=value3.
This is the part of the URL that is not hierarchical.

To a first approximation, the path corresponds to the service
to be executed, and the query to parameters for this service.
But Web frameworks are sometimes taking a part of the path
as parameters. On the contrary, part of the query, or even of
the host, may be used to determine the service to call. This
will be discussed later in more detail.

The fragment part of the URL only concerns the browser
and is not sent to the server.

The item “Changing the URL” is then to be decomposed
semantically into these sub-tasks:

1) Changing the protocol to use,
2) Changing the server (and port) to which the request

must be made,
3) Choosing a hierarchical position (path) in the Web site

structure, and specifying non hierarchical information
(query) about the page,

4) And optionally: telling who the user is (credentials) and
the fragment of the page he wants to display.

2) URL change and service calls: There are two methods
to send form data using a browser: either in the URL (GET
method) or in the body of the HTTP request (POST method).
Even if they are technical variants of the same concept (a
function call), their semantics are very different with respect
to Web interaction. Having parameters in the URL allows to
turn back to the same document later, whereas putting them
in the request allows to send one-shot data to a service (for
example because they will cause an action to occur).

We propose to focus on this semantical difference rather than
on the way it is implemented. Instead of speaking about POST
or GET parameters, we prefer the orthogonal notions of service
calls and URL change. It is particularly important to forget
the technical details if we want to keep the symmetry between
server and client side services. Calling a local (javascript for
example) function is similar to sending POST data to a server,
if it does not explicitly change the URL displayed by the
browser.

Semantically speaking, in modern Web programming tools,
changing the URL has no relation with calling a service. It is
possible to call a service without changing the URL (because
it is a local service, or because the call uses POST parameters).
On the contrary, changing the URL may be done without
calling a service. There is only one reason to change the URL:
give the user a new entry point to the Web site, to which he
can come back when he wants to ask the same service once
again, for example by saving it in a bookmark.

To keep the full generality that is necessary for program-
ming, it is important to understand that the notions of URL
change and service call are completely disconnected. It is
possible to change the URL by a call to a javascript DOM
function, without calling a service. This changes the entry
point of the Web site (just the page one will turn back to
if a bookmark is registered). On the contrary, it is possible to
all a service without changing the URL, either a distant service

65

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

through POST parameters, or a local service through a local
function call.

B. Services as first class values

The main principle on which is based our work is:
1) consider services as first class values,

exactly as functional languages consider functions as first class
values. That is: we want to manipulate services as abstract data
(that can for example be given as parameter to a function). This
has several advantages, among which:

• The programmer does not need to build the syntax of
URLs himself. He can rely on some function that will
create the syntax of the URL (if it is a distant call) or the
function call if it is a client side call. Thus, it is really
easy to switch between a local service and a distant one.

• All the information about the service is taken automat-
ically from the data structure representing the service,
including the path to which the service is attached and
parameter names. This has a very great consequence:
if the programmer changes the URL of a service, even
the name of one of its parameters, he does not need to
change any link or form towards this service, as they are
all built automatically. This means that links will never
be broken, and parameter names will always be correct
(at least for internal services, i.e., services belonging to
the Web site, and modulo to some restrictions in current
implementation, as we will see later).

Some recent frameworks already have an abstraction of the
notion of service. We will show how to take the full benefit
of it. Our notion of service must be powerful enough to take
into account all the possibilities described above, but without
relying on their technical implementation.

A service is some function taking parameters and returning
some data, with possibly some side effects (remote function
calls). The server is a provider of services. Client side function
calls can also be seen as calls to certain services. The place
where services take place is not so significant. This allows
to consider a Web site with two versions of some services,
one on server side, the other on client side, depending on
the availability of some resources (network connection, or
browser plug-ins for example).

The model we strongly advocate for building Web ap-
plications is a compiled language with static type checking
and dynamic generation of URLs from abstract services. The
language must provide some way to define these services,
either using a specific keyword or just through a function call.

Once we have this notion, we can completely forget the old
“page-based” view of the Web where one URL was supposed
to be associated to one file on the hard disk. Thus, it is possible
to gain a lot of freedom in the organization and modularity of
the code, and also, as we will see later, in the way services
are associated to URLs. One of the goals of next section is
precisely to discuss service identification and selection, that
is, how services are chosen by the server from the hierarchical
and non-hierarchical parts of the URL, and hidden parameters.

III. A TAXONOMY OF SERVICES

A. Values returned by services
A first classification of services may be made according to

the results they send. In almost all Web programming tools,
services send HTML data, written as a string of characters.
But as we have seen before, it is much more interesting to
build the output as a tree to enable static type checking. To
keep full generality, we will consider that a service constructs a
result of any type, that is then sent, possibly after some kind of
serialization, to the browser which requested it. It is important
to give to the programmer the choice of the kind of service he
wants.

A reflection on return types of services will provide once
again a gain of expressiveness. Besides plain text or typed
HTML trees, a service may create for example a redirection.
One can also consider using a service to send a file. It is
also important to give the possibility to services to choose
themselves what they want to send. For example, some service
may send a file if it exists, or an HTML page with an error
message on the other case. The document is sent together with
its content type, telling the browser how to display it (it is a
dynamic type). But in other cases, for example when a service
implements a function to be called from the client side part of
the program, one probably want the type of the result to be
known statically.

