
103

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Aggregation Skip Graph: A Skip Graph Extension
for Efficient Aggregation Query over P2P Networks

Kota Abe, Toshiyuki Abe, Tatsuya Ueda, Hayato Ishibashi and Toshio Matsuura
Graduate School for Creative Cities, Osaka City University

Osaka, Japan
Email: {k-abe,t-abe,tueda,ishibashi,matsuura}@sousei.gscc.osaka-cu.ac.jp

Abstract—Skip graphs are a structured overlay network that
allows range queries. In this article, we propose a skip graph
extension called aggregation skip graphs, which efficiently execute
aggregation queries over peer-to-peer network. An aggregation
query is a query to compute an aggregate, such as MAX,
MIN, SUM, or AVERAGE, of values on multiple nodes. While
aggregation queries can be implemented over range queries of
conventional skip graphs, it is not practical when the query
range contains numerous nodes because it requires the number of
messages in proportion to the number of nodes within the query
range. In aggregation skip graphs, the number of messages is
reduced to logarithmic order. Furthermore, computing MAX or
MIN can be executed with fewer messages as the query range
becomes wider. In aggregation skip graphs, aggregation queries
are executed by using periodically collected partial aggregates
for local ranges of each node. We have confirmed the efficiency
of the aggregation skip graph by simulations.

Keywords—aggregation query; peer-to-peer networks; skip
graphs

I. INTRODUCTION

P2P (Peer-to-Peer) systems have attracted considerable at-
tention as technology for performing distributed processing
on massive amounts of information using multiple nodes
(computers) connected via a network. In P2P systems, each
node works autonomously cooperating with other nodes that
constitute a system that can be scaled by increasing the number
of nodes.

Generally, P2P systems can be grouped into two major cat-
egories: unstructured and structured P2P systems. Structured
P2P systems is able to look up data efficiently (typically in
logarithmic or constant order), by imposing restrictions on the
network topology.

Regarding structured P2P systems, DHT (Distributed Hash
Table)-based systems, such as Chord [2], Pastry [3], and
Tapestry [4], have been extensively researched. DHTs are a
class of decentralized systems that can efficiently store and
search for key and value pairs. DHTs also excel at load
distribution. However, DHTs hash keys to determine the node
that will store the data, and hence a value cannot be searched
for if the correct value of the key is not known. Therefore, it
is difficult with DHT to search for nodes whose key is within
a specified range (range query).

As a structured P2P system which supports range queries,
the skip graph [5] has attracted considerable attention. A skip
graph is a distributed data structure that is constructed from

multiple skip lists [6] that have keys in ascending order. The
skip graph is suitable for managing distributed resources where
the order of the keys is important.

Aggregation queries can be considered a subclass of range
queries. An aggregation query is a query to compute an
aggregate, such as the MAX, MIN, SUM, or AVERAGE,
from the values that are stored in multiple nodes within a
specified range. Aggregation queries are useful and sometimes
essential for P2P database systems. Aggregation queries have
a wide variety of applications. For example, across a range
of nodes in a distributed computing system such as a grid, an
aggregation query can be used to obtain the average CPU load,
the node with the maximum CPU load, or the total amount of
available disk space. An aggregation query can also be used
to compute the average or maximum value from sensor data
within a specified range on a sensor network. Other possible
usage of aggregation queries can be found in [7][8].

While aggregation queries can be implemented by using
range query over skip graphs, this is not efficient because every
node in the specified range must process the aggregation query
message; thus, this method stresses network bandwidth and
CPU especially when aggregation queries having a wide range
are frequently issued.

In this paper, we propose the aggregation skip graph,
a skip graph extension that efficiently execute aggregation
queries. In the aggregation skip graph, the expected number
of messages and hops for a single aggregation query is
O(log n + log r), where n denotes the number of nodes
and r denotes the number of nodes within the query range.
Furthermore, computing MAX or MIN can be executed with
fewer messages as the query range becomes wider.

We discuss related work in Section II and present the
algorithm of the aggregation skip graph in Section III. In
Section IV, we evaluate and discuss the aggregation skip
graph. Lastly, in Section V, we summarize this work and
discuss future work.

II. RELATED WORK

A. Aggregation in P2P Network

Some research has focused on computing aggregations on
P2P networks, to name a few, in the literature [7]–[11].

