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Abstract—Next generation fixed wireless networks are most
likely organized in a mesh structure. The performance of these
mesh networks is mainly influenced by the routing scheme
and the channel assignment. In this paper, we focus on the
routing and channel assignment in large-scale Wireless Mesh
Networks to achieve a max-min fair throughput allocation. As
most optimization approaches fail to optimize large wireless
mesh network deployments, we investigate the usability of
genetic algorithms for this approach. The results show the
influence of the genetic operators on the resulting network
solution and underline the advantages of a genetic optimization
when applied carefully.
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I. I NTRODUCTION

The complex structure of Wireless Mesh Networks
(WMNs) require a careful network planning and optimiza-
tion. Our goal is to increase the throughput of the complete
WMN while still sharing the resources fairly among the
nodes. The planning of WMNs is in contrast to traditional
wireless networks much more complex. On the one hand,
a WMN consists of a multi-hop structure where not only
interference on neighboring paths but also self-interference
occurs. On the other hand, each node in the network can
be equipped with multiple interfaces operating on different
channels. The interference problems are covered by using the
concept of collision domains. For the routing and channel
allocation, an optimization method is required, which is
fast enough to optimize even large WMNs. In our previ-
ous papers [1], [2], we evaluated the usability of Genetic
Algorithms (GAs) for this optimization approach. GAs are
based on the idea of natural evolution by simulating the
biological cross of genes. Although GAs are generally not
able to find the best solution, they provide near-optimal
results in relatively small computation time. In this paper,
we extend the evaluation by analyzing the influence of the
genetic operators during the evolution and by introducing
the concept of local optimization.

Our goal is to increase the throughput of the complete
WMN while sharing the resources fairly among the nodes.
This is achieved by applying a max-min fair share algorithm
presented in [3] and by tuning the genetic parameters. A

solution is max-min fair if no rate can be increased without
decreasing another rate to a smaller value [4]. A max-min
fair share algorithm is used instead of proportional fairness
because the main goal is not to optimize the maximum
overall throughput on the cost of fairness but to ensure a
fair resource distribution between the users.

The rest of this paper is structured as follows. In Sec-
tion II, we first give an introduction to wireless network
planning, comparing traditional cellular network planning
with wireless mesh network planning. This is followed by a
short overview of global optimization techniques, which are
applied in the related work section for optimizing WMNs.
In Section IV, we describe our genetic algorithms for
routing and channel assignment in detail. The performance
of different genetic operators is evaluated in Section V and
we optimize the genetic algorithm by introducing a local
optimization approach in Section VI. Finally, conclusion are
drawn in Section VII.

II. N ETWORK PLANNING AND OPTIMIZATION ISSUES

Network planning and optimization can be done using
several techniques. On the one hand, signal quality mea-
surements can be performed, which is very time-consuming
and necessitates the access to all areas in which the network
should be supported. On the other hand, a demand node
concept can be used. This mechanism is often applied to
cellular network planning. Furthermore, network planning
can be done using an optimization mechanism. Meanwhile, a
huge number of optimization techniques have been proposed
and we decided to use genetic optimization due to its
simplicity and the ability to plan even large networks.

A. Wireless Network Planning

The planning of wireless mesh networks can be applied
to a variety of wireless networks, like WiMAX, WLAN,
and sensor networks. Although the network technology
changes, the planning challenges remain similar. In contrast
to traditional cellular network planning, the planning and
optimization of WMNs is much more complex. A widely
used concept for cellular network planning is the demand
node concept introduced by Tutschku [5] and illustrated in
Figure 1(a).
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(a) Cellular network planning. (b) WMN planning.

Figure 1. Comparison of traditional cellular network planning and wireless
mesh network planning.

The algorithm first looks for the demands of cellular ser-
vices. Therefore, different demographic areas are taken into
account. For example, more phone calls occur in urban areas
than in rural areas. According to these demographic regions,
a different number of demand nodes are set up like shown
in Figure 1(a). In addition to the demand nodes, candidate
sites for base stations are inserted into the optimization
algorithm. As each base station is able to support a fixed
amount of users in cellular systems of the second generation,
candidate sites are selected for base station placement in
such a way that all demand nodes can be served with a
certain probability.

In contrast, the planning of WMNs is much more com-
plex. Not only the covered area or number of end users has
to be considered, but also the capacity and the interference
of the relaying links. The capacity of a link does not only
depend on the distance between two mesh points, but also
on the interference, which in turn depends on the used
channels. Looking again at Figure 1(a), we can see that the
channel assignment has to be performed in such a way that
neighboring base stations do not use the same channel. In
WMNs, such as shown in Figure 1(b), each mesh point can
be equipped with multiple interfaces, which can be assigned
one channel each.

In addition to the more complex channel assignment in
WMNs compared to traditional cellular networks, also the
routing has to be considered. In a fixed wireless mesh
network where each mesh point is equipped with multiple
interfaces, the Modulation and Coding Scheme (MCS), the
interference from neighboring nodes, and the number of
flows traversing a link have to be taken into account for
the routing decision.

B. Global Optimization Techniques

Due to the complexity of routing and channel assignment
in WMNs, global optimization techniques are applied. Until
now, over 90 different optimization techniques have been
proposed, ranging from ant colony optimization to tabu
search. We only describe four of them, which are used for

the planning and optimization of wireless mesh networks,
namely tabu search, branch and bound, simulated annealing,
and genetic algorithms.

1) Tabu Search:Tabu search is an extension of the local
search technique for solving optimization problems. The
algorithm was introduced by Glover in 1986 [6]. It enhances
the local search method by using a memory structure. To
avoid cycles of the possible solutions found by the algorithm,
the solutions are marked as “tabu”. All solutions on the tabu
list can not be used for the next iteration step.

The tabu search algorithm starts by using either a random
solution or by creating a solution with a heuristic. From
this initial solution x, the algorithm iteratively moves to
a solution x’ in the neighborhood of x. From all possible
solutions in the neighborhood of x, the best one is selected
as the new solution if it is not on the tabu list. Afterwards,
the tabu list is extended and the algorithm proceeds until a
stopping criterion is reached.

2) Branch and Bound:The branch and bound method
generally finds the optimal solutions with the disadvantage
of being slow. In general, it is a search and comparison
of different possibilities based upon partition, sampling,
and subsequent upper bounding procedures. The first step,
the branch, is used to split a problem into two or more
subproblems. The iteration of the branch step creates a
search tree. To avoid the calculation of all subtrees, the
algorithm uses the bound step. It searches for the first valid
solution whose value is the upper bound. All following
calculations are canceled if their costs exceed the upper
bound. If a new, cheaper solution is found, the upper bound
will be set to the value of this new solution. Thus, the branch
step increases the search space while the bound step limits
it. The algorithm proceeds until either all subtrees have been
evaluated or a threshold is met.

3) Simulated Annealing:The goal of simulated annealing
is to find a good solution rather than to find the optimal
solution like branch and bound. The name of the algorithm
comes from metallurgy. Metal is heated up and then cooled
down very slowly. The slow cooling allows to form larger
crystals, which corresponds to finding something nearer to
a global minimum-energy configuration.

