
173

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Performance Test Case Generation for Java and
WSDL-based Web Services from MARTE

Antonio Garcı́a-Domı́nguez and Inmaculada Medina-Bulo
Department of Computer Languages and Systems

University of Cádiz
Cádiz, Spain

{antonio.garciadominguez, inmaculada.medina}@uca.es

Mariano Marcos-Bárcena
Department of Industrial Design and Mechanical Engineering

University of Cádiz
Cádiz, Spain

mariano.marcos@uca.es

Abstract—Obtaining the expected performance from a work-
flow would be easier if every task included its own specifications.
However, normally only global performance requirements are
provided, forcing designers to infer individual requirements by
hand. Previous work presented two algoritms that automatically
inferred local performance constraints in Unified Modelling
Language activity diagrams annotated with the Modelling and
Analysis of Real-Time and Embedded Systems profile. This work
presents an approach to use these annotations to generate perfor-
mance test cases for multiple technologies, linking a performance
model and a design model with a weaving model in a meet-in-the-
middle approach so users can write their software according to
their needs. Two implementations of the approach are described,
which have been published as open source software. The first
implementation extracts models from Java unit tests using
MoDisco and weaves them with the performance models in order
to convert some or all of the test cases in the selected JUnit test
suites to performance tests. The second implementation extracts
models from WSDL documents including message templates and
template variables and uses these models for generating test
inputs, test code and test infrastructure. Users can customise the
service catalogues, test inputs and message templates to obtain
a high degree of flexibility, and the test infrastructure provides
automated configuration and test reports. These two successful
implementations for different technologies validate the proposed
approach as a generic framework for generating performance
test case artefacts from existing software.

Keywords-software performance; Web Services; MARTE; model
driven engineering; test generation.

I. INTRODUCTION

Software needs to meet both functional and non-functional
requirements. Performance requirements are among the most
commonly used non-functional requirements, and in some
contexts they can be just as important as functional re-
quirements. In addition to soft and hard real-time systems,
Service Oriented Architectures (SOAs) must be considered
as well. Within SOAs, it is common practice to sign Service
Level Agreement (SLAs) with external services, to compensate
consumers in case of problems. It is also quite common to
create “service compositions”, which are services that integrate
several lower level services (normally, Web Services from
external providers). However, it may be difficult to establish
what performance level should be required from the composed
services. Too little, and the performance requirements for the
composition will not be met. Too much, and the provider may

charge more than desired. In addition, developers must test the
external services to ensure that they can provide the required
performance levels.

There is a large variety of proposals for estimating the
required level of performance and measuring the actual perfor-
mance of a system. Measurements can be used for detecting
performance degradations over time, identifying load patterns
or checking the SLAs. However, the requirements set by
the SLA are usually broad and cover a large amount of
functionality: when violated, it might be hard to pinpoint the
original cause. Whenever possible, performance requirements
should be as specific as possible, but that would be too
expensive for all but the most trivial systems.

This paper is an extended version of our previous work [1].
This previous work presented an overall approach for using the
models produced by the inference algorithms in [2] to generate
performance artefacts for multiple target technologies. The
algorithms can “fill in the blanks” for the response time and
throughput requirements of every activity in the model, starting
from a global annotation and some optional local annotations
set by the user. Originally, users would then have to write the
actual performance tests manually, taking the results produced
by these algorithms as a reference. However, writing these tests
for every part of a reasonably-sized system could incur in a
considerable cost: ideally, it should be partly automated.

The present work provides an up-to-date account of the re-
sults obtained after implementing the two approaches outlined
in our previous work. Though the overall approach has not
changed much, many details had to be revised as the tools
were defined. For instance, the Java approach now offers finer-
grained control on the tests to be used and can use other
metrics apart from maximum response times, such as averages,
medians or percentiles. It is the WSDL-based approach that
has changed the most: WSDL documents have been found to
be too complex for doing model weaving directly on them.
Instead, a custom model extractor has been developed, which
is combined with a test generator and a template language to
generate the input messages.

The rest of this work is structured as follows. After dis-
cussing related work in Section II, the MARTE profile is
introduced in Section III and the performance models are
presented in Section IV. Section V describes the general

174

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach for generating test artefacts. This approach is applied
to reusing Java unit tests as performance tests using the
ContiPerf library in Section VI. Section VII is dedicated to
generating performance tests (input data, testing code and
infrastructure) from any Web Service described using WSDL.
Finally, conclusions and future lines of work are listed in
Section VIII.

II. RELATED WORK

According to Woodside et al. [3], performance engineering
comprises all the activities required to meet performance
requirements. These activities include defining the require-
ments, analysing early performability models (such as layered
queuing networks [4] or process algebra specifications [5]) or
testing the performance of the actual system. Our previous
work in [2] focused on helping the user define the require-
ments using MARTE-annotated [6] UML activity diagrams as
notation. The present work will show how to assist the user
in creating the performance test artefacts from the resulting
requirements.

Many testing approaches do not work directly with the
implemented system, but rather with a simplified represen-
tation (a model). There is a large number of works dealing
with model-based testing, i.e., “the automatable derivation of
concrete test cases from abstract formal models, and their
execution” [7]. Most of them (as evidenced by [7] itself) are
dedicated to functional testing: the rest of this section will
focus on those dedicated to model-based performance testing.

Barna et al. present in [8] a hybrid approach, which uses a
2-layered queuing network (LQN) to derive an initial stress
workload for a website. This workload is used to test the
system and refine the original LQN model in a feedback
loop that searches for the minimum load that would make the
system violate one of its performance constraints. Like our
work, it combines the analysis of a model with the execution
of a set of test cases. However, its goal is completely different:
the algorithms in [2] intend to define the appropriate quality
service levels for the individual services in order to meet the
desired quality service level of the entire workflow, whereas
this approach would estimate the maximum workload that a
workflow could handle within a certain quality service level.

Di Penta et al. show in [9] another approach with the same
goal of finding workloads that induce service level agreement
violations. However, they use genetic algorithms instead of a
LQN model and test WSDL-based Web Services instead of a
regular website.

Suzuki et al. have developed a model-based approach for
generating testbeds for Web Services [10]. SLA and behaviour
models are used to generate stubs for the external services
used by the service. This allows users to check that their own
services can work correctly and with the expected level of
performance as long as the external services meet their SLAs.
However, this approach does not generate input messages for
the services themselves. Still, we could use this work to check
the validity of the performance constraints inferred by the
algorithms in [2] in combination with the approach which

will be presented in Section VII, by replacing all services in
the workflow with stubs and testing the performance of the
composition.

