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Abstract—Next generation fixed wireless networks are most  solution is max-min fair if no rate can be increased without
likely organized in a mesh structure. The performance of these decreasing another rate to a smaller value [4]. A max-min
mesh networks is mainly influenced by the routing scheme  ¢o; share algorithm is used instead of proportional fame

and the channel assignment. In this paper, we focus on the b th . L tt timize the maximum
routing and channel assignment in large-scale Wireless Mesh P€cause theé main goal 1S not to optimize

Networks to achieve a max-min fair throughput allocation. As ~ overall throughput on the cost of fairness but to ensure a
most optimization approaches fail to optimize large wireless fair resource distribution between the users.
mesh network deployments, we investigate the usability of  The rest of this paper is structured as follows. In Sec-
genetic algorithms for this approach. The results show the oy || we first give an introduction to wireless network
influence of the genetic operators on the resulting network . . " .
solution and underline the advantages of a genetic optimization plannlljg, comparing traditional Cgllular ,ne,twork plargin
when applied carefully. with wireless mesh network planning. This is followed by a
short overview of global optimization techniques, whick ar
applied in the related work section for optimizing WMNSs.
In Section IV, we describe our genetic algorithms for
routing and channel assignment in detail. The performance
of different genetic operators is evaluated in Section V and
The complex structure of Wireless Mesh Networkswe optimize the genetic algorithm by introducing a local
(WMNs) require a careful network planning and optimiza- optimization approach in Section VI. Finally, conclusiae a
tion. Our goal is to increase the throughput of the completalrawn in Section VII.
WMN while still sharing the resources fairly among the
nodes. The planning of WMNS is in contrast to traditional !l- NETWORKPLANNING AND OPTIMIZATION ISSUES
wireless networks much more complex. On the one hand, Network planning and optimization can be done using
a WMN consists of a multi-hop structure where not only several techniques. On the one hand, signal quality mea-
interference on neighboring paths but also self-interfeee  surements can be performed, which is very time-consuming
occurs. On the other hand, each node in the network caand necessitates the access to all areas in which the network
be equipped with multiple interfaces operating on différen should be supported. On the other hand, a demand node
channels. The interference problems are covered by using titoncept can be used. This mechanism is often applied to
concept of collision domains. For the routing and channekellular network planning. Furthermore, network planning
allocation, an optimization method is required, which iscan be done using an optimization mechanism. Meanwhile, a
fast enough to optimize even large WMNSs. In our previ- huge number of optimization techniques have been proposed
ous papers [1], [2], we evaluated the usability of Geneticand we decided to use genetic optimization due to its
Algorithms (GAs) for this optimization approach. GAs are simplicity and the ability to plan even large networks.
based on the idea of natural evolution by simulating the ] )
biological cross of genes. Although GAs are generally not®- Wireless Network Planning
able to find the best solution, they provide near-optimal The planning of wireless mesh networks can be applied
results in relatively small computation time. In this pgper to a variety of wireless networks, like WIMAX, WLAN,
we extend the evaluation by analyzing the influence of theand sensor networks. Although the network technology
genetic operators during the evolution and by introducingchanges, the planning challenges remain similar. In centra
the concept of local optimization. to traditional cellular network planning, the planning and
Our goal is to increase the throughput of the completeoptimization of WMNs is much more complex. A widely
WMN while sharing the resources fairly among the nodesused concept for cellular network planning is the demand
This is achieved by applying a max-min fair share algorithmnode concept introduced by Tutschku [5] and illustrated in
presented in [3] and by tuning the genetic parameters. Acigure 1(a).