When applying simulated annealing for the channel allo-
cation in a WMN, the algorithm starts assigning channels
randomly. If a small change in the channel assignment
improves the throughput, i.e., lowers the cost or energy,
the new solution is accepted and if it does not improve the
solution it might be accepted based on a random function.
If the change only slightly worsens the solution, it has
a better chance to get accepted in contrast to a solution,
which heavily decreases the performance. Worse solutions
are accepted with a probability given by the Boltzmann
factor

e
− E

kB ·T > R(0, 1), (1)
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where E is the energy,kB is the Boltzmann constant,T
is the temperature, andR(0, 1) is a random number in the
interval [0,1]. This part is the physical process of annealing.
For a given temperature, all solutions are evaluated and
then, the temperature is decremented and the entire process
repeated until a stable state is achieved or the temperature
reaches zero. This means that worse solutions are accepted
with a higher probability when the temperature is high. As
the algorithm progresses and the temperature decreases, the
acceptance criterion gets more and more stringent.

4) Genetic Algorithms:Genetic algorithms are similar
to simulated annealing and are also not applied to find
the optimal solution but rather good ones. In contrast to
the branch and bound method, they are much faster and
therefore applicable for the planning and optimization of
large wireless mesh networks.

GAs are based on the idea of natural evolution and
are used to solve optimization problems by simulating the
biological cross of genes. A randomly created population of
individuals represents the set of candidate solutions for a
specific problem. The genetic algorithm applies a so-called
fitness function to each individual to evaluate its quality
and to decide whether to keep it in the new population.
However, the selection without any other operation will
lead to local optima. Therefore, two operators, crossover
and mutation, are used to create new individuals. These
new individuals are called progenies. Figure 2 shows the
influence of crossover and mutation on the fitness landscape
of two traits. As mutation is just a swapping of one or two
bits, it leads to only small changes in the fitness landscape.
The crossover operator instead can lead to complete new
solutions as indicated in the figure with the creation of
the progeny. Thus, the crossover operator can protect the
genetic algorithm from running into local optima, while a
mutation is just a small step around a previous solution. Both
operators together are used to find a near-optimal solution.

Simulated annealing and genetic algorithms are well
suited for the planning of wireless mesh networks. Applying

best individual

bad individuals

good individuals
(parents)

progeny created
by crossover mutated

individuals

fit
ne

ss

trait 1

trait 2

Figure 2. Influences of crossover and mutation in the fitness landscape.

tabu search and the branch and bound algorithm would
be too time consuming, especially when considering large
WMNs. In the next section, we take a closer look at the
work related to WMN planning and optimization where one
of the described optimization methods is applied.

III. R ELATED WORK

Wireless mesh networks have attracted the interest of
various researchers and Internet providers. Hence, a number
of papers have been published on the problem of planning
WMNs and estimating their performance. We divide the
related work into three parts. The first part shows general
WMN planning approaches. In the second part, the work
related to channel assignment and routing is presented.
Finally, we present papers working with genetic algorithms
for planning radio networks.

A. Wireless Mesh Network Planning Using Optimization
Techniques

Sen and Raman [7] introduce a variety of design con-
siderations and a solution approach, which breaks down the
WMN planning problem into four tractable parts. These sub-
problems are inter-dependent and are solved by heuristics in
a definite, significant order. The evaluations of the presented
algorithms show that they are able to generate long-distance
WLAN deployments of up to 31 nodes in practical settings.

Other related works [8]–[10] deal with creating a wireless
mesh network model, planning its parameters, and evaluating
the solutions via linear programming. He et al. [8] propose
mechanisms for optimizing the placement of integration
points between the wireless and wired network. The devel-
oped algorithms provide best coverage by making informed
placement decisions based on neighborhood layouts, user
demands, and wireless link characteristics. Amaldi et al. [9]
propose other planning and optimization models based on
linear programming. The aim is to minimize the network in-
stallation costs by providing full coverage for wireless mesh
clients. Thereby, traffic routing, interference, rate adaptation,
and channel assignment are taken into account. Another cost
minimizing, topology planning approach is presented by So
and Liang [10]. An optimization framework is proposed,
which combines a heuristic with Bender’s decomposition to
calculate the minimum deployment and maintenance cost of
a given heterogeneous wireless mesh network. Furthermore,
an analytical model is presented to investigate whether a
particular relay station placement and channel assignment
can satisfy the user demands and interference constraints.

B. Routing and Channel Assignment for Wireless Mesh
Networks

One of the first contributions on channel assignment
is presented by Raniwala et al. [11], [12]. The channels
are assigned according to the expected load evaluated for
shortest path and randomized multi-path routing. It is shown

15

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



that by using only two network interface cards per mesh
point, the throughput increases up to eight times. In contrast
to Raniwala et al. [11], [12], Chen et al. [13] do not only
consider the expected load for the channel assignment, but
also consider the link capacities. Based on the link metrics,
called expected-load and expected-capacity, the channel as-
signment is optimized using simulated annealing.

Further papers based on the paper presented by Raniwala
et al. [11] are published by Ramachandran et al. [14] and
Subramanian et al. [15]. Both papers take the interference
between links into account. The first paper solves the chan-
nel assignment using a straightforward approach while the
second one uses a tabu search algorithm. Another paper on
channel assignment and routing is presented by Alicherry
et al. [16]. A linear programming based routing algorithm
is shown, which satisfies all necessary constraints for the
joint channel assignment, routing, and interference free link
scheduling problem. Using the algorithm, the throughput is
fairly optimized. The fairness constraint means that for each
node the demands are routed in proportion to the aggregate
traffic load.

Raniwala and Chiueh [12] and Chen et al. [13] only
consider non overlapping, orthogonal channels. Mohsenian
Rad and Wong [17], [18] instead also consider partially
overlapping channels and propose a congestion-aware chan-
nel assignment algorithm. It is shown that the proposed
algorithm increases the aggregate throughput by 9.8 % to
11.4 % and reduces the round trip time by 28.7 % to 35.5 %
compared to the approach of Raniwala and Chiueh [12].

C. Genetic Algorithms for Radio Network Planning

Genetic algorithms have been used for radio network
planning for years [19]–[23]. Calégari et al. [19] apply
a genetic algorithm for UMTS base station placement in
order to obtain a maximum coverage. It is claimed that
the performance of the GA strongly depends on the fitness
function. Another paper on UMTS optimization with genetic
algorithms was published by Ghosh et al. [20] in 2005.
Genetic algorithms are used to minimize the costs and to
maximize the link availability of a UMTS network with
optical wireless links to the radio network controllers.

Besides Gosh et al. [20], Badia et al. [21] use genetic
algorithms for a joint routing and link scheduling for WMNs.
The packet delivery ratio is optimized depending on the
frame length. It is shown that genetic algorithms solve the
studied problems reasonably well, and also scale, whereas
exact optimization techniques are unable to find solutions
for larger topologies. The performance of the GA is shown
for a single-rate, single-channel, single-radio WMN.