Most of the existing methods construct a reduction tree
for executing aggregation queries, as summarized in [10].
However, this approach incurs a cost and complexity because

104

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

constructing a reduction tree over a P2P network is equal to
adding another overlay network layer over an overlay network.

In addition, to our knowledge, none of the existing methods
support computing aggregations in a subset of nodes; they
compute aggregates only on all nodes.

As we discuss later, the aggregation skip graph does not
require constructing a reduction tree, nor even maintaining
additional links to remote nodes; aggregation queries are
executed utilizing the data structure of underlying skip graphs.
Furthermore, it can compute aggregates within a subset of
nodes, by specifying a key range.

B. Skip Graph and Skip Tree Graph
A skip graph [5] is a type of structured overlay network.

The skip graph structure is shown in Fig. 1. The squares in
the figure represent nodes, and the number within each square
is the key. Each node has a membership vector, which is a
uniform random number in base w integer. Here, we assume
w = 2.

Skip graphs consist of multiple levels, and level i contains
2i doubly linked lists. At level 0, all of the nodes belong to
only one linked list. At level i(> 0), the nodes for which the
low-order i digit of the membership vector matches belong to
the same linked list. In the linked list, the nodes are connected
by the key in ascending order. We assume that the leftmost
node in the linked list and the rightmost node are connected
(i.e., circular doubly-linked list). To maintain the linked lists,
each node has pointers (IP address, etc.) to the left and right
nodes at each level.

In a skip graph, when the level increases by 1, the average
number of nodes for one linked list decreases by 1/2. We
refer to the level at which the number of nodes in the linked
list becomes 1 as the maxLevel. The maxLevel corresponds
to the height of the skip graph. In the skip graph for n
nodes, the average maxLevel is O(log n), and the number of
hops required for node insertion, deletion and search is also
O(log n).

With skip graphs, aggregation queries can be easily imple-
mented over range queries, in which one is asked all keys
in [x, y]. Range queries require all nodes within the range
receive a message. If we denote the number of nodes within
the target range of the aggregation query by r, then range
queries requires O(log n + r) messages and hops on average.

The skip tree graph [12] is a variant of skip graph, which al-
lows fast aggregation queries by introducing additional point-
ers called conjugated nodes at each level. Skip tree graphs run
range queries in O(log n + r) messages and O(log n + log r)
hops.

In either skip graphs or skip tree graphs, the number
of messages for range queries increases in proportion to r;
thus, these methods are not practical for aggregation queries,
especially when aggregation queries with a wide range are
frequently issued.

III. PROPOSED METHOD

In this section, we describe the detail of the aggregation
skip graph.

Level 0

Level 1

Level 2

Level 3

Membership Vector 010 100 111 001 110101

14

7

7

14
9

7
9

6
14

14
92

2

2

2

6

5

95

5

5

6

Key

Fig. 1. Example of skip graphs

In the following sections, at first, we focus on aggregation
queries to find the largest value in a specified range (i.e.,
MAX). We discuss other general aggregates (such as AVER-
AGE, SUM, etc.) later in Section III-D.

A. Data Structure

In aggregation skip graphs, each node stores a key–value
pair. In the same manner as conventional skip graphs, the
linked lists at each level are sorted by key in ascending order.
The value is not necessarily related to the order of the key,
and may change, for example, as in the case of sensor data.

The data stored in each node of an aggregation skip graph
are shown in Table I. The key, membership vector, left[]
(pointer to the left node at each level), right[] (pointer to
the right node at each level), and maxLevel are the same as
in conventional skip graphs. Hereinafter, we use the notation
P.key to denote the key of node P. Also, we use the notation
“node x” to denote the node whose key is x.

In addition to the skip graph, each node of a aggregation
skip graph stores agval[] and keys[]. The value of the node
is stored in agval[0]. P.agval[i] (0 < i) stores the MAX value
within the nodes between P (inclusive) to P.right[i] (exclusive)
in the linked list at level 0, where P.right[i] denotes the right
node of node P at level i. P.keys[i] (0 < i) stores the key
set that corresponds to the P.agval[i]. (A set is used because
multiple keys may share the same MAX value.) P.keys[0] is
not used. We describe the method to collect agval[] and keys[]
later in Section III-C.

In skip graphs, the pointers for the left and right nodes point
to more distant nodes as the level increases. Therefore, as the
level increases, agval[] stores MAX values in a wider range,
and agval[maxLevel] stores the MAX value for all nodes.