As illustrated by the above references, there is a wealth of
methods for generating performance test cases and testbeds
for Web Services. However, we have been unable to find
another usage of model weaving for generating performance
test artefacts for multiple technologies. This is in spite of
the fact that model composition using model weaving has
been used regularly ever since the authors of the original
ATLAS Model Weaver proposed it [11]. For instance, Vara
et al. use model composition to decorate their extended use
case models with additional information required for a later
transformation [12].

III. THE MARTE PROFILE

UML is widely used as a general purpose modelling lan-
guage for software systems. However, UML cannot model
non-functional aspects such as performance requirements.

For this reason, the OMG (Object Management Group)
proposed in 2005 the SPT (Schedulability, Performability and
Time) profile [13], which extended UML with a set of stereo-
types describing scenarios that various analysis techniques
could take as inputs. In 2008, OMG proposed the QoS/FT
(Quality of Service and Fault Tolerance Characteristics and
Mechanisms) profile [14], with a broader scope than SPT and
a more flexible approach: users formally defined their own
quality of service vocabularies to annotate their models.

When UML 2.0 was published, OMG saw the need to
update the SPT profile and harmonise it with other new con-
cepts. This resulted in the MARTE (Modelling and Analysis
of Real-Time and Embedded Systems) profile [6], published
in 2009. Like the QoS/FT profile, the MARTE profile defines
a general framework for describing quality of service aspects.
The MARTE profile uses this framework to define a set of
pre-made UML stereotypes, as those in the SPT profile.

The rest of this section presents the architecture of the
MARTE specification and focuses on the key subset that has
been used for the performance models.

A. Architecture

The MARTE profile is a complex specification, spanning
over 700 pages. It is organised into several subprofiles and
includes a normative model library with predefined types and
concepts and an embedded expression language known as the
Value Specification Language (VSL). Figure 1 lists each of
the packages that constitute MARTE and their elements:
• The “MARTE foundations” package defines the core

concepts that are used throughout the other profiles,
such as the concept of a non-functional property (NFP)
or how to model time, resources (using the General
Resource Modelling or GRM subprofile) or the allocation
of functional elements on the available resources.

• The “MARTE analysis model” package is used to an-
notate application models to support analysis of system
properties. The Generic Quantitative Analysis Modelling

175

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

«profile»
GCM

«profile»
HLAM

«profile»
SRM

«profile»
HRM

«profile»
VSL

«profile»
RSM

«profile»
GQAM

«profile»
SAM

«profile»
PAM

«profile»
CoreElements

«profile»
NFP

«profile»
Time

«profile»
GRM

«profile»
Alloc

«model_library»
MARTE_Library

MARTE foundations

MARTE analysis model

MARTE annexes

MARTE design model

Fig. 1. Architecture of the MARTE profile [6]

(GQAM) subprofile uses the foundations package and
the normative model library to provide a base set of
concepts for the two kinds of analysis supported by
MARTE: schedulability analysis and performance anal-
ysis. Schedulability analysis predicts whether a set of
software tasks meets its timing constraints and is mod-
elled using the Schedulability Analysis Modelling (SAM)
subprofile. Performance analysis determines whether a
system with non-deterministic behaviour can provide
adequate performance, and is supported through the Per-
formance Analysis Modelling (PAM) subprofile.

• The “MARTE design model” package provides the re-
quired concepts for modelling the features of real-time
and embedded (RT/E) systems. The Generic Component
Modelling (GCM) subprofile provides additional core
concepts for RT/E systems. The High-Level Application
Modelling (HLAM) subprofile provides the concept of a
real-time execution unit that manages several resources
and a queue of messages with various real-time require-
ments. Finally, the Detailed Resource Modelling (DRM)
subprofile provides facilities for describing the software
and hardware resources used by the system.

• The “MARTE annexes” package includes the Value
Specification Language (VSL) used for all MARTE ex-
pressions, the Repetitive Structured Modelling (RSM)
package for describing available software and hardware
parallelism, and the normative MARTE model library.
The normative MARTE library defines the set of standard
primitive types (such as real numbers or integers) and de-
rived types (such as vectors of integers or NFPs involving
a real value), among many other concepts beyond the
scope of this article.

B. GQAM

Using the Generic Quantitative Analysis Modelling
(GQAM) subprofile requires the definition of an Analysis-

Context, which is formed by a WorkloadBehavior object (the
workload to be run) and a ResourcesPlatform object (the
resources to be used). An AnalysisContext may also include a
set of user-defined context parameters, which will be available
as variables in the VSL expressions of the NFP.

The workload is then divided into the WorkloadEvent de-
scribing the request arrival pattern, and the BehaviorScenario
specifying how these requests should be handled and the NFPs
for them. A BehaviorScenario is further divided into Steps
which are ordered using PrecedenceRelations of several kinds,
such as sequential, branching, merging, forking or joining
relations. Each Step may have NFPs of its own. These NFPs
include response time, throughput, utilisation or the expected
number of repetitions.

Finally, the GQAM concepts are mapped to UML
stereotypes. For instance, AnalysisContext, BehaviourSce-
nario and Step are mapped to the �GaAnalysisContext�,
�GaScenario� and �GaStep� stereotypes, respectively.

C. VSL

As mentioned above, the GQAM BehaviorScenario and
Step classes can contain NFPs for many aspects. However,
properly describing the value of a NFP requires more than
a simple scalar value: it is required to describe aspects such
as measurement sources, measurement unit, precision and so
on. In addition, the value of a NFP may be derived from
a complex expression using several context parameters. All
these features can be described using the Value Specification
Language (VSL) embedded within the MARTE profile.

VSL provides a set of datatypes that extends the primitive
types available in UML with composite types (such as inter-
vals, collections or tuples) and subtypes. It also provides a
textual syntax for complex expressions that may use condi-
tional operators, invoke operators, compute time values and
use arithmetic operators, among other features. Both can be
combined: for instance, (expr=2+3*f,ms,req) is a VSL tuple
that represents a duration in milliseconds (ms) that has been
required by the developer (req) and is computed from the f
context parameter as 2 + 3f .

IV. PERFORMANCE MODELS

This section will present the notation used by the perfor-
mance algorithms described in [2]. The models are used for
performance analysis, and so PAM would appear to be the
best starting point. However, the focus of the algorithms is
different than the one favoured by PAM, which is predicting
the performance of the whole system from its parts. Instead,
the algorithms infer the performance needed in each part of
the system from the global requirements. For this reason, it
only uses the generic analysis core, the GQAM subprofile.