Vanhatupa et al. [22], [24] apply a genetic algorithm
for the WMN channel assignment. Capacity, AP fairness,
and coverage metrics are used with equal significance to
optimize the network. The routing is fixed, using either
shortest path routing or expected transmission times. An

enormous capacity increase is achieved with the channel
assignment optimization. Compared to manual tuning, the
algorithm is able to create a network plan with 133 %
capacity, 98 % coverage, and 93 % costs, while the algorithm
needs 15 minutes for the optimization whereas the manual
network planning takes hours.

Lee et al. [23] perform an AP assignment for users in
smart environments using a genetic algorithm. The AP as-
signment is optimized in such a way that the load is balanced
between the AP and that the bandwidth requirements can
be met. The approach is evaluated in a scenario with 16
APs and 70 users. The results show that the load is almost
balanced between the APs after 300 generations.

In contrast to the related work, we focus not only on
a single-radio or single-rate WMN, but evaluate the per-
formance of a multi-channel, multi-radio, multi-rate WMN
using both channel and route assignment. Our genetic al-
gorithm optimizes the throughput while still maintaining a
max-min fair throughput allocation between the nodes. In
the next section, the complexity of a fair resource allocation
in WMNs is described before introducing genetic algorithms
and its modifications for the planning and optimization of
WMNs.

IV. WMN PLANNING USING GENETIC ALGORITHMS

The objective of this paper is to support the WMN
planning process by optimizing the performance of a WMN.
With the help of genetic algorithms, near-optimal solutions
can be achieved in relatively small computation time. In this
section, we show the parameters, which we have to consider
and to evaluate in order to achieve a near-optimal WMN
solution, meaning that the throughput in the WMN is fairly
shared among the mesh points.

A. Problem Formulation

We assume that each mesh point is connected to only one
gateway with a fixed routing and we can thus define the
mesh network as a directed graphG(V, E), whereV is a
set of mesh pointsn1, ..., nV and E = L is a set of links
connecting the mesh points. A subsetGW ⊆ V contains the
gateways, which are connected to the Internet. Each mesh
point ni ∈ V \ GW has a fixed route and gateway to the
Internet. The route is denoted asRi and consists of a set
of links, Ri ⊆ L. Thus, the mesh points connected to one
gateway can be considered as a tree and the complete WMN
as a forest.

As we do not have a fully meshed network, a link(i, j)
between mesh pointi and mesh pointj only exists, if a
communication between these mesh points is possible within
the mesh network. Letdri,j be the data rate of the link(i, j).
The goal is now to optimize the paths from each mesh point
ni ∈ V \ GW to the gateway so that the throughput in the
WMN is fairly shared among the mesh points.
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B. Fairness and Capacity in Wireless Mesh Networks

To achieve a fair resource distribution among the mesh
points, we use a max-min fair share approach introduced by
Bertsekas and Gallager [4]. A solution is max-min fair if
no rate can be increased without decreasing another rate to
a smaller value. Max-min fairness is achieved by using an
algorithm of progressive filling. First, all data rates are set to
zero. Then, the data rates of all flows are equally increased
until one flow is constrained by the capacity set. This is the
bottleneck flow and all other flows have to be faster than
this one. Afterwards, the data rates of the remaining flows
are increased equally until the next bottleneck is found. This
procedure is repeated until all flows are assigned a data rate.

Before assigning the data rates to the flows, the capacity
of the network has to be estimated. Therefore, we first have
to estimate the link capacities. The capacity of a single
link is determined by the pathloss and the Signal to Noise
Ratio (SNR). For the pathloss calculation, we use a modified
COST 231 Hata [25] pathloss model for carrier frequencies
between 2 GHz and 6 GHz. The model is proposed by the
IEEE 802.16 working group as the WiMAX urban macrocell
model, but is also valid for WLAN mesh networks and is
defined as

PL = 35.2 + 35 · log10(d(ni, nj)) + 26 · log10

(

f

2

)

. (2)

Here,f denotes the operating frequency andd denotes the
euclidean distance between mesh pointsni and nj . The
pathloss model is used to calculate the SNR, which is
required to determine the maximum achievable throughput.
The SNR is calculated as

γni,nj
= Tx − PL(ni, nj , f) − (N0 + 10 · log10(W )), (3)

where Tx is the transmit power,N0 is the thermal noise
spectral density (-174 dBm/Hz), andW is the system band-
width. Now, the Modulation and Coding Scheme (MCS) is
selected with an SNR requirementγ∗

mcs that is smaller or
equal to the link’s SNRγni,nj

. The MCS is chosen in such
a way that the frame error rate lies below 1 %. If the SNR
requirement for the most robust MCS cannot be met, the
two mesh pointsni and nj are not within communication
and interfering range.

Having computed the maximum data rate of each link
according to the pathloss, we now have to calculate the
capacity of each link taking interference from neighboring
mesh points into account. Therefore, we use the concept
of Collision Domains (CDs) introduced by Jun and Si-
chitiu [26]. The collision domainDi,j of a link (i, j)
corresponds to the set of all links(s, t), which can not
be used in parallel to link(i, j) because the interference
from a transmission on link(s, t) alone is strong enough
to disturb a parallel transmission on link(i, j). Figure 3(a)
shows the collision domain of link(n2, n5). The one-hop
collision domain illustrated in light-gray denotes the area

for a WLAN-based mesh network without using RTS/CTS.
The dark gray area shows the two-hop area where no station
can transmit a packet when using RTS/CTS.
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(a) One- and two-hop collision do-
main of link (n2, n5).
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(b) Link load calculation depending
on the carried number of flows.

Figure 3. Collision domain and its link loads.

The nominal load of such a collision domain is the number
of transmissions taking place in the collision domain. A
transmissiontrk,i,j corresponds to the hop from mesh point
ni to mesh pointnj taken by the flow towards mesh point
k, i.e., (i, j) ∈ Rk. The number of transmissionsλi,j on
link (i, j) corresponds to the number of end-to-end flows
crossing it:

λi,j =
∣

∣

∣
{k|(i, j) ∈ Rk}

∣

∣

∣
. (4)

Figure 3(b) shows the load per link for the same example
network as before. Each mesh point on the way to the
gateway produces traffic resulting in a traffic load of 5
on the link (n1, g1) and a load of 2 on the link(n2, g1).
Correspondingly, the number of transmissions in collision
domainDi,j is

mi,j =
∑

(s,t)∈Di,j

λs,t. (5)

Thus, the collision domain of link(n2, n5) consists of 13
transmissions in total.

In order to fairly supply all mesh points, we share the
time resources among all transmissions taking place within
the collision domains of the corresponding links. Thereby,
we take the ratesdri,j and the number of flowsλi,j into
account. The throughputti,j of link i, j is then defined as

ti,j =
1

∑

(s,t)∈Di,j

λs,t

drs,t

. (6)

If we assume that link(n2, n5) supports 54 Mbps based
on the pathloss and the SNR, the throughput would be
4.15 Mbps due to a collision domain size of 13. However,
before setting this throughput to noden5 we have to follow
the principle of max-min fairness.