Fig. 2 shows an example of an aggregation skip graph. The
squares in level 0 show the value (agval[0]) of a node, and
agval[i]/keys[i] in level i (0 < i).

105

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I
DATA MANAGED BY EACH NODE

Variable Description
key Key
m Membership vector
right[] Array of pointers to right node
left[] Array of pointers to left node
maxLevel First level at which the node is the only node

in the linked list
agval[] Array of collected MAX values for each

level (agval[0] is the value of the node)
keys[] Array of key sets that correspond to agval[]

Let us consider, as an example, the square at level 2 of
node 5. The square contains 5/6 because the MAX value in
the nodes between node 5 (inclusive) and node 9 (exclusive),
which is the right node of node 5 at level 2, is 5 and the
corresponding key is 6. Note that all of the nodes contain 9/2

at the highest level because the MAX value for all nodes is 9
and the corresponding key is 2.

In an aggregation skip graph, insertion and deletion of nodes
can be accomplished by using the conventional skip graph
algorithm; thus, this is not discussed here.

B. Query Algorithm

Here, we describe the algorithm for aggregation queries.
The algorithm gives the MAX value (and the corresponding

key set) within all values stored by nodes whose key is in the
specified key range r = [r.min, r.max].

In the following, we provide a brief overview of the
algorithm first (Section III-B1) and the details next (Section
III-B2).

1) Algorithm overview: An aggregation query proceeds,
starting from a node on the left side of the specified range
(having a smaller key), to a node on the right side of the
range.

Level 0

Level 1

Level 2

Level 3

2 6 7 9 14Key
Membership Vector 010 100 111 001 110

5
101

7

7/14

9/2

9/2

9/2

9/29/2

9/2

9/2

9

5/6

2

5/6 3/7

5/6

9/2

9/2

2

7/14

9/2

35

agval[i]/keys[i]

Value

Fig. 2. Example of aggregation skip graph

Let us consider the case where node P issues an aggregation
query for range r. If P is within r, P forwards the query
message to node Q, where Q is a node known to P, which
is outside of range r and the closest to r.min. (If P is outside
range r, then read the Q below as P instead.)

Let i denote the current level, starting from maxLevel −
1. Let s denote the range from Q to Q.right[i], and x the
MAX value in s. Node Q executes one of the following steps,
determined by the relation between range r, range s and x.
This is depicted in Fig. 3 (1)–(4). In the figure, the arrow
represents the pointer from Q to Q.right[i].

(1) Range s includes range r, and the key of x is
within r.
It is clear that x is also the MAX value for r; thus,
x is returned to P as the MAX value and the query
terminates.

(2) Range s has a common area with range r, and
the key of x is within r.
The value x is the MAX value for the common area
between range s and range r. However, because an
even larger value may exist in the remaining range
r, the query is forwarded to Q.right[i]. The value
of x and the corresponding key are included in the
forwarded message.

(3) Range s has a common area with range r, but
the key of x is not within r
In this case, no information is obtained about the
MAX value within range r; thus, the current level
(i) is decreased by 1 and this process is repeated
again from the beginning.

(4) Range s and range r do not have any common
areas
The MAX value in range r does not exist in range
s; thus, the query is sent to Q.right[i].
In this case, Q.right[i] acts as the new Q and the
process is repeated again in the same manner.

Next, we describe the algorithm for a node that receives
a forwarded query message from node Q in case (2). We
denote such a node by R. Again, let i denote the current level,
starting from maxLevel− 1. Also, let t denote the range from
R to R.right[i], and let y denote the MAX value in t. Node R
executes one of the following steps. This is depicted in Fig. 3
(5)–(7).

(5) Range t has a common area with range r, and
the key of y is within r
The max(x, y) is returned to P and the query termi-
nates.

(6) Range t has a common area with range r, but the
key of y is not within in r
If x > y, x is returned to P as the MAX value and
the query terminates. Otherwise, decrease the current
level (i) by 1 and repeat this process.

(7) Range t is included in range r
The query is forwarded to R.right[i]. The max(x, y)
and the corresponding key are included in the for-

106

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

y

range r

(1)

(2)

(3)

Q

Q

Q

Q(4)

(5)

(6)

(7)

R

R

R

x

x

x

x

y

y

s

s

s

s

t

t

t

Fig. 3. Relationship between node and range

warded message.

2) Algorithm details: Here, we present the detailed algo-
rithm in pseudocode.