We also introduce a new kind of output called actions.
Basically sending an action means “no output at all”. But the
service may perform some action as side effect, like modifying
a database, or connecting a user (opening a new session). From
a technical point of view, actions implemented server side are
usually sending a 204 (No content) HTTP status code. Client
side actions are just procedures. We will see some examples of
use of actions and how to refine the concept in Section III-D2.

B. Dynamic services, or continuation-based Web program-
ming

1) Dynamic services: Modern Web frameworks propose
various solutions to get rid of the lack of flexibility induced
by a one-to-one mapping between one URL and one service.
But very few take the full benefit of this, as most of them do
not allow to dynamically create new services.

For example, if we want to add a feature to a Web site,
or even if we occasionally want to create a service depending
on previous interaction with one user. For example, if one
user wants to book a plane ticket, the system will look in
a database for available planes and dynamically create the
services corresponding to booking each of them. Then it
displays the list of tickets, with, on each of them, a link towards
one of these dynamic services. Thus, we will be sure that the
user will book the ticket he expects, even if he duplicates his
browser window or uses the back button. This behaviour is
really simple to implement with dynamic services and rather
tricky with traditional Web programming. Witness the huge
number of Web sites which do not implement this correctly.

If we want to implement such behaviour without dynamic
services, we will need to save somewhere all the data the
service depends on. One possibility is to put all this data in the

66

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

link, as parameters, or in hidden form data. Another possibility,
for example if the amount of data is prohibitive, is to save it
on the server (for example in a database table) and send only
the key in the link.

With dynamic service creation, all this contextual data
is recorded automatically in the environment of the closure
implementing the service. This closure is created dynamically
according to some dynamic data (recording the past of the
interaction with the user). It requires a functional language to
be implemented easily.

2) Continuations: This feature is equivalent to what
is known as continuation-based Web programming. This
technique was first described independently by Christian
Queinnec [14], [15], [16], John Hughes [17] and Paul
Graham [18].

There are basically two ways to implement dynamic ser-
vices. The first (described as continuation-based Web program-
ming) consists of viewing the sending of a Web page by the
server as a function call, (a question asked of the user) that will
return for example the values of a form or a link pressed. The
problem is that we never know in advance to which question
the user is answering (because he may have pressed the back
button of his browser or he may have duplicated the page).
Christian Queinnec solves this problem by using the Scheme
control operator call/cc that allows to name the current
point of execution of the program (called continuation) and to
go back to this continuation when needed.

The second solution is the one we propose. It is symmetric
to the first one, as it consists in viewing a click on a link
or a form as a remote function call. Each link or form of
the page corresponds to a continuation, and the user chooses
the continuation he wants by clicking on the page. This
corresponds to a Continuation Passing programming Style
(CPS), and has the advantage that it no longer needs control
operators (no saving of the stack is required). Strangely, this
style of programming, usually considered unnatural, is closer
to what we are used to doing in traditional Web programming.

The use of dynamic services is a huge step in the
understanding of Web interaction, and an huge gain of
expressiveness. Until now, very few tools have used these
ideas. None of the most widely used Web programming
frameworks implement them, but they are used for example
in Seaside [19], PLT Scheme [20], Hop [3], Links [2], and
obviously Ocsigen.

3) Implementation of dynamic services: The implementation
of dynamic services (in CPS) is usually done by registering
closures in a table on the server. It associates to an automat-
ically generated key a function and its environment, which
contains all the data needed by the service. The cost (in
terms of memory or disk space consumption) is about the
same as with usual Web programming: no copy of the stack,
one instance of the data, plus one pointer to the code of the
function.

An alternative approach [2], [21], [22] is to serialize the

closures and send them to the client. Either we serialize
the environment and a pointer to the function, or even the
environment and the full code of the function. This has the
advantage that no space is required on the server to save the
closures. But serializing functions is not easy and this solution
may require sending large amounts of data to the client,
with potentially several copies of some state information.
Obviously, security issues must be considered, as the server
is executing code sent by the client.

C. Finding the right service
The very few experimental frameworks which are proposing

some kind of dynamic services impose usually too much
rigidity in the way they handle URLs. This section is devoted
to showing how it is possible to define a notion of service
identification that keeps all the possibilities described in Sec-
tion II.

The important thing to take care of is: how to do the
association between a request and a service? For example if
the service is associated to an URL, where, in this URL, is
the service to be called encoded?

To make this as powerful as possible, we propose to delegate
to the server the task of decoding and verifying parameters,
which is traditionally done by the service itself. This has the
obvious advantage of reducing a lot the work of the service
programmer. Another benefit is that the choice of the service
to be called can depend on parameters.

Let us first speak about distant (server side) bookmarkable
services, i.e., services called by sending a GET request to
a server. We will speak later about client side services, and
hidden services.

1) Hierarchical services: One obvious way to associate a
service to an URL is by looking at the path (or one part of
it). We will call these services hierarchical services. These
kinds of services are usually the main entry points of a Web
site. They may take parameters, in the query part of the
URL, or in the path. One way to distinguish between several
hierarchical services registered on the same path is to look
at parameters. For example the first registered service whose
expected parameters exactly match the URL will answer.

2) Coservices: Most of the time one probably wants dy-
namic services to share their path with a hierarchical service,
at least those which last for only a short time (result of a
search for example). Also one may want two services to share
the same hierarchical position on the Web site.

We will call coservices services that are not directly asso-
ciated to a path, but to a special parameter. This is one of the
main original features of our service identification mechanism
and this has a huge impact on expressiveness, as we will see
on example in Section III-D2. From a semantic point of view,
the difference is that hierarchical services are the entry points
of the site. They must last forever, whereas coservices may
have a timeout, and one probably want to use the associated
main service as fallback when the coservice has expired.