An algorithm to determine the max-min fair throughput
allocation based on the definition of collision domains is
given by Aoun and Boutaba [27]. The algorithm iteratively
determines the bottleneck collision domain and allocates the
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data rates of all flows traversing this domain. If in our ex-
ample in Figure 3 the link(n1, g1) would be the bottleneck,
all mesh points traversing the link would be assigned to this
throughput, in our casen3, n4, n6, n7, n8. As link (n2, n5)
and link (g1, n2) also belong to the collision domain of link
(n1, g1) but do not transmit over the bottleneck link, the
time resources occupied by the bottleneck link are subtracted
from the two links.

In the next step of the iteration process, only the remaining
collision domains are considered. This way, we calculate
the throughput of each flow, which is needed to evaluate
the fitness of the WMN. The iteration stops when all flows
are assigned. If in our example the next bottleneck collision
domain is link(g1, n2), the remaining maximum supported
rates are assigned to the last two links. Algorithm 1 clarifies
the procedure of assigning the rates.

Algorithm 1 Max-min fair resource distribution based on
collision domains.

1: O = F all flows are unassigned
2: L = {(i, j)|ni,j > 0} all active links
3: pi,j = 1, (i, j) ∈ L all links have full

capacity
4:

5: Iteration
6: for all links (i, j) ∈ L
7: mi,j =

∑

(s,t)∈Di,j

λs,t nominal load

8: ti,j = 1
∑

(s,t)∈Di,j

λs,t

drs,t

throughput share per flow

9: end for
10: (u, v) = arg min(i,j)∈L ti,j bottleneck CD
11: B = {k ∈ O|Rk∩Du,v 6= ∅} bottleneck flows
12: bk = r · tu,v for all k ∈ B set bottleneck rates
13: O = O\B adapt unassigned flows
14: pi,j = pi,j −

∑

k∈B |Rk ∩ Di,j | · tu,v adapt free
capacity of all CDs

15: L = L\Du,v adapt active links
16: Stop criterion:O = ∅

C. Optimization Using Genetic Algorithms

After describing the principle of collision domains and
max-min fair throughput allocation, we now explain the
workflow of a genetic algorithm in detail. Figure 4 shows the
complete procedure of a genetic algorithm for the planning
and optimization of WMNs. Firstly, a random population is
created with a predefined number of individuals. The fitness
of each individual is evaluated using the fitness function
and the individuals are ordered according to the fitness
value. The best individuals, the elite set, is kept for the new
population. Afterwards, the crossover and mutation operator
are used to create the remaining number of individuals
for the new population. The procedure is repeated until a

sufficient solution is achieved. In the following, we explain
the steps of our WMN optimization approach in more detail.

In
iti

al
iz

e

Evaluation via
„fitness function“ Crossover

Mutation

Progenies of 
best individuals

Individuals of 
next generation

Best individuals

New population

Random population

Individuals ordered by fitness

Figure 4. Workflow of a genetic algorithm.

1) Network Encoding:Before going through the steps of
the genetic algorithm, the WMN has to be encoded. The
encoding must be simple without any redundancy in order
not to prolong the runtime of the genetic algorithm. As
we assume that each mesh point is connected to only one
gateway, the network encoding has to represent a spanning
tree with the gateway as root, cf. Figure 5(a). This means
that the graph does not contain any cycles and each mesh
point has only one route towards the gateway. Such a tree
structure can easily be encoded in a list, where the next hop
of each mesh point, which the traffic has to take in order to
reach the gateway, is stored. This list representation of the
example network from Figure 5(a) is shown in Figure 5(b).
Considering for example mesh pointn4, the next hop is node
n1 and the next hop of mesh pointn1 is the gateway. Thus,
the complete routing of a WMN is handled with a simple
list representation.

Besides the routing, we also want to optimize the channel
allocation. Although each mesh point can be equipped with
several network interface cards, the channel of the link
towards the gateway is fixed as shown in Figure 5(a). Thus,
the channel allocation can be done in a similar way as the
routing. Therefore, the list is extended with one more row,
showing the channel of the next hop towards the gateway, cf.
Figure 5(b). This simple list represents the tree structureof

g1

n1 n2

ch1
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ch1 ch1

ch1 ch1

ch2

ch2

ch2

(a) Example network.
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(b) List representation.

Figure 5. Example network and its list representation.
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one gateway and each gateway in the wireless mesh network
is encoded in a similar way. The list representation is later
used to perform the genetic operations and to evaluate the
fitness of the WMN.

2) Evaluation via Fitness Function:The evaluation part
of the optimization is the heart of the genetic algorithm.
Based on the fitness value, the GA decides, which individ-
uals should be kept in the new population. Hence, it rates
the performance of the genes and allows only the best to be
replicated.

The fitness of the WMN is estimated using the allocated
throughputs of each flow. The fitness functionf(N ) of the
evaluation represents the user satisfaction and the fairness of
the resource allocation. Some fitness functions might lead
to a complete unfair resource distribution in the WMN.
Therefore, we evaluate the performance of several different
fitness functions in Section V. Several combinations of
the functionsmin(RN ), median(RN ), mean(RN ), and
var(RN ) are used, which are applied on all routing links
of a network solutionN . The functionmin (RN ) calculates
for example the minimum throughput of all links used in
routing schemeRN . We define the following eight different
fitness functions:

f1(N ) = min(RN ) = minimum throughput(RN )

f2(N ) = median(RN ) = median throughput(RN )

f3(N ) = mean(RN ) = mean throughput(RN )

f4(N ) = min(RN ) +
median(RN )

s
f5(N ) = mean(RN ) − var(RN )

f6(N ) = min(RN ) +
median(RN )

s
+

mean(RN )

|L|

f7(N ) =

|T̃ |−1
∑

i=0

(
∣

∣

∣
T̃

∣

∣

∣
− i) · T̃ (i)

f8(N ) =

|T̃ |−1
∑

i=0

c|T̃ |−i · T̃ (i).

The last two functions weight the link throughputs with
a factor depending on the corresponding throughput value.
Therewith, we aim to achieve a kind of max-min fairness not
only with the throughput allocation made by the evaluating
algorithm but also with the fitness value from a reasonable
fitness function. For this purpose, an ascendingly sorted list
T̃ of the throughputs of all routing links in the solutionN
is used. Each throughput value from̃T is weighted with
a factor depending on its place in the list, giving more
weight to lower positions. This results in a fitness value
with which mainly smaller link throughputs are optimized
at the expense of higher ones. The parameterc of function
f8(N ) is a constant, which we set to 1.5 ands is set to 8
for the experiments in Section V.