Keywords-Wireless Mesh Networks, Planning, Optimization,
Routing, Genetic Algorithms

I. INTRODUCTION
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candidate si ) the planning and optimization of wireless mesh networks,
R D @ Ly 9 namely tabu search, branch and bound, simulated annealing,
o Lo\ A4 Sy N and genetic algorithms.
@ ¢\ % & ﬁ m 1) Tabu Search:Tabu search is an extension of the local
, 9 % % S T w e search technique for solving optimization problems. The
g egg/g\\ﬁ\ P m &@\_ 1 algorithm was introduced by Glover in 1986 [6]. It enhances
8, ﬁgg =~ \_ @ ﬁ the local search method by using a memory structure. To
o s @ &\ 8 @ & avoid cycles of the possible solutions found by the algarith
demand node the solutions are marked as “tabu”. All solutions on the tabu
(a) Cellular network planning. (b) WMN planning. list can not be used for the next iteration step.
Figure 1. Comparison of traditional cellular network plarmand wireless Th_e tabu search a!gomhm Sté’}rts by using elth'er.a random
mesh network planning. solution or by creating a solution with a heuristic. From

this initial solution x, the algorithm iteratively moves to
a solution x’ in the neighborhood of x. From all possible

_ ] solutions in the neighborhood of x, the best one is selected
The algorithm first looks for the demands of cellular ser-55 the new solution if it is not on the tabu list. Afterwards,

vices. Therefore, different demographic areas are takien in the tapu list is extended and the algorithm proceeds until a
account. For example, more phone calls occur in urban areagopping criterion is reached.
than in rural areas. According to these demographic regions 2) Branch and Bound:The branch and bound method

a dn_‘ferent number of _o!emand nodes are set up like show enerally finds the optimal solutions with the disadvantage
n Figure 1(a). In agidmon to _the deme_md nodes, c_an_dld_at f being slow. In general, it is a search and comparison
S|tes_for base stations are |pserted into_the optimizationye yiterent possibilities based upon partition, sampling
algorithm. As eaph base station is able to support a f|x.e nd subsequent upper bounding procedures. The first step,
amount of users in cellular systems of the second generatlort'he branch, is used to split a problem into two or more
candidate sites are selected for base station placement érﬂjbproblem’s The iteration of the branch step creates a
such a way that all demand nodes can be served with 8earch tree. To avoid the calculation of all subtrees, the

celrtam probab||r|1ty. lanni F WMNS i h algorithm uses the bound step. It searches for the first valid
n contrast, the planning o S IS Much more com- o) tion whose value is the upper bound. All following

plex. Not o_nIy the covered area or nu_mber of e”‘?' users hfj‘(?alculations are canceled if their costs exceed the upper
to be consu_jere(_j, but also the capacity E_ind the interferengg, .y if new, cheaper solution is found, the upper bound
gf the (;elaylrr]]g |(I;IkS. Thebcapacny of a Imkhdoe.s no';) Onlﬁ will be set to the value of this new solution. Thus, the branch
epehn on tfe |stanceh_ Etvyeen tW% mesd pomts,h ut & ep increases the search space while the bound step limits
on the interference, which in turn depends on the useg rpq algorithm proceeds until either all subtrees havenbe

channels. Looking again at Figure 1(a), we can see that th@valuated or a threshold is met

channel assignment has to be performed in such a way that 3) Simulated AnnealingThe goal of simulated annealing

neighboring base stations do not use the same channel. In

WMNSs, such as shown in Figure 1(b), each mesh point cal® to find a good solution rather than to find the optimal

be equipped with multiple interfaces, which can be assigneaomIon like branch and bouno_l. The name of the algorithm
one channel each. comes from metallurgy. Metal is heated up and then cooled

. . . down very slowly. The slow cooling allows to form larger
In addition to the more complex channel assignment in M Y 9 9

WMNs compared to traditional cellular networks, also thecrystals, W.h'.Ch corresponds tq f|nd|r_19 something nearer to
. . , . a global minimum-energy configuration.