We will distinguish between named coservices and anony-
mous coservices, the difference being the value of the special
parameter. Named coservices have a fixed parameter value

67

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(the name of the coservice), whereas this value is generated
automatically for anonymous coservice.

Like all other services, coservices may take parameters, that
will be added to the URL. There must be a way to distinguish
between parameters for this coservice and parameters of the
original service. This can be done by adding automatically a
prefix to coservice parameters.

3) Attached and non-attached coservices: We will also
distinguish between coservices attached to a path and non-
attached coservices. The key for finding an attached coservice
is the path completed by a special parameter, whereas non-
attached coservices are associated to a parameter, whatever
the path in the URL. This feature is not so common and we
will see in Section III-D2 how powerful it is.

4) Distant hidden services: A distant service is said to be
hidden when it depends on POST data sent by the browser.
If the user comes back later, for example after having made
a bookmark, it will not answer again, but another service, not
hidden, will take charge of the request. We will speak about
bookmarkable services, for services that are not hidden.

Hidden services may induce an URL change. Actually, we
can make exactly the same distinction as for bookmarkable
services: there are hierarchical hidden services (attached to a
path), hidden attached coservices (attached to a path, and a
special POST parameter), and hidden non-attached coservices
(called by a special POST parameter).

It is important to allow the creation of hidden hierarchi-
cal services or coservices only if there is a bookmarkable
(co)service registered at the same path. This service will act as
a fallback when the user comes back to the URL without POST
parameters. This is done by specifying the fallback instead of
the path when creating a hidden service. It is a good idea to
do the same for bookmarkable coservices.

Registering a hidden service on top of a bookmarkable
service with parameters allows to have both GET and POST
parameters for the same service. But bear in mind that their
roles are very different.

5) Client side services: Client side service calls have the
same status as hidden service calls. In a framework that allows
to program both the server and client sides using the same
language, we would like to see local function calls as non-
attached (hidden) coservices. Hierarchical hidden services and
(hidden) attached coservices correspond to local functions that
would change the URL, without making any request to the
server.

6) Non-localized parameters: One additional notion that is
interesting in concrete cases is to enable parameters that are
not related to any service at all. The server does not take into
account their presence to choose the service, and services do
not have to declare them, but can access them if they want.
This avoids declaring the same optional parameters for each
service when you want the whole Web site to be parametrized
by the same optional parameters (for example the language the
user prefers to display the pages).

D. Taxonomy of services
1) Summary of service kinds: Figure 1 summarizes the

full taxonomy of services we propose. This set is obviously

complete with respect to technical possibilities (as traditional
services are part of the table). It is powerful enough for
describing in very few lines of code lots of features we
want for Web sites, and does not induce any limitations with
respect to the needs of Web developers. Current Web program-
ming frameworks usually implement a small subset of these
possibilities. For example “page-based” Web programming
(like PHP or CGI scripts) does not allow for non-attached
coservices at all. Even among “non-page-based” tools, very
few allow for dynamic (anonymous) coservice creation. To
our knowledge, none (but Ocsigen) is implementing actions
on non-attached services as primary notions (even if all the
notions can obviously be simulated).

2) Example cases: We have already seen some examples
of dynamic service creation: if a user creates a blog in a
subdirectory of his or her personal site, one possibility is to
add dynamically a hierarchical service to the right path (and
it must be recreated every time the serser is relaunched). If
we want to display the result of a search, for example plane
ticket booking, we will create dynamically a new anonymous
coservice (hidden or not), probably with a timeout. Without
dynamic services, we would need to save manually the search
keyword or the result list in a table.

Coservices are not always dynamic. Suppose we want a link
towards the main page of the site, that will close the session.
We will use a named hidden attached coservice (named, so
that the coservice key is always the same).

We will now give an example where non-attached hidden
coservices allow to reduce significantly the number of lines
of code. Consider a site with several pages. Each page has a
connected version and a non-connected version, and we want
a connection box on each non-connected page. But we do not
want the connection box to change the URL. We just want
to log in and stay on the same URL, in connected version.
Without non-attached services (and thus with almost all Web
programming tools), we need to create a version with POST
parameters of each of our hierarchical services to take into
account the fact that each URL may be called with user
credentials as POST parameters.

Using our set of services, we just need to define only one
non-attached (hidden) coservice for the connection. At first
sight, that service only performs an action (as defined in
Section III-A): saving user information in a session table. But
we probably want to return a new page (connected version
of the same page). This can be done easily by returning a
redirection to the same URL. Another solution if we do not
want to pay the cost of a redirection, is to define a new kind of
output: “action with redisplay” that will perform the action,
then make an internal (server side) request as if the browser
had done the redirection. The solution with redirection has one
advantage: the browser would not try to resend POST data if
the user reloads the page.

Now say for example that we want to implement a wiki,
where each editable box may occur on several pages. Clicking
on the edit button goes to a page with an edit form, and
submitting the form must turn back to the original page. One
dirty solution would be to send the original URL as hidden
parameter in the edit link. But there is now a simpler solution:

68

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1: Full taxonomy of services.

just do not change the path. The edit form is just a page
registered on a non-attached service.

Our reflexion on services, also allows to express clearly a
solution to the real estate site described in Section I-B. Use (for
example) one bookmarkable hierarchical service for displaying
one piece of advertisement, with additional (hidden or not)
parameters to recall the information about the search.