3) Selection Principle:After the evaluation of a popu-
lation, we select a set of solutions, which have the highest
fitness of all and keep them in the new generation. This set
is called the elite set. In the results section, we vary the size
of the elite set in order to see the influence on the solution.
As the number of individuals of a population is fixed for all
generation steps, the remaining number of individuals are
created by crossing and mutating the genes.

The selection of the individuals for applying the genetic
operators is thereby based on the fitness and furthermore
depends on the number of needed new individuals. Letw

be the number of needed new individuals ands(x) be the
selection probability for individualx. Then, the number of
progenies generated based on individualx are

g(x) = ‖w · s(x)‖ . (7)

The selection probabilitys(x) depends on the relation be-
tween the fitness of solutionx and the sum of all fitness
values from the complete population, which means that new
individuals are more likely to be created from individuals
with a better fitness. This results in

s(x) =
f(x)

n
∑

j=1

f(j)
. (8)

4) Crossover Types:The crossover operator as well as the
mutation operator are now applied to the selected number
of individuals. For the cross of genes, we use the standard
2-Point Crossover [28] and two other variants, which we
especially created for the planning of WMNs, the Cell and
the Subtree Crossover.

2-Point Crossover

The 2-Point Crossover is a widely used extension of the
1-Point Crossover. While the 1-Point Crossover changes
the list representations of two individuals until a certain
point or from a certain point on, the 2-Point Crossover
exchanges subsets, which are randomly chosen sublists of
the individuals representation, the genotype. Thus, a start
and an end point, denoting the range of the sublist, are
chosen each time the 2-Point Crossover is applied.

An example of the crossover is shown in Figure 6. The
sublists of two individuals should be crossed, namely the
routing and channel allocation of mesh pointsn2 to n5. The
resulting progenies of the individuals show one characteristic
of this reproduction approach. It created solutions, which
contain mesh points with no connection to any gateway.
This happens due to the unregulated and absolutely arbitrary
selection of the gene subset, which is meant to be exchanged.

Looking at the progeny of individual 2, mesh points
n1, n2, n6, n7, n8 have no connection to any gateway and
thus, the crossover results in an unreasonable solution.
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Figure 6. 2-Point Crossover between two individuals.

On the other hand, the 2-Point Crossover has created a
reasonable progeny of individual 1.

Since the 2-Point Crossover may lead to unconnected
solutions, we have to be careful when evaluating the fitness
of the resulting solutions. Thus, we adapt the fitness function
to

f̃(N ) = f(N ) − diss(V), (9)

which includes now thediss(V) term denoting the number
of nodes with no connection to any gateway. Hence, the
throughput contained inf(N ) presents the positive costs of
the network whilediss(V) stands for the penalty costs.

Cell Crossover

In contrast to the 2-Point Crossover, the Cell Crossover
does not exchange sublists but complete cells. The crossover
operator randomly chooses a gateway and exchanges the
entire cell meaning that the routing information as well as
the channel allocation is exchanged.

Figure 7 shows an example for the crossover of two
solutions. Black nodes denote the network gateways and the
light gray areas mark the chosen cell, which is exchanged. In
the resulting progenies, the mesh points that have changed
their connection are marked dark gray. We can see that not
only link connections from mesh points are crossed, but
some mesh points are now also connected to other gateways.
Mesh pointsn10, n12, n17, n18 are connected to gatewayg2

in the progeny of individual 2 while they were attached to
gatewayg1 before. The reason is that the number of mesh
points belonging to one cell differ between the individuals.
Therefore, we also have to attach unconnected nodes after
the Cell Crossover, which can be seen in the progeny of
individual 1. In addition to the exchange of routes, the
assigned channels are exchanged, which is not shown in
the figure for the sake of readability.
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Figure 7. Cell Crossover between two individuals.

Subtree Crossover

The last crossover type is the Subtree Crossover. In
contrast to the Cell Crossover, not a complete gateway tree
is exchanged but only a subtree. Therefore, the Subtree
Crossover chooses mesh points randomly and crosses the
entire subtree with the mesh point as root. Similar to the
Cell Crossover, the channel allocation is exchanged together
with the routing information.

The Subtree Crossover of two subtrees is shown in Fig-
ure 8. The chosen mesh points aren3 andn13. The crossover
of subtreen3 only causes a small change in the tree structure
in contrast to the subtree crossover ofn13. Here, some nodes
of the subtree are connected to different gateways in the two
individuals. After the crossover, mesh pointsn10 and n12

belong to gatewayg2 in the progeny of individual 2. This
reduces the number of long branches of gatewayg1 but there
is still potential for further optimization.
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Figure 8. Subtree Crossover between two individuals.

D. Mutation

While the different crossover variants help to avoid run-
ning into local optima, the mutation operator increases the
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Figure 9. Routing mutation of three mesh points.

performance of WMNs with slightly modifications of the
routing structure and channel allocation. For the optimiza-
tion of WMNs, the number of mutations are chosen based on
the scenario size and the mutation of the routing and channel
allocation are applied independently from each other.

For the routing scheme, the mutation operator substitutes
some randomly chosen positions of the routing code with
new information taken from a set of potential neighbors,
which would not cause the creation of cycles and would not
harm the tree structure of the solution. An example for the
mutation of the routing scheme from three nodes is shown
in Figure 9. Here, the links towards the gateway of the
three gray nodes are mutated. For the channel allocation,
the mutation operator randomly chooses a channel from a
list of possible channels and substitutes randomly chosen
links from the WMN.

According to the workflow diagram shown in Figure 4,
the mutation operator is applied after the crossover on the
progenies of the crossover. The mutated individuals together
with the elite set form then the new population and close
the circle of the genetic algorithm.

V. PERFORMANCEEVALUATION

After introducing genetic algorithms in detail and showing
our modifications and extensions for wireless mesh net-
works, we now want to evaluate the performance of the
genetic algorithm. The influence of every part of the genetic
algorithm’s workflow is thereby evaluated separately. First,
we take a look at the influence of the fitness function
on the resulting solution. Afterwards, the size of the elite
set is investigated followed by the population evolution
for the three different crossover types. Finally, we show
the influence of the two genetic operators crossover and
mutation on the resulting network solution.

A. Simulation Settings

For the creation of the results presented in this section,
we use the two scenarios introduced in Table I. Although we
evaluated a large number of different scenarios, we highlight
only the two most different ones here. The first one consists
of 2 gateways and 71 mesh points distributed over an area of
2 km x 1.2 km. Thereby, the minimal distance between mesh
points is 60 m and between the two gateways it is 700 m.
For the sake of readability, we call this scenario G2MP71.

Table I
SIMULATION SCENARIOS.

Parameter Scenario S1 Scenario S2

Topology G2MP71 G6MP38
Population size 150
Elite set size 50
Number of generations 400
Crossover type Subtree Crossover

Cell Crossover
2-Point Crossover

Number of crossed subtrees rand(0,7) rand(0,5)
Number of mutations rand(0,20) rand(0,10)
Fitness function f1(N )

The second scenario contains a smaller number of mesh
points and a larger number of gateways. We choose this
clearly different topology in order to show the influence
of the crossover operators depending on the number of
mesh points. The 38 mesh points and 6 gateways of the
second scenario are allocated in an area of 1.5 km x 1 km.
The minimal distance between users is 60 m and between
gateways 450 m. We call this scenario G6MP38.