To keep the models simple, the notation only uses the three
stereotypes in Section III-B. Due to the additional complexity
in explicitly describing the precedence relations among the
Steps, this information is inferred from the flows in the UML
models.

176

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2 shows a simple example. Inferred annotations are
highlighted in bold:

1) The activity is annotated with a�GaScenario� stereo-
type, in which respT specifies that every request is
completed within 1 second, and throughput specifies
that 1 request per second needs to be handled. These
expressions have their source attribute set to req, as
they represent explicit requirements from the developer.

2) In addition, the activity declares a set of con-
text parameters in the contextParam field of the
�GaAnalysisContext� stereotype. These variables rep-
resent the time per unit of weight that must be allocated
to their corresponding activity in addition to the mini-
mum required time. Their values are computed by the
time limit inference algorithm.

3) Each action in the activity is annotated with
�GaStep�, using in hostDemand a VSL expression
of the form m + ws, where m is the minimum time
limit, w is the weight of the action for distributing the
remaining time, and s is the context parameter linked to
that action. These expressions also have their source
attribute set to req, for the same reasons as those in
�GaScenario�.
The time limit inference algorithm adds a new constraint
to hostDemand, indicating the exact time limit to be
enforced. The throughput inference algorithm extends
throughput with a constraint that lists how many
requests per second should be handled. As these con-
straints have been automatically inferred, their source
attribute is set to calc (calculated).

4) Outgoing edges from condition nodes also use
�GaStep� but only for the prob attribute, which is set
by the user to the estimated probability it is traversed.

V. OVERALL APPROACH

The model shown in the previous section is entirely abstract:
at that level of detail, it cannot be executed automatically. It
will have to be implemented through other means.

After it has been implemented, it would be useful to take
advantage of the original model to generate the performance
test cases. However, the model lacks the required design and
implementation details to produce executable artefacts. To
solve this issue, several approaches could be considered:

1) The abstract model could be extended with additional
information, but that would clutter it and make it harder
to understand.

2) On the other hand, the implementation models could be
annotated with performance requirements, but this would
also pollute their original intent.

3) Finally, a separate model that links the abstract and con-
crete models could be used. This is commonly known
as a weaving model. Several technologies already exist
for implementing these, such as AMW [11] or Epsilon
ModeLink [15]. While AMW uses a generic weaving
metamodel, ModeLink is a more lightweight approach

that requires defining custom weaving metamodels for
every pair of metamodels.

In order to preserve the cohesiveness of the abstract perfor-
mance model and the design and implementation models, the
third approach has been chosen. The weaving model will need
to allow users to annotate the links with the additional infor-
mation required by the testing process, the target technologies
and the generation process itself. With target technologies, we
refer not only to the performance testing framework or tool
which will run the generated tests, but also all the components
which will be part of the test infrastructure. As we will see
in Section VII, this may include IDEs (e.g. Eclipse) or build
automation tools (Maven).

Some of the information may be shared by a set of tests
(possibly all of them), and some of the information will be
specific to a particular link between a design/implementation
artefact and a performance requirement. For instance, while
the number of threads used to exercise the system under test
may need to be the same for all the tests, the interpretation
of the time limit requirement as a median, an average or a
percentile may change from test to test.

After establishing the required links, the next step is gener-
ating the tests themselves. To do so, a regular Model-to-Text
(M2T) transformation could be used, written in a specialised
language such as the Epsilon Generation Language [16]. In
case it were necessary to slightly refine or validate the weaving
model before, an intermediate Model-to-Model (M2M) trans-
formation could be added. Figure 3 illustrates the models and
steps involved in the overall approach.

In some cases, we may want to allow users to easily cus-
tomise certain interesting parts of the tests, while abstracting
them from the details that are less interesting. These interesting
parts could be written into a custom domain-specific language
instead of code, which would be interpreted as the tests were
executed by augmenting the testing infrastructure accordingly.
We will see an example of this with the TestSpec language
later in Section VII-E.

The next sections will show two applications of the overall
approach in Figure 3, using different technologies to assist
in generating performance test artefacts in different envi-
ronments. Both approaches have been implemented and are
freely available under the open source Eclipse Public License
at [17]. In order to develop these transformations, a bottom-
up approach was used: a manually developed performance
test environment was gradually replaced by automatically
generated fragments until only the weaving model remained.
After the entire process had been automated, the generators
were refined to allow for more flexibility and convenience.

VI. REUSING JAVA UNIT TESTS AS PERFORMANCE TESTS

Generating executable performance test cases from scratch
automatically will usually require many detailed models and
complex transformations, which are expensive to produce
and maintain. The initial effort required may deter potential
adopters. An alternative inexpensive approach is to repurpose
existing functional tests as performance tests as a starting

177

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<<GaStep>>
{hostDemand={(expr=0.4+0*swEP, unit=s, source=req),

(value=0.4, unit=s, source=calc)}, throughput=
{(value=1.0, unit=Hz, source=calc)}}}

Evaluate Order

[acep] <<GaStep>> {prob=0.8}

<<GaStep>>
{hostDemand={(expr=0+1*swCR, unit=s, source=req),

(value=0.2, unit=s, source=calc), throughput=
{(value=0.8, unit=Hz, source=calc)}}}

Create Invoice

<<GaStep>>
{hostDemand={(expr=0+1*swRP, unit=s, source=req),

(value=0.2, unit=s, source=calc), throughput=
{(value=0.8, unit=Hz, source=calc)}}}

Perform Payment

<<GaStep>>
{hostDemand={(expr=0+1*swNP, unit=s, source=req),

(value=0.4, unit=s, source=calc), throughput=
{(value=0.8, unit=Hz, source=calc)}}}

Send Order

[else] <<GaStep>> {prob=0.2}

<<GaStep>>
{hostDemand={(expr=0+1*swCP, unit=s, source=req),

(value=0.2, unit=s, source=calc), throughput=
{(value=1.0, unit=Hz, source=calc)}}}

Close Order

<<GaScenario>> {respT = {(value = 1.0, unit = s, source = req)}, throughput={(value = 1.0, unit = Hz, source = req)}}
<<GaAnalysisContext>> {contextParams = {$swEP=0, $swCR=0.2, $swRP=0.4, $swNP=0.2, $swCP=0.2}}
Manage Order

Fig. 2. Simple example model annotated by the performance inference algorithms

Performance
model

Design/impl.
model

Model discovery

Code

Weaving model

M2M refinement
transformation

Refined
weaving model

M2T
transformation

Test artefacts
(code + scripts
+ textual DSL-
based models)

Fig. 3. Overall approach for generating performance test artefacts from
abstract performance models

@RunWith(ContiPerfSuiteRunner.class)
@SuiteClasses(TFunctionalJUnit4.class)
@PerfTest(invocations = 100, threads = 10)
@Required(max=1000)
public class InferredLoadTest {}

Listing 1. Java code for wrapping the TFunctionalJUnit4 JUnit 4 test suite
using ContiPerf

point. This is the aim of libraries such as ContiPerf [18]. The
rest of the section will show the overall approach in Figure 3
was customised for this particular use case. The resulting
transformation chain is shown in Figure 4.