3) Expressiveness: The understanding of these notions and
their division into very elementary ones induces a significant
gain in expressiveness. This is particularly true for actions with
redisplay. They are very particular service return values and
seem to be closely related to non-attached coservices at first
sight. But the separation of these two concepts introduces a
new symmetry to the table, with new cells corresponding to
very useful possibilities (see the example of the wiki above). It
is noteworthy that all cells introduced in this table have shown
to be useful in concrete cases.

4) Priority rules: One may wonder what succeeds when one
gets apparently conflicting information from the request, for
example both a hidden coservice name and a URL coservice
name. In most cases, the solution is obvious. First, hidden
services always have priority over URL services.

Secondly, as non-attached coservices parameters are added
to the URL, there may be both attached and non-attached
coservice parameters in the URL. In that case, the non-
attached service must be applied (because its parameters have
necessarily been added later).

The last ambiguous case is when we want to use a hidden
non-attached coservice when we already have non-attached
parameters in the URL. We may want to keep them or not.
The programmer must choose the behaviour he wants himself
when defining the service.

IV. TYPING WEB INTERACTION

A. Typing service parameters
Another advantage to our way of building Web sites is that

it becomes possible to perform more static checking on the
site and thus avoid lots of mistakes. We have already seen that
some very strong guarantees (no broken links) are ensured just
by the abstraction of the notion of services and links. But static
types can help us to make things even safer.

When defining a service, it is easy to add type information
to each parameter. This has three advantages:
• The server will be able to dynamically convert the data

it receives into the type expected by the service (and
also check that the data corresponds to what is expected,
which saves a lot of time while writing the service).

• It is possible to check statically the types of parameters
given to the links we create towards the services.

• It is also possible to do some static verification of forms
(see next section).

It should also be possible to use type inference to avoid
declaring manually the types of parameters.

On first sight, the type system for services parameters seems
rather poor. But declaring basic types like string, int and
float is not enough. We need more complex types. Just think
about variable length forms, for example a page displaying
a list of people with just a checkbox for each of them. The
implementation of this is a tedious work with traditional Web
programming tools, because you need to give different names
to each parameter (for example by using numbers) to be able to
find back on server side the person associated to the checkbox.
Obviously, you do not want to worry about such details when
programming a Web application. Your service just wants to get
an association table from a name to a boolean value, however
they are encoded in parameters.

Another example is when you want to send an (unordered)
set of values to a service, or optional values.

Unfortunately, most of this is sometimes difficult to imple-
ment, due to the way parameters are encoded in the URL, and
the way browsers send them. One example of this is the way
browsers handle unchecked boxes: they send no parameter at
all, instead of sending a false value. Thus, there is no way to
distinguish between an unchecked box and no parameter at all.

Sets of base types data may be implemented using the
same parameter name for each member of the set. But an
implementation of sets of more complex data requires more
thinking.

In conclusion, the types of parameters for Web pages is
highly constrained by current technology.

In the case your Web program has a client side, and you
are using the same language for both sides, a solution is to

69

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

send directly your language values, after serialisation. This is
acceptable and very powerful in the case of hidden (POST)
services but will result in unreadable URLs for bookmarkable
services.

B. Forms
To be correct relative to the service it leads to, a form must

respect these conditions:
• The names of the fields of the form must correspond to

the names expected by the service,
• The types of the fields must correspond to the types

expected by the service,
• All required fields must be present, and the right number

of times.
The first item may be solved by taking the parameter names

from the data representing the service in memory. The static
verification of the adequacy of types may be done by putting
type information in the type of names (instead of using just
the string type, we use an abstract type with phantom type
information [23] on the type of the parameter). The third
condition is more difficult to encode in types.

One idea interesting for some particular cases of services is
to create dynamically the service that will answer to the form
from the form itself (as for example in Seaside, Links [24] or
PLT Scheme).

V. ABSTRACTING SESSIONS

Sessions are a way to maintain a state during several
interactions with one user. The abstraction of sessions is
something more common in usual Web programming tools
than the abstraction of services. It is now standard to have a
way to save some data for one user and recover it each time
the user comes back.

A. Technical remainder
From a technical point of view, sessions are not so easy to

implement due to the fact that the HTTP protocol is stateless on
the applicative layer (once a request is fulfilled, the connexion
is usually closed). There are several ways to get around this
limitation.

One possibility is to send all the data to the user. But this
does not have exactly the semantics we expect for sessions.
Indeed, several browser tabs opened on the same site will have
different versions of the state, which is not what we want. The
nature of a state being to be unique, it is supposed to be kept
in one place, and the only simple solution is to keep it server
side. Therefore, there must be one way to identify the user to
get back her data.

This is done by asking the browser to send one session
identifier at each request. Two techniques are used for that:
either you put the session identifier in each link and form of
the site, or you ask the browser to send it at each request
using cookies. But only the second solution has exactly the
semantics we expect for sessions. Using the first solution leads
to incompatibilities between tabs (for example if you log in
from one tab and return to another tab opened on the same
site).

B. Session data and session services
Opening a session on server side may be done transparently

when the Web site decides to register some data for one user. A
session identifier is then generated automatically and a cookie
is set, and sent back by the browser in the header of each
request for the site.

This is a common feature in current Web programming
tools. But we propose to add the ability to dynamically register
coservices or services in a session table, that is, for one user.
One obvious reason for this is to allow the use of certain
anonymous coservices only for the user who requested them.
You probably do not want to give access to these kind of
coservices to everybody, especially because they may contain
private data in the closure.