The differences in the settings of the two configurations
depend on the used topology of the corresponding scenario.
Due to the larger number of mesh points contained in
G2MP71, we configure Scenario S1 with more mutations
and more exchanged subtrees than Scenario S2. Thereby, we
keep the relation between crossover and mutation at a fixed
level suitable for the investigation of the genetic operators.

Besides the parameters of the genetic algorithm, the
general parameter settings are shown in Table II. These
parameters only affect the characteristics of the network con-
nections. The parameters carrier frequency, channel band-
width, and available channels decide to some extent the
performance of the mesh point connections in a network
solution but they do not have an impact on the effectiveness
of the genetic algorithm. Therefore, we do not consider their
impact on the resulting solutions.

Table II
GENERAL PARAMETER SETTINGS.

Parameter Value

Carrier frequency 3500 MHz
Channel bandwidth 20 MHz
Maximum throughput 67.2 Mbps
Available channels 3500 MHz, 3510 MHz
Antenna power 25 dBm
Pathloss model WiMAX urban macrocell model

B. Influence of Fitness Function

As the fitness function is the heart of the genetic algo-
rithm, we first take a look on the influence of different fitness
functions on the resulting solution. Therefore, eight different
fitness functions, described in Section IV, are applied.
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Figure 10 shows the throughputs of the mesh points of the
best individual after 400 generations of Scenario S1. For the
sake of readability, the curves of the eight different fitness
functions are shown in two separate subfigures. The x-axis
shows the normalized flow IDs, meaning the 71 mesh points
sorted by throughput, and the y-axis lists the throughput in
Mbps of the flows.

A curve completely parallel to the x-axis would mean
a perfect fairness between all flows and a curve whose
minimum throughput is abovef1(N ) would mean that the
solution is max-min fair. This allows to see that the unfairest
resource distributions are achieved with the fitness functions
f2(N ) andf3(N ).

Optimizing only the median withf2(N ), we do not pay
attention to the rest of the throughput allocation. This is
why the left part of thef2(N ) curve stays very low. The
distribution off2(N ) also shows that some mesh points have
a very high throughput compared to others. This happens
accidentally because the fitness function does not control
their behavior as it focuses just on the throughput of the
median.

Fitness function f3(N ), optimizing only the mean
throughput, also results in a very unfair solution. Here, the
number of hops towards the gateway are minimized in order
to get some nodes with very high throughput, which boost
the mean value. In this scenario, four mesh points have a
throughput of over 24 Mbps while the throughput of all other
flows is about 0.05 Mbps.

All other fitness functions result in a max-min fair re-
source distribution with a maximized minimal throughput. In
the resulting solutions off1(N ), f6(N ), andf8(N ), some
flows have a very high throughput but not at the costs of
other flows.

The fairest solution is achieved with fitness function
f7(N ) where all flows have a similar throughput of about 0.7
Mbps. The fitness function weights the throughputs of the
mesh points. Thereby, smaller throughputs have a stronger
influence on the fitness than higher throughputs. This is
achieved by multiplying the throughputs with the inverse
of the ascendingly sorted flow ID.
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Figure 10. Throughput allocation of the best individual.

C. Elite Set Size

In this section, we examine the impact of the elite set
size on the progress of the evolution using Scenario S1 and
applying the Subtree Crossover only. Figure 11(a) illustrates
the minimal throughput of three different elite set sizes
averaged over 15 different initial populations. This time,the
x-axis shows the generation number while the y-axis lists
the minimal throughputs.

From the figure it can be observed that the best perfor-
mance is achieved with a small elite set size. On the one
hand, a large elite set includes a number of bad individuals,
which are kept in the next generation and decrease the
minimal throughput. On the other hand, with an elite set
size of 125, only 25 new progenies are generated. With this
small number of new unexplored genes, the progress of the
genetic algorithm slows down, which can be seen on the
left side of the figure. Similar solutions compared to an
elite set size of 10 might be achieved after several more
generations. This means that the larger the elite set size is,
the slower is the progress of the genetic algorithm. To prove
this statement, we performed the optimization of the same
scenario for more different elite set sizes. The results are
shown in Figure 11(b).
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Figure 11. Comparison of different elite set sizes.

The figure reveals almost the same behavior as the previ-
ous one. Smaller elite sets cause faster evolution and lead to
better solutions. However, a too small elite set size is also
bad as the figure shows for an elite set size of 5. With a
too small elite set, there might be a discrepancy between
the fitness of the elite set and the fitness of new progenies.
Thus, the elite set size should be chosen in dependence of
the population size.

D. Population Evolution

Examining the evolution of the population is an important
consideration needed to demonstrate the effectiveness of the
genetic algorithm. Observing the evolution of the population
with every generation step helps to decide when to terminate
the algorithm. When the fitness is not increasing after an
additional number of generations, the genetic algorithm can
be stopped because either a near-optimal solution is found
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or the genetic algorithm is stuck in a local optimum. As
the crossover operator helps to get out of a local optimum,
we take a look at the population evolution for all three
introduced crossover types.

The results shown in Figure 12 are generated with
Scenario S1 from Table I. The x-axis shows the individu-
als sorted by fitness and the y-axis displays the minimal
throughput of each individual. The different curves illustrate
the generation progress during the genetic optimization. The
elite set size is chosen to be one third of the complete
population size.

In order to compare all three crossovers, we did not plot
the fitness but the minimal throughput on the y-axis. As the
penalty costs are included in the fitness function of the 2-
Point Crossover, cf. Section IV, the fitness values would be
much lower for the 2-Point Crossover. Hence, we consider
only the minimal throughputs, which only represent the
positive costs. This is also the reason for the strongly varying
curves on the left side of Figure 12(c). The individuals have
a large minimal throughput but there are a lot of unconnected
nodes, which result in a lot of penalty costs and thus in lower
fitness.
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Figure 12. Generations progress using Subtree, Cell, and 2-Point
Crossover.

In all subfigures, we can observe that the higher the
generation number is, the smaller is the fitness growth. This
slowdown is caused by the similarity of individuals. After
several generations, the individuals are quite similar, which
means that the crossover does not generate new, unexplored
genes. The only possibility to find better solutions is to
apply the mutation operator only. Therefore, we introduce
the concept of local optimization in Section VI.

Evaluating the population evolution in other scenarios
has shown that it highly depends on the topology structure

but a good solution is always found after 400 generations.
We tested the performance of Scenario S1 also after 1000
and 1500 generations, but the performance increase was
negligible compared to the throughput after 400 generations.

A comparison of the three crossover types shows that the
highest minimal throughput after 400 generations is achieved
with the Subtree Crossover, followed by the results of the
Cell Crossover. The network solution with the worst perfor-
mance is achieved when applying the 2-Point Crossover. In
the next subsection, we want to see if this is an exception or
if the Subtree Crossover always leads to the best solutions.