Node P initiates an aggregation query by calling
agQuery(r, d, P, −∞, ∅). The parameter d indicates
the direction of the query. The initial value of d is, LEFT if
P.key is included in range r, otherwise RIGHT.

In the description, RPC (Remote Procedure Call) is used
for communication. The notation a ≺ b ≺ c means (a < b <
c ∨ b < c < a ∨ c < a < b). (a ≺ b ≺ c = true if
node a, b, c appear in this order in a sorted circular linked list,
following the right link starting from node a.)
// r: key range [r.min, r.max]
// d: forwarding direction (LEFT or RIGHT)
// s: query issuing node
// v: MAX value that has been acquired thus far
// k: set of keys that corresponds to v
P.agQuery(r, d, s, v, k)

if elements of P.keys[maxLevel] are included in r then
send P.agval[maxLevel] and P.keys[maxLevel] to node s
return

end if
{When forwarding to the left (trying to reach the left side of range r)}
if d = LEFT then

search for the node n that is closest to r.min and satisfies
(r.max ≺ n.key ≺ r.min) from the routing table of P (i.e.,
P.left[] and P.right[])
if such node n exists then

call agQuery(r, RIGHT, s, v, k) on node n
else

let n be the node that is closest to r.min and satisfies (r.min
≺ n.key ≺ P.key), found in the routing table of P
call agQuery(r, LEFT, s, v, k) on node n

end if
return

end if
{When forwarding to the right}
if d = RIGHT then

if P.key is included in r and a level j exists that satisfies (P.key
≺ r.max ≺ P.right[j]) and v > P.agval[j] then
{Corresponds to the case where x > y in SectionIII-B1 case (6)}
send v and k to node s
return

end if
{The process for finding i that satisfies the conditions in the next if
statement corresponds to (3) or (6)}
if level k exists such that elements of P.keys[k] are included
within r (let i be the largest value for such k) then
{Update the v and k}
if P.agval[i] > v then

v = P.agval[i], k = P.keys[i]
else if P.agval[i] = v then

k = k ∪ P.keys[i]
end if
{Terminate if the query exceeds the rightmost end of r}
if r.min ≺ r.max ≺ P.right[i].key then
{Corresponds to (1) or (5)}
send v and k to node s
return

end if
{Corresponds to (2) or (7)}
call agQuery(r, RIGHT, s, v, k) on P.right[i]
return

else
if P.key ≺ r.max ≺ P.right[0].key then
{No node exists within the range}
send null to node s

else if P.right[0].key is included in r then
{The case that P is the node directly to the left end of r}
call agQuery(r, RIGHT, s, v, k) on P.right[0]

else
{Corresponds to (4)}
search for the node n that is closest to r.min and satisfies
(P.key ≺ n.key ≺ r.min) from the routing table of P
call agQuery(r, RIGHT, s, v, k) on n

end if
return

end if
end if

C. Aggregates Collecting Algorithm

Because nodes may join or leave, and the value of nodes
may change, we periodically collect and update the agval[]
and keys[] of each node. We next explain the algorithm used
to accomplish this.

1) Algorithm overview: When a node joins an aggregation
skip graph, all entries of agval[] and keys[] of the node are
respectively set to the value and the key of the node. Then,
each node periodically sends an update message to collect
agval[] and keys[] for each level. This is shown in Fig. 4.
The thick line in the figure indicates the message flow when
node 5 sends an update message. (It is assumed that node
5 has newly joined the aggregation skip graph.) The update
message is forwarded to the left node, starting from level
maxLevel− 1. If the left node is the originating node of the
update message (node 5), then the level is decreased and the
forwarding continues. Finally at level zero, the message returns
to the originating node (node 5).

The update message contains v[] and k[] to store the MAX
value and the corresponding key set for each level. While
the message is being forwarded to the left at level i, the

107

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Level 0

Level 1

Level 2

Level 3

2 6 7 9 14Key
Membership Vector 010 100 111 001 110

5
101

7

7/14

9/2

9/2

9/2

9/29/2

9/2

9/2

9

5/6

2

2/5 3/7

2/5

2/5

9/2

2

7/14

9/2

35

The v[] in the update message that each node forwards to the left node

Node P

Node 5 (P)

2v[0]
v[1] 2

v[3] 2
v[2] 2

Node 9

2v[0]
v[1] 2

v[3] 9
v[2] 2

Node 7

2v[0]
v[1] 2

v[3] 9
v[2] 3

Node 6

2v[0]
v[1] 5

v[3] 9
v[2] 3

Fig. 4. Message flow of an update message

MAX value of agval[i] on the node that the message passes
is collected in v[i + 1]. When the message returns to the
originating node, agval[i] (i > 0) is calculated using the
following formula:

P.agval[i]← max{v[j] | 0 ≤ j ≤ i}.