We also propose to allow to re-register some existing
services in a session table. When the server is receiving a
request, it first looks in the session table to see if there is a
private version of the service, and if not, looks in the public
table. Using this feature, it is possible to save all the session
data in the closure of services. From a theoretical point of
view, this makes session data tables useless. Basically, when
a user logs in you just need to register in the session service
table a new version of each service, specialized for this user.

For the sake of flexibility, it is a good idea to allow both
session data and session services.

Thus, there is now a new possibility for creating each of
our service kinds: registering them in the session table. This
corresponds to a fourth dimension in the table of Figure 1.

C. Session duration
When implementing such kinds of session, one must be very

careful about the duration of sessions and timeout for services.
If you want your sessions to survive a restarting of the server,
you need a way to serialize data (for session data) and closures
(for session services).

D. Session names and session groups
To make the session system more powerful, we may want

to add two more notions, namely session names and session
groups.

Naming sessions allows to use several sessions in the same
site. Think for example about one site that allows some
features for non connected users, which requires some private
coservices to be created. If the user logs in, this opens a new
session, but must not close the previous one. To avoid that, we
use another session by specifying another session name.

Technically speaking, session naming can be implemented
by recording the name of the session in the cookie name.

The idea of session groups is complementary to that of the
session name. While session naming allows for a single session
to have multiple buckets of data associated with it, session
grouping allows multiple sessions to be referenced together.
For most uses, the session group is the user name. It allows
to implement features like “close all sessions” for one user
(even those opened on other browsers), or to limit the number
of sessions one user may open at the same time (for security
reasons).

70

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As we have session data end session services, it is possible
to create notions of group data and group services.

E. Session scopes
In Ocsigen, session data are saved in some kind of

(persistent) references whose value depends on the browser
that is perfomring the request. This makes very easy to access
the data in a way that is very well integrated in language
features.

It is possible to make the concept even more powerful by
making possible to choose the scope of these references:

Session The default scope is session and correspond to
the usual use of sessions, implemented with regular
browser cookies. The data recorded in references
with session scope are specific to a browser.

Session group If you create a reference with scope session
group, the value will be available from all browser
sharing the same session group. For example, you
can implement a shoping basket just by setting this
kind of reference. It will be shared by all your
sessions.

Client process Ocsigen makes possible to write both sides
of a Web application (server and browser) as a
single program. Client side parts are extracted and
compiled into Javascript. Among many other things,
this makes possible to create server side references
with scope client process. These reference values are
specific to one tab of the browser. Think for example
of several instances of the same game running in
several tabs. We are also using this to record the
communication channels that are specific to one tab.
To implement that, we added a cookie mechanism,
very similar to the usual one, but at the level of a
client process.

Site References with scope site have the same value
for everyone. They have the same semantics of
regular references, but may be persistent across
server restarts.

Request References with scope request are a simple way
to store some data for a single request (that is, for
one thread of the server).

VI. IMPLEMENTATION

To implement the features presented above, we had two
possible solutions: either we created our own language, which
would have given us the full freedom in implementation. Or
we needed to choose a language expressive enough to encode
most of the features presented here.

We chose the second solution, for two reasons:
• We think that Web programming is not a task for a

domain specific language. We need the full power of
a general purpose language, because we do not want
only to speak about Web interaction and typing of pages,
but also for example about database interaction. We
also want code structuring and separation, and we need

programming environments and libraries. The cost of
creating our own new language would have been much
too high.

• We knew one language, namely OCaml that has almost
all features we want to implement the concepts of this
paper, most notably a powerful typing system able to
encode most of the properties we wanted to check
statically. Moreover, this language now has a strong basis
of users, in academia and industry, and a large set of
libraries.

We made this choice with the goal in mind to write not
only a research prototype but a full framework usable for
real applications. We benefited greatly from the free software
development model, which enabled us to have a powerful
framework very quickly, thanks to the growing community of
users.

Our implementation takes the form of a module for the Oc-
sigen [4] Web server, called Eliom [25]. More implementation
details may be found in [26] (but for an old version of Eliom
that was using a more basic model of services).

A. Static type checking of pages
As the return value of services is completely independent of

services, it is important to make the creation of new kinds of
output types easy. This is realized through the use of OCaml’s
module language, which allows parametrized modules (called
functors). To create a new output module, you apply a functor
that will create the registration functions for your output type.

Eliom does not impose one way to write the output, but
proposes several predefined modules. One allows text output,
as in usual Web programming, if you do not want any type-
checking of pages.

Another one is using an extension of OCaml, called OCaml-
duce [11], that adds XML types. This is really powerful, as
the typing is very strict, and corresponds exactly to what you
need to take into account all features of DTDs. It also has the
advantage of allowing to easily create new output modules for
other XML types, just from a DTD. Furthermore, it allows to
parse and transform easily incoming XML data. The drawback
is that is not part of the standard OCaml compiler.

As an alternative, we are using a second typing method
based on OCaml’s polymorphic variants (see [27]) used as
phantom types [23].

This technique is not new as we use an implementation due
to Thorsten Ohl, which is also distributed as a distinct library.
We are aware of another very similar implementation used by
Alain Frisch for the Bedouin project [28]. It is less strict than
OCamlduce for the validation of pages, as it only checks the
correct nesting of XML tags (for example it is not possible
to put a <div> tag inside a tag). There also a way to
check the presence of mandatory tags.