E. Effectiveness of Crossover

In order to show the effectiveness of the crossover type,
we compare the performance of the three crossover operators
depending on the number of mesh points and gateways in
the network. Furthermore, we want to find out if there is
an interaction between the efficiency of the crossover types
depending on the topology.

The results for both scenarios from Table I are presented
in Figure 13. Figure 13(a) shows the evolution of the best
individual during 400 generations with different crossover
types and for not using the crossover operator at all for
Scenario S1. It illustrates the average results of 20 seeds
while applying a 95% confidence interval.
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Figure 13. Effectiveness of the crossover operator.

This scenario includes a high number of mesh points,
which are distributed in the coverage areas of only two
gateways. This results in deep tree structures with long ways
over multiple hops towards the corresponding gateway. Such
network structures seem to be crucial for the effectiveness
of the crossover types. We can observe that the Subtree
Crossover leads to a better solution than the other two
crossover types. The better performance of the subtree
approach is the result of the exchange of small connectivity
components, which causes reasonable gene variations with-
out disturbing the tree structure. The other two crossover
types show a lower performance whereby the unregulated
2-Point Crossover even outperforms the intelligent Cell
Crossover approach. This results from the small number of
gateways, which causes the cross of only one cell per new
progeny and quickly leads to similar individuals.
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The results from Scenario S2 are shown in Figure 13(b).
In contrast to the previous scenario, the higher number of
available gateways leads to a better efficiency of the Cell
Crossover. Moreover, the small number of nodes belonging
to one gateway allows a larger variety of individuals. This
is due to the fact that small changes in the routing structure
cause higher changes in the network performance than
in Scenario S1. However, the Cell and Subtree Crossover,
which exchange only connectivity components have a better
performance than the 2-Point Crossover.

The comparison of the crossover types shows that the
crossover operator should be selected based on the con-
sidered topology to achieve the best solutions. In the next
subsection, we take a look at the influence of the mutation
operator on the evolution of the population.

F. Effectiveness of Mutation

The mutation operator causes small changes in the fitness
landscape and normally does not help to get out of local
optima. However, in the last subsection we have seen that
applying only the mutation operator almost increases the
performance of the wireless mesh network to the same
level as compared to a scenario where both, crossover
and mutation are applied. To investigate the influence of
the mutation operator, Scenario S1 is considered. Both
mutation operations, the routing and the channel mutations,
are applied on the progenies of the crossed individuals. The
number of routing and channel mutations on each individual
are chosen randomly in the interval [0,20]. Figure 14 shows
the minimal throughputs during the progress of the genetic
algorithm for all three crossover types.

Surprisingly, the performance of the genetic algorithm
without mutation is generally low and the genetic algorithm
runs into a local optimum after a few generations. For the
Cell Crossover, the reason is simple because only 2 gateways
are placed in the scenario. The minimal throughputs for the
other two crossover variants are higher compared to the Cell
Crossover but still way below the throughputs achieved when
mutation is used together with crossover. This is because
after a few generations, the created individuals are quite
similar and thus, the genetic algorithm gets stuck in a local
optimum. In contrast, when activating the mutation operator,
the fitness of the solution grows even after 400 generations
and there is still potential for further evolution.

This shows how crucial the mutation operator is for
the evolution of the genetic algorithm. Without using the
mutation operator, similar individuals are created by the
three different crossovers. The best performance is here
seen for the Subtree Crossover as the Subtree Crossover has
the largest possibilities to create new genes. The mutation
operator instead ensures the creation of new unexplored
genes with slight changes in the routing scheme and channel
allocation, which fosters the evolution.
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Figure 14. Mutation ON/OFF in combination with three crossover types
tested on Scenario S1.

VI. OPTIMIZATION OF THE WMN PLANNING APPROACH

In the last section, we have seen the influence of the
genetic operators on the performance of the resulting wire-
less mesh network. In this section, we take a look at the
influence of the genetic operators in dependence of the
GA progress and introduce a local optimization technique
to quickly improve the performance of the wireless mesh
network.

A. Influence of the Crossover on the GA Progress

As crossover operations are very time consuming, we
want to see if the crossover types lead to better network
solutions during all generations. Therefore, we compare the
fitness of the best parent with the fitness of the resulting
progeny for early generations as well as for late generations.
The genetic optimization runs for 500 generations and the
results in Figure 15 show the fitness of the Cell Crossover
and Subtree Crossover of 2000 samples.

Looking at Figure 15(a), we can see that about 10 % to
20 % of all crossover operations lead to better progenies.
Although this amount seems to be very low, we have to take
a look at the exact improvements. One early Cell Crossover
increases the fitness from 0.9 to 1.2. This might be a step
out of two local optima in the fitness landscape. However,
performing a Cell Crossover in the late stages of the genetic
algorithm always leads to worse progenies. The reason is
simple as a Cell Crossover of two near-optimal solutions
are likely to create unreasonable progenies.

When applying the Subtree Crossover, the results are a
little bit different as shown in Figure 15(c) and Figure 15(d).
Although the percentage of better progenies is similar to the
Cell Crossover, the improvements are lower. The reason is
that the Subtree Crossover performs only small variations
by exchanging subtrees, whereas the Cell Crossover changes
two complete cells. However, these small changes also have
a bad influence when performing them at the end of the
generation process and only one or two progenies are better
than their parents.

Thus, the amount of crossovers can be reduced with
increasing number of generations. Before doing this, we
take a look at the influence of the mutation operator in
dependence of the number of generations.
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(a) Early generation Cell Crossover.
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(b) Late generation Cell Crossover.
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(c) Early generation Subtree
Crossover.
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(d) Late generation Subtree
Crossover.

Figure 15. Influence of the crossover on the fitness of the resulting
progenies.

B. Influence of the Mutation Operator Depending on the GA
Progress

The mutation operator conducts only small modifications
of the individuals and it is thus expected that the fitness
only slightly changes after the mutation is performed. Fur-
thermore, we want to evaluate if, in contrast to the crossover,
the mutation also leads to better results when applied on late
generation steps. The results for the two mutation operators,
routing and channel allocation, are shown in Figure 16. The
plots are generated based on 2000 samples taken at the
beginning and at the end of a 500 generation run.

As expected, the change in the fitness value is only
small after the mutation is applied. However, the number of
improved individuals is larger for both mutation operators
compared to the crossover operations. The channel mutation
even yields better results in 50 % of all mutations. Although
the performance of both mutation operators decreases with
an increasing number of generations, still better individuals
are achieved in 5 % to 10 % of all mutations, cf. Figure 16(b)
and Figure 16(d).

Thus, the mutation operator should be applied during the
complete generation process. However, when reducing the
number of crossover operations with an increasing number
of generations, the number of performed mutations are also
decreased. In order to keep the number of mutations, the fol-
lowing mechanism is applied. Firstly, the elite set size is in-
creased with each generation, which means that increasingly
more individuals are kept for the following population. This
reduces the number of crossover and mutation operations.
Secondly, in order to apply the mutation operator during
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(a) Early generation routing muta-
tion.
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(b) Late generation routing muta-
tion.
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(c) Early generation channel muta-
tion.
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(d) Late generation channel muta-
tion.