routing has to be considered. In a fixed wireless mesh Wh i imulated ling for the ch | all

network where each mesh point is equipped with multiple en applying simulated annealing for the channel allo-

interfaces, the Modulation and Coding Scheme (MCS), thé:ation in a WMN, the algorithm starts assigning channels

interference from neighboring nodes, and the number Ofandomly. If @ small change in the channel assignment

flows traversing a link have to be taken into account for!MProves the_thrqughput, €., Iov_ve_rs the COSt. or energy,
the routing decision. the new solution is accepted and if it does not improve the

solution it might be accepted based on a random function.
B. Global Optimization Techniques If the change only slightly worsens the solution, it has
Due to the complexity of routing and channel assignmenf’l petter chgnce to get accepted in contrast to a solut.|on,
in WMNs, global optimization techniques are applied. Until which heavily dgcreases the.perfo.rmance. Worse solutions
now, over 90 different optimization techniques have bee ret accepted with a probability given by the Boltzmann
proposed, ranging from ant colony optimization to tabu actor -
search. We only describe four of them, which are used for e 5T > R(0,1), (2)
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where E is the energykp is the Boltzmann constanf,  tabu search and the branch and bound algorithm would
is the temperature, ang(0, 1) is a random number in the be too time consuming, especially when considering large
interval [0,1]. This part is the physical process of anmeali  WMNSs. In the next section, we take a closer look at the
For a given temperature, all solutions are evaluated andork related to WMN planning and optimization where one

then, the temperature is decremented and the entire proceskthe described optimization methods is applied.

repeated until a stable state is achieved or the temperature
reaches zero. This means that worse solutions are accepted
with a higher probability when the temperature is high. As Wireless mesh networks have attracted the interest of

the algorithm progresses and the temperature decreases, trarious researchers and Internet providers. Hence, a numbe
acceptance criterion gets more and more stringent. of papers have been published on the problem of planning

4) Genetic Algorithms:Genetic algorithms are similar WMNs and estimating their performance. We divide the
to simulated annealing and are also not applied to findelated work into three parts. The first part shows general
the optimal solution but rather good ones. In contrast toVMN planning approaches. In the second part, the work
the branch and bound method, they are much faster anelated to channel assignment and routing is presented.
therefore applicable for the planning and optimization ofFinally, we present papers working with genetic algorithms
large wireless mesh networks. for planning radio networks.

GAs are based on the idea of natural evolution and ) . . T
are used to solve optimization problems by simulating the Vireless Mesh Network Planning Using Optimization
biological cross of genes. A randomly created population OfTechnlques
individuals represents the set of candidate solutions for a Sen and Raman [7] introduce a variety of design con-
specific problem. The genetic algorithm applies a so-callegsiderations and a solution approach, which breaks down the
fitness function to each individual to evaluate its quality WMN planning problem into four tractable parts. These sub-
and to decide whether to keep it in the new populationproblems are inter-dependent and are solved by heuristics i
However, the selection without any other operation will a definite, significant order. The evaluations of the presgnt
lead to local optima. Therefore, two operators, crossoveglgorithms show that they are able to generate long-distanc
and mutation, are used to create new individuals. Thes¥/LAN deployments of up to 31 nodes in practical settings.
new individuals are called progenies. Figure 2 shows the Other related works [8]-[10] deal with creating a wireless
influence of crossover and mutation on the fitness landscap®esh network model, planning its parameters, and evatyatin
of two traits. As mutation is just a swapping of one or two the solutions via linear programming. He et al. [8] propose
bits, it leads to only small changes in the fitness landscapenechanisms for optimizing the placement of integration
The crossover operator instead can lead to complete nepoints between the wireless and wired network. The devel-
solutions as indicated in the figure with the creation ofoped algorithms provide best coverage by making informed
the progeny. Thus, the crossover operator can protect thglacement decisions based on neighborhood layouts, user
genetic algorithm from running into local optima, while a demands, and wireless link characteristics. Amaldi et9l. [
mutation is just a small step around a previous solutionnBot propose other planning and optimization models based on
operators together are used to find a near-optimal solutionlinear programming. The aim is to minimize the network in-