See [26] for more information about that technique. Both
typing techniques have shown to be very helpful, and relieves
the programmer from thinking about validation of her pages.

B. Defining services
1) Creation and registration of services: Creating a new

service means two things: first filling a data structure with all

71

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the information about the service (that will be used to create
forms and links towards this service), and registering in a table
the “handling” function implementing the service.

In Eliom, these two operations have been disconnected. You
first create the service, then register a function on it. This may
be considered dangerous, as some services may be created and
not registered, which can lead to broken links. We were forced
to do so because services are usually highly mutually recursive
(every page may contain links towards any other one), and it is
not easy in OCaml to have mutually recursive data in several
different modules.

The solution that is currently implemented consists in a
dynamic check of the registration of services, when the server
starts. This solves the problem for static services, but not for
dynamic ones.

A solution we consider is to use a syntax extension to the
language to put back together creation and registration. But
the concrete realization of that idea is not straightforward.

2) Types of parameters: One important thing to check
statically when registering a function on a service is that the
type of this function corresponds to the type expected by
the service. This makes the type of the registration function
dependent on the value of one of its parameters (the service).
This requires very sophisticated type systems. As explained
in [26], it can be done either using functional unparsing [29]
or using generalized algebraic data types [30], [31].

Ideally, one would expect to declare page parameters only
once when defining both the service and its handling function.
As we separate definition and registration, it is not possible
to do so. But even without this separation it is probably not
possible to avoid this duplication without a syntax extension
for the language, for two reasons:

• We need the names of parameters to live both in the
world of variable names (static) and in the world of data
(dynamic), to be used as parameter names for pages.

• We need dynamic types (that is keeping typing informa-
tion during the execution) to enable the server to convert
received page parameters into the type expected by the
handling function.

But in any case, we must keep in mind that the types of
service parameters are not OCaml types, and it is difficult to
use sophisticated OCaml types for services as mentioned in
Section IV-A.

C. Links and forms
We are using functions to create links and forms. Obviously

the adequacy of the service to its parameters is checked
statically while creating a link.

To implement non-localized parameters, we just needed
a way to build a new service data structure by combining
together a service and non-localized parameters.

We mentioned in Section IV-B that performing statically all
the verification on the form would require a very sophisticated
type system, that would be difficult to mix with the already
complex typing model we use to check the validity of pages.
We decided to restrict the static verifications to the names and
types of fields. To do that, we use an abstract type for names,

as explained in Section IV-B, and we get parameters names
from the service. This is done by giving as parameter to our
form building function, a function that will build the content
of the form from parameters names.

We implemented some sophisticated types for service pa-
rameters, like lists or sets. In the case of lists, the names of
parameters are generated automatically by an iterator.

VII. CONCLUSION

A. Related work
A lot of modern Web programming frameworks (for exam-

ple GWT or Jif/Sif [32]) are trying to propose integrated and
high level solutions to make easier the development of Web
application. They often provide some abstraction of concepts,
but most of them preserve some historical habits related to
technical constraints. It is impossible to make a full review
of such tools, as there are numerous. We will concentrate on
the main novel features presented here. One can try to make a
classification of existing Web frameworks with respect to the
way they do service identification.

The old method is what we called “page-based Web pro-
gramming”, where one path corresponds to one file. Modern
tools are all more flexible and make service identification
and selection independent of the physical organization of
components in the Web server (for example JSP assigns an
URL to a service from a configuration file). But very few
belong to the third group, that allows dynamic services. Among
them: Seaside [19], Links [2] and Hop [3], Wash/CGI [33].
Their service identification models are more basic, and they
do not have a native notion of coservice. Some of them are
using an abstraction of forms [33], [24] that is fully compatible
with our model.

There have been few attempts to formalize Web interac-
tion. The most closely related work is by Paul T. Graunke,
Robert Bruce Findler, Shriram Krishnamurthi and Matthias
Felleisen [34], [35]. Their work is more formal but does
not take into account all the practical cases we speak about.
In particular their service model is much simpler and does
not fully take into account the significance of URLs. Peter
Thiemann [33] uses monads to create HTML pages, which
makes possible an original and interesting way of handling
the typing of forms, using Haskell’s type system.

We think our approach is compatible with more data driven
approaches [10], component based interfaces [36], or even
code generation techniques. One interesting work would be
to see how they can be mixed together.

B. Evolution of technologies and standards
This reflection about Web programming techniques has

shown that Web technologies suffer from some limitations that
slow down the evolution towards really dynamic applications.
Here are a few examples:
• As mentioned above, the format of page parameters and

the way browsers send them from form data does not
allow for sophisticated parameters types.

• (X)HTML forms cannot mix GET and POST methods.
It is possible to send URLs parameters in the action

72

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attribute of a form that is using the POST method, but
it is not possible to take them from the form itself. This
would open many new possibilities.

• A link from HTTP towards the same site in HTTPS is
always absolute. This breaks the discipline we have to
use only relative links (for example to behave correctly
behind a reverse proxy). We have the same problem with
redirections, which have to be absolute URLs according
to the protocol.

• There is no means to send POST data through a link,
and it is difficult to disguise a form into a link. Links and
forms should probably be unified into one notion, that
would allow to make a (POST or GET) request from a
click on any part of the page. This limitation is not really
significant if we have a client side program that does the
requests itself when we click on a page element.

• Having the ability to put several id attributes for one
tag would be very useful for automatically generated
dynamic pages.