A. Target framework: ContiPerf

Listing 1 shows how ContiPerf is normally used. Instead of
using Java objects, ContiPerf uses Java 6 annotations, which
are easier to generate automatically. The @PerfTest annotation
indicates that the test will be run 100 times using 10 threads, so
each thread will perform 10 invocations. @Required indicates
that each of these invocations should finish within 1000
milliseconds at most. @SuiteClasses points to the JUnit 4 test
suites to be reused for performance testing, and @RunWith
tells JUnit 4 to use the ContiPerf test runner.

B. Model extraction

In both cases, the code itself is straightforward to generate.
However, the generated code must integrate correctly with the
existing code. If the code was not produced using a model-
driven approach, there will not be a design or implementation

178

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model to link to. Instead, a model of the structure of the
existing code is derived using the Eclipse MoDisco model
discovery tool [19]. Eclipse MoDisco can generate models
from Java code such as that shown in Figure 5.

C. Weaving metamodel

Once the performance and the implementation models have
been produced, the next step is to link them using a new
weaving model that conforms to the metamodel in Figure 6.
Some of the types in the weaving metamodel refer to types
in the uml and java packages from the UML2 metamodel and
the MoDisco Java metamodel, respectively.

Each model consists of an instance of PerformanceRequire-
mentLinks, which provides several global configuration pa-
rameters and contains a set of PerformanceRequirementLink
instances. Users can set the number of samples which should
be collected for each test, the number of threads over which
these should be distributed and the directory under which
the code should be generated. Every link relates an UML
ExecutableNode with a Java class: if no MethodDeclarations
are specified, all tests will be reused. Otherwise, only the
selected methods will be reused. Finally, the target time
limit may be enforced as a maximum value (MAX), average
(AVERAGE), median (MEDIAN) or a percentile (the rest).

Originally, the models referenced the MARTE �GaStep�
stereotype instead of the UML ExecutableNode. These refer-
ences were switched to ExecutableNode as the �GaStep�
stereotype was optional if the default minimum time limit
m = 0 and weight w = 1 were used.

D. Code generation

Models are populated by combining the standard Epsilon
Modeling Framework (EMF) tree-based editors and the three-

UML+MARTE
time limits and

throughputs

MoDisco
Java model

MoDisco

JUnit test
cases (Java)

Java-MARTE
weaving model

EGL M2T
transformation

ContiPerf
test cases

Fig. 4. Instance of the overall approach for wrapping JUnit tests into
ContiPerf tests

@Required(throughput=2, max=400)
public class WrapSomeTests extends OriginalSuite {

@Rule public MethodRule f =
new FilterByClassRule(this.getClass());

@Rule public ContiPerfRule i = new ContiPerfRule();

@PerfTest(invocations=1000, threads=5)
@Test @Override
public void first() throws Exception {

super.first();
}

// protected region customTests off begin
// Add your own tests here
// protected region customTests end
}

Listing 2. Java code wrapping one test from OriginalSuite using ContiPerf

@WebService
public class HelloWorld {

@WebMethod
public String greet(

@WebParam(name=”name”) String name)
{

return ”Hello ” + name;
}
}

Listing 3. Java code using JAX-WS for a “HelloWorld” Web Service

pane Epsilon ModeLink editor (as in Figure 7). ModeLink
provides a drag-and-drop approach to model linking that is
convenient for model weaving. The EMF editors have been
manually customised so users may only pick JUnit 4 test suites
and test methods.

The code is generated using a set of Epsilon Generation
Language (EGL) templates. When all tests are reused as
performance tests, the generated code will use the ContiPerf-
SuiteRunner test runner, as in Listing 1.

However, when only some tests are wrapped the code
will resemble that in Listing 2. The ContiPerfRule would
normally convert all tests into performance tests. By using
the FilterByClassRule helper class (also generated with EGL),
the generated code will be able to specify that only some of
those tests need to be reused as performance tests.

VII. GENERATING PERFORMANCE TESTS FOR
WSDL-BASED WEB SERVICES

In the previous section, the approach was applied to existing
JUnit test cases, repurposing them as performance test cases.
This section will discuss how to generate performance test
artefacts for a Web Service (WS) [20] in a language agnostic
manner. The implemented solution is summarised in Figure 8.

179

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5. MoDisco model browser showing a model generated from an Eclipse Java project

PerformanceRequirementLinks
samplesPerTest : EIntegerObject
threads : EIntegerObject
baseDir : EString

PerformanceRequirementLink

metric : TimeLimitMetric

«enumeration»
TimeLimitMetric

- MAX
- AVERAGE
- PERCENTILE_90
- PERCENTILE_95
- PERCENTILE_99
- MEDIAN

java

ClassDeclaration

MethodDeclaration

uml

ExecutableNode

links

links0..*execNode

1

klazz

1

testMethods

0..*

Fig. 6. Java-MARTE weaving metamodel

A. Motivation

Web Services based on the WS-* technology stack are
usually described using a Web Services Description Language
(WSDL) [21] document. This XML-based document is an
abstract and language-independent description of the available
operations for the service and the messages to be exchanged
between the service and its consumers.

Existing Web Service frameworks such as Apache CXF [22]
can generate most of the code required to implement and
consume the services from the WSDL document. Users only
need to implement the business logic of the services. In addi-
tion, some frameworks (CXF included) can work in reverse,
generating WSDL from adequately annotated code.

Listing 3 shows an example fragment of Java code that
implements a simple “HelloWorld” Web service using standard
JAX-WS [23] annotations. This Java code could be tested
using the approach in Section VI. However, a WSDL-based
approach would be easier to work with when mixing services
written in multiple languages or frameworks.

B. Target performance testing tool: The Grinder

The previous section reused unit tests written in a particular
language (Java) and a particular framework (JUnit). Therefore,
the target technology was an extension upon this framework
(ContiPerf). However, since the WSDL description of a Web
Service does not depend on the language that it is implemented
in, we are not limited to a specific language for the tests.
Instead, we will use a dedicated performance testing tool. Such
tools help define tests with less cost and in a way that is
independent of the implementation language of the software
under test.