Figure 16. Influence of the mutation operator on the GA progress.

the complete generation process, both mutation operations
are performed with each individual of the elite set. If the
fitness after the mutation is higher than the fitness before the
mutation, the new individual is taken for the next population
instead of the old one. If the fitness is worse, the new
individual is discarded.

In Figure 17, we compare the fitness values of the ten
best individuals in a scenario with an enlargement of the
elite set size with increasing generation number and without
an enlargement. The values are averaged over 10 simulation
runs with 500 generations. Except for the worst of all 10
individuals, the enlargement of the elite set has a positive
influence on the fitness. On average, the fitness is increased
by 8 %.

Summarizing, a reduction of the number of crossover
operations achieved by a stepwise enlargement of the elite
set size has a positive effect on the fitness value. In addition,
the runtime of the genetic algorithm is reduced due to the
smaller number of complex calculations of the crossover
operations.
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Figure 17. Influence of the enlargement of the elite set.
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C. Local Optimization and Population Size

As we have seen in the previous figures, applying the
crossover operator on late generations almost always results
in worse individuals. However, the mutation operator might
improve the individuals because it only slightly changes
the individuals. To take advantage of this, we introduce
the concept of local optimization. After the normal genetic
algorithm finishes, we take the five best individuals of the
last generation, copy them three times, and perform several
mutations with them. Similar to the previous improvement,
the resulting individual is only kept if its fitness value is
higher compared to the fitness value before the mutation,
else it is discarded. This can be repeated more than a
thousand times because the computation time for mutating
15 individuals is negligible.

In order to investigate the effect of the local optimization,
we take a look at the influence of the population size. The
larger the population size, the more new individuals are
created per generation resulting in a larger number of good
individuals. This means that a large population size has the
potential to get to the optimal solution but requires more
computation time. In order to find a good population size,
we need to look at the fitness of the best individual for a
variety of population sizes and compare it to the runtime.

To see the influence of the population size as well as the
local optimization, a genetic algorithm run with 500 gen-
erations is performed with an additional local optimization
of 2500 generations. We investigate the influence on two
different scenarios, with different average numbers of mesh
points per gateway, and increase the population size from
25 to 200. The results are shown in Figure 18.

The fitness values are averaged values of the best indi-
vidual over ten runs of the genetic algorithm. The runtime
shows the minimal total runtime. In Figure 18(a) the local
optimization only slightly increases the fitness of the best
individual. However, in a scenario with a larger number
of mesh points, the local optimization increases the fitness
between 5 % and 7 % depending on the population size, cf.
Figure 18(b). The reason is that such a scenario offers more
possiblities to assign the routes and channels, which are
evaluated in the local optimization process.

Taking a look at the population size, we want to point
out that the performance increase is only visible up to a
population size of 100. When increasing the population size
to 200, a run takes twice as long as a run with a population
size of 100, while the fitness increases only by 1.5 % at
most. Thus, a population size of 100 is a good compromise
between the runtime of the genetic algorithm and the fitness
of the resulting individuals.

Summarizing, we want to point out that a local optimiza-
tion of the best individuals is a good means to get to better
solutions without significantly prolonging the runtime of the
genetic algorithm. A similar result might be achieved afteran
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(a) Scenario with an average of 18.6
MPs per mesh gateway.

25 50 100 200
1.0

1.2

1.4

1.6

1.8

2.0

population size

fit
ne

ss

 

 

0

10

20

30

40

50

tim
e(

h)

 

 
fitness before local optimization
fitness after local optimization
runtime

(b) Scenario with an average of 23.6
MPs per mesh gateway.

Figure 18. Relationship between population size, fitness, and runtime.

additional 500 or 1000 generations but this would take much
more time. Also the performance increase by enhancing the
population size is negligible and almost doubles the runtime.

VII. C ONCLUSION

In this paper, we investigated the usability of genetic
algorithms for optimizing wireless mesh networks. Thereby,
we showed that the performance of the genetic algorithm
depends on the applied fitness function. The fitness function
is used to evaluate the resulting network solution. We investi-
gated eight different fitness functions optimizing for example
the minimum, mean, and maximum throughput. The results
show that the fitness function should be chosen with care
because some functions lead to an unfair share of resources.
Using a fitness value built on weighted throughputs of all
network flows results in the best solutions. In addition to
choosing a good fitness function, we illustrated that it is
also important to choose the elite set size according to the
population size. A small population with a large elite set
size often results in a local optimum. The elite set size also
has an impact on the required number of generations to get
to a good solution. We showed that with an elite set size of
one third of the population size, a near-optimal solution is
achieved after 400 generations.

Besides the fitness function and the size of the elite set, the
genetic operators crossover and mutation have to be carefully
applied. We adapted the operators to the requirements of
wireless mesh networks and introduced two new crossover
variants called Cell and the Subtree Crossover. The evalu-
ation of the influence of these operators revealed that the
WMN-specific Cell and Subtree Crossover lead to better
solutions compared to the well-known 2-Point Crossover.
However, they have to be applied according to the network
topology. The Subtree Crossover shows the best performance
in scenarios with a large number of mesh points per gateway
whereas the Cell Crossover leads to the best solutions in
scenarios with a small number of mesh points per gateway.

During the progress of the genetic algorithm, the contri-
bution of the crossover operator to find the optimal solution
decreases. After several generation steps, almost no better
solutions are achieved by applying the crossover operator.
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Here, only mutation leads to a better fitness of the solution.
We have shown that a reasonable network optimization
is only possible by using mutation. The influence of the
mutation operator in combination with all crossover types
was tested and it was proven that in all cases it strongly
fosters the evolution. Even in late generation steps, the
fitness of the resulting solution improved.

In order to benefit from the crossover operator to get out
of local optima at the beginning of the evolution process
and to still get to better solutions at the end of the genetic
optimization, we introduced the concept of an elite set
increase and a local optimization. With every generation
of the genetic algorithm, the elite set is increased, which
decreases the number of crossover and mutation operations.
In order to still mutate the individuals, the mutation operator
is applied to the elite set and if a better solution is found,
it is taken to the next generation. The local optimization
is done after the normal generations procedure finishes.
Thereby, several mutations of the five best individuals are
performed and the resulting individuals are only kept in the
new generation of the local optimization if the fitness value
is higher compared to the fitness value before the mutation.
Using these concepts, the performance of the WMN can
be significantly increased with a minimal computational
overhead.

Thus, we showed that genetic algorithms are well-suited
for the optimization of wireless mesh networks. While other
optimization techniques like linear programming fail to
optimize large WMNs, genetic algorithms solve the complex
structure of WMNs in relatively small computation time.
However, the parameters of the genetic algorithm have to
be carefully chosen and adapted to the applied topology.
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