• Probably one of the main barriers to the evolution of
the Web today is the impossibility to run fast code
on the browser (without plug-ins), even with recent
implementations of Javascript. When thinking about a
Web application as a complex application distributed
between a server and a client, we would often like to
perform computationally intensive parts of the execution
on the client, which is not feasible for now. We want to
make some experiments with Google Native Client [37].

C. Concluding words and future works
This paper presents a new programming style for Web

interaction which simplifies a lot the programming work and
reduces the possibilities of semantical errors and bad practices.
The principles we advocate are summarized here:

1) Services as first class values
2) Decoding and verification of parameters done by the

server
3) Dynamic creation of services
4) Full taxonomy of services for precise service identifi-

cation
5) Same language on server and client sides
6) Symmetry between local and distant services
One of the main novel feature is the powerful service iden-

tification mechanism performed automatically by the server. It
introduces the notion of coservice which make the program-
ming of sophisticated Web interaction very easy.

Beyond just presenting a new Web programming model, this
paper defines a new vocabulary for describing the behaviour
of Web sites, on a semantic basis. It is a first step towards a
formalization of Web interaction. We started from an analysis
of existing Web sites and we extracted from this observation
the underlying concepts, trying to move away as much as
possible from non-essential technical details. This allowed a
better understanding of the important notions but above all to
bring to light some new concepts that were hidden by technical
details or historical habits. The main feature that allowed this
is the introduction of dynamic services, and also forgetting the

traditional page-based Web programming. There exist very few
frameworks with these features, and none is going as far as
we do, especially in the management of URLs.

Besides the gain in expressiveness, we put the focus on
reliability. This is made necessary by the growing complexity
of Web applications. The concepts we propose allow for very
strong static guarantees, like the absence of broken links. But
more static checks can be done, for example the verification
of adequacy of links and forms to the service they lead to.
These static guarantees have not been developed here because
of space limitation. They are summarized by the following
additional principles:

7) Static type checking of generated data
8) Static type checking of links and forms

This paper does not present an abstract piece of work: all the
concepts we present have been inspired by our experience in
programming concrete Web sites, and have been implemented.
Please refer to Ocsigen’s manual [25] and source code for
information about the implementation. Some implementation
details may also be found in [26] (describing an old version
of Ocsigen that was using a more basic model of services).
Ocsigen is now used in industry (for example BeSport [38],
Pumgrana [39]). These concrete experiences showed that the
programming style we propose is very convenient for Web
programmers and reduces a lot the work to be done on Web
interaction.

As we have seen, the use of an existing language for the
implementation induces some limitations: the typing of forms
is not perfect, there is no type inference of service parameters,
the need to disconnect creation and registration of services.
But despite these limitations, our implementation is very close
to the model we presented in the paper and it is a huge step
forwards in the implementation of robust Web applications.

This paper is not a full presentation of Ocsigen. Many
aspects have been hidden, and especially how we program the
client side part of the application [8], [9], [40] using the same
language, and with the same strong static guarantees. As we
have seen, our notions of services also apply to client side
functions. Obviously, we are using the same typing system
for services but also for HTML. It is not easy to guarantee
that a page will remain valid if it can evolve over time [41].
We did not show how the server can send data to the client
at any time, or even call a function on client side. We are
currently working on extending our service model to multi-
tiers architecture, when more than two pairs are interacting.
On a more theoretical point of view, we are working on a
formal description of our services.

ACKNOWLEDGMENT

Many acknowledgements are due to Jean-Vincent Loddo,
Jérôme Vouillon and all the people who took part in Ocsi-
gen development. I also want to thank Russ Harmer, Boris
Yakobowski and Yann Régis-Gianas for their helpful remarks
about this paper, and Dario Teixeira for the idea of session
groups.

73

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] V. Balat, “Rethinking traditional Web interaction,” in International
Conference on Internet and Web Applications and Services (ICIW),
Jun. 2013, pp. 206–211.

[2] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, “Links: Web pro-
gramming without tiers,” in In 5th International Symposium on Formal
Methods for Components and Objects (FMCO). Springer-Verlag, 2006,
p. 10.

[3] M. Serrano, E. Gallesio, and F. Loitsch, “Hop, a language for program-
ming the web 2.0,” in Dynamic Languages Symposium, Oct. 2006.

[4] “The Ocsigen project,” http://www.ocsigen.org [retrieved:
2014-06-16].

[5] V. Balat, J. Vouillon, and B. Yakobowski, “Experience report: ocsigen,
a web programming framework,” in ICFP ’09: Proceedings of the 14th
ACM SIGPLAN international conference on Functional programming.
Edinburgh, Scotland: ACM, 2009, pp. 311–316.

[6] V. Balat, P. Chambart, and G. Henry, “Client-server Web applications
with Ocsigen,” in WWW2012 dev track proceedings, Lyon, France,
Apr. 2012, p. 59.

[7] V. Balat, “Client-server Web applications widgets,” in Proceedings of
the 22nd international conference on World Wide Web (WWW 2013
dev track), Rio de Janeiro, Brazil, 2013, pp. 19–22.

[8] B. Canou, E. Chailloux, and J. Vouillon, “How to Run your Favorite
Language in Web Browsers,” in WWW2012 dev track proceedings,
Lyon, France, Apr. 2012, pp. –.

[9] J. Vouillon and V. Balat, “From bytecode to javascript: the js of ocaml
compiler,” Journal of Software: Practice and Experience, 2013.

[10] “Ruby on rails,” http://www.rubyonrails.com/ [retrieved:
2014-06-16].