We evaluated the following tools based on the ease with
which test specifications could be generated for them, by
developing a simple performance test on a single service with
each of them and studying the files required by the tools:

• The Grinder [24] used textual configuration files to con-
figure the test environment, which executes Jython scripts
that use the public API provided by the tool.

• Apache JMeter [25] used reflective XML documents.
Most of their contents were directly translated into API
calls of the underlying Java code, tightly coupling the
transformation to their internal code structure.

• Eviware loadUI [26] had the most complicated input
format out of the three. It used both binary and textual
artefacts. Some of the textual artefacts were trees of
Java classes, which would have to be generated and then
packed together with the binary parts.

The Grinder [24] was selected among the available tools,
as its input format was the easiest to generate and provided
more flexibility.

In addition, The Grinder is easy to scale up depending on the
testing requirements. The Grinder can launch several processes
that spawn a certain number of threads which will repeatedly
run the test. It can also optionally distribute work over several
machines: one of them provides a graphical console and acts
as the master, and the rest are agents that manage a set of
worker processes.

180

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 7. Screenshot of the Epsilon ModeLink editor weaving the MARTE performance model and the MoDisco model

WSDL-MARTE
weaving model

UML+MARTE time
limits and throughputs Service catalogue

ServiceAnalyzer

WSDL document(s)XML Schema
declarations

SpecGeneratorCustom code EGL M2T
transformations

Eclipse project
with Maven nature

Message templates

The Grinder
config. + test script

Maven project using the
maven-grinder-plugin

TestSpec declarations
of test inputs

TestGenerator

Test inputs

Fig. 8. Instance of the overall approach for generating performance tests for WSDL-based Web Services. In comparison with the approach specifically
targeted for Java, this approach requires integrating several technologies, such as a build automation tool (Maven), three custom tools (ServiceAnalyzer,
SpecGenerator and TestGenerator) and a dedicated performance testing tool (The Grinder), among others.

181

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ServicesType

TypeDecls

TypeFault
name : String

«enumeration»
TypeGA

- string
- int
- float
- list
- tuple
- date
- dateTime
- time
- duration

TypeInput

TypeOperation
name : String

TypeOutput

TypePort
address : String
name : String

TypeService
name : String
uri : String

TypeTemplate
value : String

TypeTypedef

element : String
fractionDigits : NonNegativeInteger
max : String
min : String
name : String
pattern : String
totalDigits : PositiveInteger
type : TypeGA
values : String

TypeVariable

name : String
type : String

service

1..*

typedef

0..*

variable 0..*

templatedecls 1

input 0..1 output 0..1fault 0..*

1

operation

0..*

port

1..*

Fig. 9. ServiceAnalyzer service catalogue metamodel

C. Model extraction

Since WSDL documents are declarative and language-
independent descriptions of the Web Services, the original
proposal intended to use them as design models. After trans-
forming automatically the XML Schema description of the
WSDL document format into a regular ECore metamodel [27],
WSDL documents would be loaded as regular Eclipse Mod-
eling Framework models, reusing most of the technologies
mentioned in Section VI.

In practice, however, WSDL documents are too complex to
be used as-is for model weaving and model transformation.
WSDL documents can be divided across multiple files and
machines and combine descriptions in the WSDL and XML
Schema formats. In addition, XML Schema and WSDL are
highly flexible, allowing many possibilities that may or may
not be implemented by vendors. This has led to the definition
of specifications such as the Web Services Interoperability
Basic Profile (WS-I BP) [28], which restricts these standards
to a consistent subset that is well implemented across vendors.

Therefore, it was decided to extract models from the WSDL
documents themselves using a new custom tool, ServiceAna-
lyzer, also available as open source from [17]. ServiceAnalyzer
produces a “service catalogue” from a set of local or remote
WSDL documents that conform to the WS-I BP. Service
catalogues can be loaded as an EMF model by using their
XML Schema definition, as originally intended for WSDL.

The service catalogue metamodel is shown in Figure 9.
Models are instances of ServiceType, which contains a set
of TypeServices with their own TypePorts. Each TypePort has
a collection of TypeOperations that may have an input, an
output, and/or several fault messages. Message descriptions
are divided into a TypeTemplate containing an Apache Veloc-
ity [29] template, and a TypeDecls that declares the variables
used within the Velocity template. Variables may belong to
one of the predefined types in TypeGA, which are based on
the XML Schema primitive types, or they may belong to a

PerformanceRequirementLinks

eclipseProjectName : EString
processes : EInt
processIncrement : EInt
processIncrementInterval : EInt
threadsPerProcess : EInt
runs : EInt
consoleHost : EString
useConsole : EBoolean
updateInputsOnSpecChanged : EBoolean
numberInputsOnSpecChanged : EInt
mavenGroupId : EString
mavenArtifactId : EString
mavenVersion : EString
mavenHumanName : EString
mavenHumanDescription : EString

PerformanceRequirementLink

links 0..*

links

catalog

TypeOperation

uml

ExecutableNode
execNode

1

operation

1

Fig. 10. ServiceAnalyzer-MARTE weaving metamodel

custom type defined with a TypeTypedef.
Services store their names and namespace URIs, ports store

their names and the URLs they are listening at, and operations
and faults store their names. Type definitions must specify
at least a name and a base type, but they usually specify
additional restrictions such as a pattern based on a regular
expression (pattern), minimum or maximum values (min
or max) or a set of accepted values, among others.

D. Weaving metamodel

The weaving model needs to relate the ExecutableNodes
in the UML activity diagram with the TypeOperations in the
ServiceAnalyzer service catalogue. For instance, a developer
might want to ensure that every invocation of the evaluate
operation of the Order service finishes within a certain time
while handling a certain number of requests per second.

The weaving metamodel is shown in Figure 10. It is quite
similar to that in Figure 9, but the global options in the

182

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PerformanceRequirementLinks class have been changed to
reflect the target technologies for this transformation:
• eclipseProjectName is the name of the Eclipse

project which will be generated by the transformer. By
default, it is set to “performance.tests”.

• The attributes ranging from process to useConsole
are directly mapped to the configuration options of The
Grinder with the same name. process is the number of
worker processes that will be used by each agent, starting
from 1 and increasing by processIncrement ev-
ery processIncrementInterval milliseconds (by
default, by 1 every second). Each worker process will
spawn as many as threadsPerProcess threads and
repeat the tests the number of times indicated in runs.
If useConsole is set to “true”, the console process
at consoleHost will distribute work over the agents
connected to it.