The lower part of Fig. 4 shows v[] in an update message
that each node forwards to the left node. When the originating
node (node 5) receives the update message, its agval[] is set
to {2, 5, 5, 9}.

To obtain the correct agval[] and keys[] for every node,
each node must execute the update procedure described above
maxLevel times because the accuracy of the information stored
in an update message level i (i.e., v[i] and k[i]) depends on
the accuracy of agval[i− 1] and keys[i− 1] of each node that
the message passes.

2) Algorithm details: Here, we present the detailed algo-
rithm using pseudocode.

Each node periodically execute update(maxLevel -
1, P.agval[], P.keys[], P) for updating its agval[]
and keys[] .
// lv: level
// v[]: array of aggregated value
// k[]: array of key set
// s: originating node of update message
P.update(lv, v[], k[], s)
{When the message returns to the originating node}
if lv = 0 and P = s then

for i = 1 to maxLevel do
find j where v[j] is the MAX value from v[0] to v[i]

P.agval[i] ← v[j]
P.keys[i] ← k[j]
{If multiple j’s correspond to the MAX value, k[j] is a union set
of them}

end for
return

end if
{A larger value is found}
if v[lv + 1] < P.agval[lv] then

v[lv + 1] ← P.agval[lv]
k[lv + 1] ← P.keys[lv]

else if v[lv + 1] = P.agval[lv] then
k[lv + 1] ← k[lv + 1] ∪ P.keys[lv]

end if
{Find a level from the top where the left node is not s}
for i = lv downto 1 do

if P.left[i] 6= s then
call update(i, v, k, s) on P.left[i]
return

end if
end for
call update(0, v, k, s) on P.left[0]
return

D. Computing General Aggregates

While the algorithm described so far targets the MAX as the
aggregates, it is trivial to adapt to the MIN. To compute other
general aggregates such as the AVERAGE, SUM or COUNT,
the following modification is required.

Instead of storing the MAX value, agval[] stores both the
sum of values and number of nodes within each range. The ag-
gregates collecting algorithm should be modified accordingly.
In the case of computing the MAX value, the result may be
obtained in an early step (i.e., it is not always necessary to
reach the nodes at each end of the region.). However, when
computing the AVERAGE, SUM or COUNT, it is always
necessary to reach the node at both ends; first route a query
message to the leftmost node of the query range and then route
the message to the rightmost node of the range. This requires
total O(log n + log r) messages and hops.

In general, this method can compute any aggregation func-
tion f that satisfies a property f(S) = f(S1) ◦ f(S2) where
S, S1 and S2 are a set of data that satisfies S = S1 + S2

and ◦ is a binary operator. In addition, a function consisting
of combination of such f can be computed. For example, the
variance (1

N

∑N
i=1 x2

i − x) can be computed using COUNT,
SUM of squares and AVERAGE.

IV. EVALUATION AND DISCUSSION

In this section, we give some evaluation and discussion of
the aggregation skip graph. We take n as the total number of
nodes, r as the target range for the aggregation query.

A. Cost of the Aggregation Query

Here, we examine the number of messages and hops
required for an aggregation query. The algorithm proposed
in this paper does not send messages to multiple nodes
simultaneously, so the required number of hops and number
of messages are equal.

108

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) MAX and MIN: When computing the MAX (or MIN),
in the worst case, the query algorithm in Section III-B gives
the maximum number of hops when the closest nodes on both
sides outside of range r store values that are larger than the
largest value within r. In such cases, the aggregation query
message (1) first arrives at the node immediately to the left
of r, and then (2) reaches the rightmost node within r. This
requires O(log n + log r) hops on average.

However, in an aggregation skip graph, as the target range of
the aggregation query becomes wider, the probability becomes
higher that the MAX (or MIN) value stored in agval[] of each
node falls within the query range. Therefore, on average the
aggregation query is able to be executed in fewer hops. To
evaluate the number of hops, we ran the following simulation.