[11] A. Frisch, “Ocaml + xduce,” in Proceedings of the international confer-
ence on Functional programming (ICFP). ACM, 2006, pp. 192–200.

[12] V. Benzaken, G. Castagna, and A. Frisch, “CDuce: An XML-centric
general-purpose language,” in Proceedings of the International Confer-
ence on Functional Programming (ICFP), 2003, pp. 51–63.

[13] H. Hosoya and B. C. Pierce, “XDuce: A statically typed XML process-
ing language,” ACM Transactions on Internet Technology, vol. 3, no. 2,
May 2003, pp. 117–148.

[14] C. Queinnec, “The influence of browsers on evaluators or, continuations
to program web servers,” in International conference on Functional
programming (ICFP), 2000

[15] C. Queinnec, “Continuations and web servers,” Higher-Order and Sym-
bolic Computation, Dec. 2004.

[16] C. Queinnec, “Inverting back the inversion of control or, continuations
versus page-centric programming,” ACM SIGPLAN Notices, vol. 38,
no. 2, Feb. 2003.

[17] J. Hughes, “Generalising monads to arrows,” Science of Computer
Programming, vol. 37, no. 1–3, 2000, pp. 67–111.

[18] P. Graham, “Beating the averages”
http://www.paulgraham.com/avg.html [retrieved: 2014-06-
16].

[19] S. Ducasse, A. Lienhard, and L. Renggli, “Seaside – a multiple control
flow web application framework,” in Proceedings of ESUG Research
Track 2004, 2004.

[20] S. Krishnamurthi, P. W. Hopkins, J. Mccarthy, P. T. Graunke, G. Pet-
tyjohn, and M. Felleisen, “Implementation and use of the plt scheme
web server,” in Higher-Order and Symbolic Computation, 2007.

[21] J. Matthews, R. B. Findler, P. Graunke, S. Krishnamurthi, and
M. Felleisen, “Automatically restructuring programs for the web,”
Automated Software Engg., vol. 11, no. 4, 2004, pp. 337–364.

[22] J. A. McCarthy, “Automatically restful web applications: marking mod-
ular serializable continuations,” in ICFP ’09: Proceedings of the 14th
ACM SIGPLAN international conference on Functional programming.
New York, NY, USA: ACM, 2009, pp. 299–310.

[23] D. Leijen and E. Meijer, “Domain specific embedded compilers,” in
Domain-Specific Languages, 1999, pp. 109–122.

[24] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, “The essence of form
abstraction,” in Sixth Asian Symposium on Programming Languages
and Systems, 2008.

[25] V. Balat, “Eliom programmer’s guide,” Technical report, Laboratoire
PPS, CNRS, université Paris-Diderot, Tech. Rep., 2007. [Online].
Available: http://ocsigen.org/eliom [retrieved: 2014-06-16]

[26] V. Balat, “Ocsigen: Typing web interaction with objective caml,” in
ML’06: Proceedings of the 2006 ACM SIGPLAN workshop on ML

[27] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon, “The
objective caml system release 3.10 documentation and user’s manual,”
Inria, Tech. Rep., may 2007.

[28] A. Frisch, “The bedouin project”,
http://sourceforge.net/projects/bedouin [retrieved:
2014-06-16].

[29] O. Danvy, “Functional unparsing,” Journal of Functional Programming,
vol. 8, no. 6, 1998, pp. 621–625.

[30] F. Pottier and Y. Régis-Gianas, “Stratified type inference for generalized
algebraic data types,” in Proceedings of the 33rd ACM Symposium on
Principles of Programming Languages (POPL’06), Charleston, South
Carolina, Jan. 2006, pp. 232–244.

[31] H. Xi, C. Chen, and G. Chen, “Guarded recursive datatype construc-
tors,” in Proceedings of the 30th ACM SIGPLAN Symposium on
Principles of Programming Languages, New Orleans, January 2003,
pp. 224–235.

[32] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng, “Secure web applications via automatic partitioning,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 6, 2007, pp. 31–44.

[33] P. Thiemann, “Wash/cgi: Server-side Web scripting with sessions
and typed, compositional forms,” in Practical Aspects of Declarative
Languages (PADL’02), 2002.

[34] P. T. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen,
“Modeling Web interactions,” in European Symposium on Programming
(ESOP), April 2003.

[35] S. Krishnamurthi, R. B. Findler, P. Graunke, and M. Felleisen, “Mod-
eling web interactions and errors,” in In Interactive Computation: The
New Paradigm. Springer Verlag, 2006.

[36] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera,
“A framework for rapid integration of presentation components,” in
WWW ’07: Proceedings of the 16th international conference on World
Wide Web. New York, NY, USA: ACM, 2007.

[37] “Google native client,”
http://code.google.com/p/nativeclient/ [retrieved:
2014-06-16].

[38] “Besport,” http://www.besport.com/ [retrieved: 2014-06-16].
[39] “Pumgrana,” http://www.pumgrana.com/ [retrieved: 2014-06-

16].
[40] B. Canou, V. Balat, and E. Chailloux, “O’browser: objective caml

on browsers,” in ML ’08: Proceedings of the 2008 ACM SIGPLAN
workshop on ML. New York, NY, USA: ACM, 2008, pp. 69–78.

[41] B. Canou, V. Balat, and E. Chailloux, “A declarative-friendly api for
Web document manipulation,” in International Symposium on Practi-
cal Aspects of Declarative Languages (PADL’13). Springer-Verlag,
January 2013.

74

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