• The rest of the attributes can be used to customise the
metadata of the Maven project that is generated by the
transformer.

As for the options for the testing process
itself, updateInputsOnSpecChanged and
numberInputsOnSpecChanged indicate if the test
inputs should be updated when the .spec file describing
their format changes, and how many should be generated
each time.

The default options should be good enough for most users.
In the next sections, we will mention again some of them as
we introduce the following steps in the generation process.

E. Test data generation

In order to run performance tests, it is necessary to provide
them with test inputs so they can exercise the WS appropri-
ately. Doing this in a completely automated way is outside the
scope of the approach. As an initial approximation, data inputs
are randomly generated using uniform distributions, based on
the variables and templates in the service catalogue.

First, the tools extract the appropriate Velocity templates
and variable declarations from the ServiceAnalyzer service
catalogue to separate files.

Listing 4 shows an Apache Velocity template which can
produce every valid request for an order evaluation service,
according to its WSDL and XML Schema declarations. As a
template language, the Velocity language is kept simple, pro-
viding only the most common programming constructs, such
as conditionals (#if), loops over a list (#foreach), variable
assignments (#set) or field references ($var.field). Ve-
locity templates are expanded during test execution with the
variables loaded into their contexts. This template produces
a <newOrder> element for each item in $evaluate.
In turn, the template produces a <articleQuantities>
element for each item, with the appropriate article identifier
and requested quantities.

Listing 5 shows the TestSpec declarations that were ex-
tracted from the same catalogue entry. The TestSpec language
is implemented by the TestGenerator tool, also available

<w:evaluate xmlns:w=”http://ws.sodmt.uca.es/”>
#foreach($V1 in $evaluate)
<newOrder>

#foreach($V2 in $V1)
<articleQuantities>
<articleID>

$V2.get(0)
</articleID>
#foreach($V3 in $V2.get(1))
<quantity>

$V3
</quantity>
#end

</articleQuantities>
#end

</newOrder>
#end

</w:evaluate>

Listing 4. Apache Velocity template extracted from the ServiceAnalyzer
catalog for producing the body of a message from test data

typedef int (min=0, max=100) TArtID;
typedef float (min=0.01, max=2000) TPrice;
typedef list (element=TPrice, min=1, max=1) TL float;
typedef tuple (element={TArtID, TL float}) TArticleQtys;
typedef list (element=TArticleQtys, min=0) TOrder;
typedef list (element=TOrder, min=1, max=1) TEvaluate;
TEvaluate evaluate;

Listing 5. TestGenerator .spec extracted from the ServiceAnalyzer catalog
describing the test data for the template in Listing 4

from [17]. It is a simple domain-specific language (inspired
on C declarations) which allows users to define new scalar,
list and tuple types based on a set of primitive types based
on XML Schema. These new types can have additional
constraints, such as having minimum or maximum values or
lengths, adhering to a certain regular expression or having a
certain number of digits. From these declarations, TestGenera-
tor can produce an arbitrary number of random tests and store
them as Velocity templates.

The Velocity files produced by TestGenerator set up the
context to be used to generate the message templates. They
consist of a sequence of variable assignments in which every
variable receives a list of values to be used within each test.
Listing 6 shows three test cases that were produced from

#set($evaluate = [
[[[85, [1530.1414]], [3, [1652.419]], [50, [550.96515]]]],
[[[92, [1682.8262]], [45, [1593.5898]]]],
[[[79, [72.64899]], [22, [603.8968]], [8, [1278.9677]]]]

])

Listing 6. Test data produced by TestGenerator from the .spec in Listing 5

183

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

grinder.processes=5
grinder.runs=100
grinder.processIncrement=1
grinder.processIncrementInterval=1000

Listing 7. Example .properties file with configuration parameters for
the workload

class TestRunner:
def call (self):

def invoke():
response = HTTPRequest().POST(

”http://localhost:8080/orders”,
”(... SOAP message ...)”)

stats = grinder.statistics.getForCurrentTest()
stats.success = (response.statusCode != 200

and stats.time < 150)
test = Test(1, ”Query order by ID”).wrap(invoke)
test()

Listing 8. Example Jython script for The Grinder with the contents of the
performance test to be run by each simulated client

the .spec in Listing 5. For instance, the first test requests
1530.14 units of article #85, 1652.419 units of article #3 and
550.965 units of article #50. We used Velocity to store test data
since it was more flexible than a simple table or spreadsheet,
as it allowed for arbitrarily nested lists.

In the wild, WSDL declarations tend to be quite lax,
allowing messages with no upper bound on their length or
elements containing negative integers, even though they are
not accepted. In these cases, users may want to customise the
service catalogue before generating the .spec descriptions
from it. This will change the values used for all tests of the
modified operations. Alternatively, users may want to modify
a single .spec file describing the inputs of a particular
test. Users may also customise the message templates with
additional logic, or provide manually designed input data
instead of generating random inputs.

The explicit separation of the service interface, message
generation template, test generation specification and test
data provides a great deal of flexibility. Later iterations of
this application could generate larger parts of the test plan
by implementing more advanced test generation strategies
beyond random generation. These advanced strategies could
be expressed as part of the links in the weaving model. The
strategy could be applied in the weaving model refining step
showed in Figure 3.

F. Test code generation

After weaving the service catalogue model with the MARTE
model and producing some input data to exercise the Web
Services, the next step is generating the test specification for
The Grinder.

The Grinder requires generating two different files: a
.properties file indicating several parameters of the work-

0

1,000

2,000

3,000

Tr
an

sa
ct

io
ns

/s
ec

on
d

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

·10−2

Elapsed time

R
es

po
ne

tim
e

(s
)

Fig. 11. Overall performance graph produced by Grinder Analyzer

load to be generated, and a Jython script with the test to be
run by each simulated client. Listings 7 and 8 show simplified
examples for these two files. These files are automatically
generated using EGL.

The .properties file in Listing 7 indicates that 5
processes should each run the test 100 times, starting with
1 process and adding one more every 1000 milliseconds. On
the other hand, the test itself consists of sending an appropriate
SOAP message to a specific URL and checking that the
response has the OK (200) HTTP status code and that it was
received within 150 milliseconds. These values are extracted
from the global options in the PerformanceRequirementLinks
object of the model. consoleHost and useConsole are
also used in the .properties file.