We set the number of nodes (n) as 1,000 for the simu-
lation. We assigned a key and value to each node using a
random number between 0 and 9,999. We also assigned the
membership vector using a random number.

Next, we registered each node in the aggregation skip graph.
We also set the agval[] and keys[] of each node using the
algorithm discussed in Section III-C.

We executed the simulation varying the size of the aggre-
gation query range, from 1% to 95% of the key value range
(0 to 9,999). (We used 1% steps from 1% to 10%, and 5%
steps beyond 10%.) We measured the maximum, the average,
and the 50th and 90th percentiles, of number of hops.

The trial was performed 1,000 times for each range size.
For each experiment, the initiating node of the aggregation
query and the range of the aggregation query were selected
using random numbers.

The results are shown in Fig. 5. The x-axis shows the
width of the aggregation query range, and the y-axis shows
the number of hops.

From the graph, we can confirm that as the target range of
the aggregation query becomes wider, the number of average
hops decreases. In addition, according to the 50th percentile
value, we can see that the query often terminates in 0 hops
when the range size is large.

The maximum number of hops is not stable. This is because
there is no tight upper bound of hops in skip graphs; it is
affected by distribution of membership vectors.

2) General Aggregates: We also executed a simulation
for computing general aggregates (See Section III-D) in the
same condition (Fig. 6). It confirms that computing general
aggregates is executed in O(log n + log r) messages.

B. Cost of Collecting Aggregates

As discussed in Section III-C, each node must periodically
collect aggregates into its agval[] and keys[]. Here, we discuss
the cost of this procedure.

On average, the number of hops that the message is for-
warded to the left node in one level is about 1 hop, assuming
uniformity of membership vectors. Considering the average
maxLevel is in O(log n), an update message sent from a
particular node will be forwarded O(log n) times on average
before it returns to the node.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

of

 h
op

s

range query extent (%)

max
90 percentile

average
50 percentile

Fig. 5. Number of hops vs query range size for computing MAX

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

of

 h
op

s

range query extent (%)

max
90 percentile

average
50 percentile

Fig. 6. Number of hops vs query range size for computing general aggregates

Each node executes this procedure periodically. If the period
of this procedure is t, then O(n log n) update messages are for-
warded by all nodes in t. Because these messages are scattered
over n nodes, each node processes O(log n) messages in t on
average.

Let us investigate this additional cost is worth paying by
comparing the estimated number of messages for an aggrega-
tion skip graph with that for a conventional skip graph using
simple range queries.

We assume that each node issues q aggregation queries in
period t and each query targets dpne nodes (0 < p ≤ 1). In
the conventional method, qn(c1 log2 n + dpne) messages are
issued in t, where c1 (and c2, c3 below) is a constant factor.
In the aggregation skip graph, nc2 log2 n messages are issued
for collecting aggregates and qn(c1 log2 n + c3 log2dpne)
messages are issued for aggregation queries, which sum up to
nc2 log2 n + qn(c1 log2 n + c3 log2dpne) messages in t. Note
that this calculation can be applied both to the worst case of
computing MAX or MIN and to the average case of computing
general aggregates (see Section IV-A).

The aggregation skip graph is more efficient than the
conventional method with regard to the number of mes-

109

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

q
(#

 o
f a

gg
r.

qu
er

y
pe

r n
od

e
in

 t)

p (range query extent, %)

n=100
n=1,000

n=10,000
n=100,000

Fig. 7. Graph to determine which, the aggregation skip graph or the
conventional skip graph, is efficient. Both axes are in logarithmic scale. The
area under the curve is the region where the conventional skip graph is more
efficient.

sages if qn(c1 log2 n + dpne) > nc2 log2 n + qn(c1 log2 n +
c3 log2dpne), which is equivalent to q > (c2 log2 n)/(dpne −
c3 log2dpne).

Fig. 7 is a plot of function (c2 log2 n)/(dpne−c3 log2dpne)
in several n, varying p from 0 to 1. The x-axis shows p and
the y-axis shows the q, both in logarithmic scale. We use
c2 = 1.08, c3 = 0.91, that are obtained from a preliminary
experiment (c1 is eliminated in the function). The area under
the curve is the region where the conventional skip graph is
more efficient. For example, if n = 100, 000 and each node
issues 0.1 queries in t, the aggregation skip graph is more
efficient when the query covers more than about 0.18% of
nodes, or 180 nodes. As one can see from the graph, the
aggregation skip graph is in general more efficient than the
conventional skip graph when the query frequency is high. In
addition, even if the query frequency is low, the aggregation
skip graph is more efficient unless both the query range and
the number of nodes are very small.