The actual generated Jython script is over 180 lines long
and takes advantage of several language features to avoid code
repetition. In addition to running the tests themselves, it can
regenerate test data if the .spec files have been customised
by the user since the last run. Every time a test is run, a set
of input values is randomly selected from the available test
data. This input data is used to generate the SOAP message
from the message templates, invoke the service and check the
non-functional attributes of the reply. One limitation with the
current version of the scripts is they can only check maximum
response times, unlike the approach in Section VI, which can
handle averages, medians and percentiles.

G. Test infrastructure and report generation

The approach in Section VI was straightforward: as it
simply produced Java code based on the ContiPerf library,
users would simply need to add ContiPerf to their development
environments and the run the tests using standard tools.
However, running the tests produced by this approach would
require setting up TestGenerator, The Grinder, and Apache
Velocity.

184

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Operation Passed
tests

Failed
tests

Bytes per
second

Mean
response
length

Close Order 60 0 66,590 332.95
Evaluate Order 60 0 64,333.33 321.67

TABLE I
TEST METRICS PRODUCED BY GRINDER ANALYZER (OVERALL RESULTS,

THROUGHPUT AND MESSAGE SIZES)

Operation
Mean
response
time

Response
time
std.
dev.

Mean
time
DNS

Mean
time
conn.

Mean
time
first
byte

Close Order 14.35 15.62 0 0.13 13.18
Evaluate Order 8.98 6.01 0 0.37 5.93

TABLE II
TEST METRICS PRODUCED BY GRINDER ANALYZER (TIMING

INFORMATION)

For this reason, the tools implement an additional EGL
transformation that produces an Apache Maven [30] project
description that automatically downloads all dependencies,
runs the performance tests and produces test reports from the
results. The Grinder is integrated through the open source
plug-in available at [31]. Maven also enforces a standard
directory layout for all the generated artefacts.

This infrastructure allows users to run the entire testing
process with a single mvn post-integration-test
command, which also invokes the Grinder Analyzer tool [32]
on the raw logs to produce an HTML report including (but not
limited to) the information shown in Figure 11 and Tables I
and II. The report includes both a graph with the response
times and transactions per seconds obtained, and a table with
more detailed information. The report shows that all tests
passed and that the mean response time for the tested service
was 8.98 milliseconds. These results are to be expected, since
the tool was tested against local Web Services using an in-
memory object-relational database. Applying this approach to
real-world WS is a future line of work.

VIII. CONCLUSION AND FUTURE WORK

This work has described an overall approach for generating
performance test artefacts from the abstract performance mod-
els produced by the inference algorithms in [2]. To generate
concrete test artefacts while keeping the abstract performance
models separated from any design or implementation details,
the approach links the performance model to a design or
implementation model using an intermediate weaving model.
If a design or implementation model is not available, it can be
extracted from the existing code. The weaving model can be
then optionally refined using a model-to-model transformation,
and finally transformed into the performance test artefacts with
a model-to-text transformation.

The general approach has been validated by applying it on
two target technologies. Both approaches have been success-

fully implemented and are freely available under the open
source Eclipse Public License at [17].

The first application weaves JUnit test suites with MARTE
models and converts all or some of their unit tests into
performance test cases, using the ContiPerf library. The imple-
mentation model is extracted from the Java code implementing
the test cases using the model discovery tool MoDisco [19],
and the weaving model links the ExecutableNodes in the UML
activity diagram to the Java tests in the MoDisco model.

The second application can generate performance test cases
for any Web Service that is described using the WSDL spec-
ification [21]. It is independent of the language in which the
Web Service has been implemented, as it is based on a special-
purpose performance testing tool: The Grinder [24]. Users
extract service catalogues from a set of WSDL documents and
then weave the service operations in the catalogue with the
MARTE models. The service catalogues also include message
templates and template variable declarations, which are used
to randomly generate a set of initial test inputs. Users are
able to manually customise the service catalogue, the message
templates and the test inputs. In addition to the inputs, a
set of automated model-to-text transformation produces the
Jython code and the configuration file required by the Grinder,
and a Maven project description that enables users to run the
tests and produce reports with a single command (as those in
Section VII-G).

While these applications show that the overall approach can
be reused for different target technologies, they do currently
share several limitations. Transformations only know the part
of the system under test that is strictly needed to generate the
tests. For this reason, users will need to manually customise
the tests if they need to restore the state of the system after a
performance test, a memory violation or an aborted operating
system process, or if they want to set up specific mockups for
specific subsystems in the application. Nevertheless, the trans-
formations could assist the user by providing clear “hooks”
where this kind of logic could be placed, and keeping those
“hooks” from being overwritten if the tests are generated. This
is already being done in the Java approach: the generated test
suites use EGL protected areas that are preserved when the
files are regenerated.

Future lines of work include:
• Continue evaluating both approaches by applying them to

larger Web Services running in remote services and using
larger data sets. The present versions were developed
using local WS with small in-memory databases. One
of the case studies under consideration is the Worldtravel
testbed in [33], which implements a working business
application backed by a relational database with more
than 1GB of data.

• Enhance the Jython code generated in the second ap-
proach to include the same target metrics as in ContiPerf,
such as average time, median time or percentiles. Usu-
ally, Service Level Agreements are defined in terms of
percentages (“90% of the requests should be attended in
x seconds”).

185

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Provide more advanced strategies for generating test
inputs for the WSDL-based WS. Currently, all inputs are
generated using a uniform random distribution, but other
random distributions could be combined. Alternatively,
an evolutionary algorithm could be used to look for test
cases that produce SLA violations, as proposed by Di
Penta et al. in [9].

• Handle more complex service level agreements beyond
meeting a certain service level objective (throughput
and/or response times in our case). For instance, the
current algorithms do not take into account the fact that
a developer may want to enforce different SLOs than
a customer in production. These particular variations
could be handled by the weaving model itself, however,
by adding appropriate global options to scale back the
performance requirements.

• Evaluate the overall approach for other target technolo-
gies, such as unit tests written for other programming
languages or different kinds of systems altogether, such
as multimedia applications or graphical user interfaces.

ACKNOWLEDGEMENTS

This work was funded by the research scholarship PU-EPIF-
FPI-C 2010-065 of the University of Cádiz, the MoDSOA
project (TIN2011-27242) under the National Program for
Research, Development and Innovation of the Ministry of
Science and Innovation (Spain) and by the PR2011-004 project
under the Research Promotion Plan of the University of Cádiz.

REFERENCES

[1] A. Garcı́a-Domnguez, I. Medina-Bulo, and M. Marcos-Bárcena, “An ap-
proach for performance test artefact generation for multiple technologies
from MARTE-Annotated workflows,” in 7th International Conference
on Internet and Web Applications and Services (ICIW 2012), Stuttgart,
Germany, June 2012.