C. Recovering from Failures

Due to a node failure or ungraceful leaving, the link
structure of (aggregation) skip graphs might be temporarily
broken. In that case, agval[] and keys[] of some nodes might
have out-of-date values. However, because these values are
periodically updated, this situation is eventually resolved as
the link structure of the skip graphs is recovered. (We assume
that some repair algorithm for skip graphs is engaged.)

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed aggregation skip graphs,
which allows efficient aggregation queries. The structure of
aggregation skip graphs is quite simple; utilizing the structure
of skip graphs enables eliminating construction of a reduction
tree. Thus, it can be easily implemented over skip graphs.
The aggregation skip graph supports computing aggregates on
a subset of nodes by specifying key ranges, which cannot be

accomplished with conventional aggregation algorithms in P2P
networks.

Computing aggregates with aggregation skip graphs requires
only O(log n + log r) messages, which is a substantial im-
provement over the O(log n + r) messages required of range
queries over conventional skip graphs (n denotes the number
of nodes and r denotes the number of nodes within the query
range). In addition, computing the MAX or MIN is quite fast;
it requires fewer messages as the query range becomes wider.

The aggregation skip graph has the following drawbacks:
(1) additional costs are incurred because each node collects
aggregates periodically; and (2) the aggregation query results
do not reflect the up-to-date situation because results are based
on periodically collected aggregates. However, we believe
that aggregation skip graphs are useful for P2P systems that
execute aggregation queries over a wide target range or that
have large number of nodes.

One of our future work is to devise a method to reduce the
cost of collecting aggregates. The following methods should
be considered. (1) adaptively adjust the collection period, or
(2) update (and propagate) aggregates only when necessary.
Another future work is to give an exhaustive comparison be-
tween the aggregation skip graph with the existing techniques
such as in [7]–[11].

ACKNOWLEDGMENTS

We would like to express our gratitude to Dr. Mikio Yoshida
at BBR Inc. for his insightful comments and suggestions. This
research was partially supported by the National Institute of
Information and Communications Technology (NICT), Japan.

REFERENCES

[1] Kota Abe, Toshiyuki Abe, Tatsuya Ueda, Hayato Ishibashi, and Toshio
Matsuura. Aggregation skip graph: An extension of skip graph for
efficient aggregation query. In AP2PS ’10: Proceedings of the 2nd
International Conference on Advances in P2P Systems, pages 93–99,
2010.

[2] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. ACM SIGCOMM Computer Communication
Review, 31(4):149–160, 2001.

[3] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. Lecture
Notes in Computer Science, 2218:329–350, 2001.

[4] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Technical
Report UCB/CSD-01-1141, UC Berkeley, April 2001.

[5] James Aspnes and Gauri Shah. Skip graphs. ACM Trans. on Algorithms,
3(4):1–25, 2007.

[6] William Pugh. Skip lists: A probabilistic alternative to balanced trees.
Communications of the ACM, 33:668–676, 1990.

[7] Carlos Baquero, Paulo Sérgio Almeida, and Raquel Menezes. Fast
estimation of aggregates in unstructured networks. In International
Conference on Autonomic and Autonomous Systems (ICAS), pages 88–
93. IEEE Computer Society, 2009.

[8] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Transactions on Computer
Systems, 23(3):219–252, 2005.

[9] Mayank Bawa, Hector Garcia-Molina, Aristides Gionis, and Rajeev
Motwani. Estimating aggregates on a peer-to-peer network. Technical
Report 2003-24, Stanford InfoLab, 2003.

110

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] Norvald H. Ryeng and Kjetil Nørvåg. Robust aggregation in peer-
to-peer database systems. In Proceedings of the 2008 international
symposium on Database engineering & applications (IDEAS’08), pages
29–37. ACM, 2008.

[11] Ji Li, Karen Sollins, and Dah-Yoh Lim. Implementing aggregation
and broadcast over distributed hash tables. SIGCOMM Compututer
Communication Review, 35(1):81–92, 2005.

[12] Alejandra González Beltrán, Peter Milligan, and Paul Sage. Range
queries over skip tree graphs. Computer Communications, 31(2):358–
374, 2008.