[2] A. Garcı́a-Domı́nguez, I. Medina-Bulo, and M. Marcos-Bárcena,
“Model-driven design of performance requirements with UML and
MARTE,” in Proceedings of the 6th International Conference on Soft-
ware and Data Technologies, vol. 2. Seville, Spain: SciTePress, July
2011, pp. 54–63.

[3] M. Woodside, G. Franks, and D. Petriu, “The future of software
performance engineering,” in Proc. of Future of Software Engineering
2007, 2007, pp. 171–187.

[4] D. C. Petriu and H. Shen, “Applying the UML Performance Profile:
Graph Grammar-based Derivation of LQN Models from UML Specifi-
cations,” in Proc. of the 12th Int. Conference on Computer Performance
Evaluation: Modelling Techniques and Tools (TOOLS 2002), ser. Lecture
Notes in Computer Science. London, UK: Springer Berlin, 2002, vol.
2324, pp. 159—177.

[5] M. Tribastone and S. Gilmore, “Automatic extraction of PEPA perfor-
mance models from UML activity diagrams annotated with the MARTE
profile,” in Proc. of the 7th Int. Workshop on Software and Performance.
Princeton, NJ, USA: ACM, 2008, pp. 67–78.

[6] Object Management Group, “UML Profile for Modeling and Analysis
of Real-Time and Embedded systems (MARTE) 1.0,” http://www.omg.
org/spec/MARTE/1.0/, November 2009, last checked on 2012-03-03.

[7] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing,” Working Paper 04/2006, April 2006, last checked on
2012-12-20. [Online]. Available: http://researchcommons.waikato.ac.nz/
handle/10289/81

[8] C. Barna, M. Litoiu, and H. Ghanbari, “Model-based performance test-
ing (NIER track),” in Proceedings of the 33rd International Conference
on Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 872–875.

[9] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno, “Search-
based testing of service level agreements,” in Proceedings of Genetic and
Evolutionary Computation Conference, H. Lipson, Ed. London, United
Kingdom: ACM, July 2007, pp. 1090–1097.

[10] K. Suzuki, T. Higashino, A. Ulrich, T. Hasegawa, A. Bertolino,
G. De Angelis, L. Frantzen, and A. Polini, “Model-based generation of
testbeds for web services,” in Testing of Software and Communicating
Systems, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, vol. 5047, pp. 266–282.

[11] M. D. Del Fabro, J. Bézivin, and P. Valduriez, “Weaving models with
the Eclipse AMW plugin,” in Proceedings of the 2006 Eclipse Modeling
Symposium, Eclipse Summit Europe, Esslingen, Germany, October 2006.

[12] J. M. Vara, M. V. De Castro, M. Didonet Del Fabro, and E. Marcos,
“Using weaving models to automate model-driven web engineering pro-
posals,” International Journal of Computer Applications in Technology,
vol. 39, no. 4, pp. 245–252, 2010.

[13] OMG, “UML Profile for Schedulability, Performance, and Time (SPTP)
1.1,” January 2005, last checked on 2012-12-20. [Online]. Available:
http://www.omg.org/spec/SPTP/1.1/

[14] ——, “UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms (QFTP) 1.1,” http://www.omg.org/spec/
QFTP/1.1/, April 2008.

[15] D. S. Kolovos, “Epsilon ModeLink,” 2010, last checked on 2012-12-20.
[Online]. Available: http://eclipse.org/epsilon/doc/modelink/

[16] D. S. Kolovos, R. F. Paige, L. M. Rose, and A. Garcı́a-Domı́nguez,
“The Epsilon Book,” 2011, last checked on 2012-12-20. [Online].
Available: http://www.eclipse.org/epsilon/doc/book

[17] A. Garcı́a-Domı́nguez, “Homepage of the SODM+T project,” January
2012, last checked on 2012-12-20. [Online]. Available: https:
//neptuno.uca.es/redmine/projects/sodmt

[18] V. Bergmann, “ContiPerf 2,” September 2011, last checked on
2012-12-20. [Online]. Available: http://databene.org/contiperf.html

[19] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: a generic
and extensible framework for model driven reverse engineering,” in
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, September 2010, pp. 173–
174.

[20] H. Haas and A. Brown, “Web services glossary,” World Wide Web
Consortium, W3C Working Group Note, February 2004, last checked
on 2012-12-20. [Online]. Available: http://www.w3.org/TR/ws-gloss/

[21] World Wide Web Consortium, “WSDL 2.0 part 1: Core Language,”
June 2007, last checked on 2012-12-20. [Online]. Available: http:
//www.w3.org/TR/wsdl20

[22] Apache Software Foundation, “Apache CXF,” November 2012, last
checked on 2012-12-20. [Online]. Available: https://cxf.apache.org/

[23] Java.net, “JAX-WS reference implementation,” November 2011, last
checked on 2012-12-20. [Online]. Available: http://jax-ws.java.net/

[24] P. Aston and C. Fizgerald, “The Grinder, a Java Load Testing
Framework,” 2012, last checked on 2012-12-20. [Online]. Available:
http://grinder.sourceforge.net/

[25] Apache Software Foundation, “Apache JMeter,” November 2011, last
checked on 2012-12-20. [Online]. Available: http://jakarta.apache.org/
jmeter/

[26] eviware.com, “loadUI homepage,” 2012, last checked on 2012-12-20.
[Online]. Available: http://www.loadui.org/

[27] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd ed., ser. Eclipse Series. Addison-Wesley
Professional, December 2008.

[28] Web Services Interoperability Organization, “Basic profile - version 1.1
(Final),” April 2006, last checked on 2012-12-20. [Online]. Available:
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

[29] Apache Software Foundation, “Apache Velocity Project homepage,”
November 2010, last checked on 2012-12-20. [Online]. Available:
http://velocity.apache.org

[30] ——, “Apache Maven homepage,” January 2012, last checked on
2012-12-20. [Online]. Available: http://maven.apache.org

[31] G. Iacono and F. Muñoz-Castillo, “grinder-maven-plugin home-
page,” July 2012. [Online]. Available: http://code.google.com/p/
grinder-maven-plugin/

[32] T. Bear, “Grinder Analyzer homepage,” July 2012, last checked on
2012-12-20. [Online]. Available: http://track.sourceforge.net/

[33] P. Budny, S. Govindharaj, and K. Schwan, “Worldtrael: A testbed
for service-oriented applications,” Service-Oriented ComputingICSOC
2008, pp. 438–452, 2008.