Simulated annealing and genetic algorithms are welbtallation costs by providing full coverage for wirelesssime

suited for the planning of wireless mesh networks. Applyingclients. Thereby, traffic routing, interference, rate detpn,
and channel assignment are taken into account. Another cost

minimizing, topology planning approach is presented by So
orogeny creaed A0 A an(_j Liang [_10]. An op_tin_1izat_ion framework is propqsed,
by crossover «““ mutated which combme; a heuristic with Bender’s d_ecomposmon to

calculate the minimum deployment and maintenance cost of
a given heterogeneous wireless mesh network. Furthermore,
an analytical model is presented to investigate whether a
particular relay station placement and channel assignment
can satisfy the user demands and interference constraints.

Ill. RELATED WORK

gogd individuals:

AR B. Routing and Channel Assignment for Wireless Mesh
Networks

One of the first contributions on channel assignment
is presented by Raniwala et al. [11], [12]. The channels
are assigned according to the expected load evaluated for
Figure 2. Influences of crossover and mutation in the fitnesdsleape. shortest path and randomized multi-path routing. It is show
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that by using only two network interface cards per meshenormous capacity increase is achieved with the channel
point, the throughput increases up to eight times. In cehtra assignment optimization. Compared to manual tuning, the
to Raniwala et al. [11], [12], Chen et al. [13] do not only algorithm is able to create a network plan with 133%
consider the expected load for the channel assignment, batpacity, 98 % coverage, and 93 % costs, while the algorithm
also consider the link capacities. Based on the link metricsneeds 15 minutes for the optimization whereas the manual
called expected-load and expected-capacity, the chasnel anetwork planning takes hours.
signment is optimized using simulated annealing. Lee et al. [23] perform an AP assignment for users in
Further papers based on the paper presented by Raniwadenart environments using a genetic algorithm. The AP as-
et al. [11] are published by Ramachandran et al. [14] angignment is optimized in such a way that the load is balanced
Subramanian et al. [15]. Both papers take the interferencbetween the AP and that the bandwidth requirements can
between links into account. The first paper solves the charbe met. The approach is evaluated in a scenario with 16
nel assignment using a straightforward approach while thé&Ps and 70 users. The results show that the load is almost
second one uses a tabu search algorithm. Another paper @alanced between the APs after 300 generations.
channel assignment and routing is presented by Alicherry In contrast to the related work, we focus not only on
et al. [16]. A linear programming based routing algorithm a single-radio or single-rate WMN, but evaluate the per-
is shown, which satisfies all necessary constraints for théormance of a multi-channel, multi-radio, multi-rate WMN
joint channel assignment, routing, and interference fide | using both channel and route assignment. Our genetic al-
scheduling problem. Using the algorithm, the throughput isgorithm optimizes the throughput while still maintaining a
fairly optimized. The fairness constraint means that fahea max-min fair throughput allocation between the nodes. In
node the demands are routed in proportion to the aggregatae next section, the complexity of a fair resource allarati
traffic load. in WMNSs is described before introducing genetic algorithms
Raniwala and Chiueh [12] and Chen et al. [13] only and its modifications for the planning and optimization of
consider non overlapping, orthogonal channels. MohsenialiVMNs.
Rad and Wong [17], [18] instead also consider partially
overlapping channels and propose a congestion-aware chandV. WMN PLANNING USING GENETIC ALGORITHMS

nel assignment algorithm. It is shown that the proposed _— : .
. . The objective of this paper is to support the WMN
m 0,
algorithm increases the aggregate throughput by 9.8 % tolanning process by optimizing the performance of a WMN.

11.4% and reduces the round trip time by 28.7 % to 35.5 O/g\/'th the helo of tic algorith timal solus
compared to the approach of Raniwala and Chiueh [12]. ! € help ol genetic algonthms, near-opimal Soiuson
can be achieved in relatively small computation time. I thi

C. Genetic Algorithms for Radio Network Planning section, we show the parameters, which we have to consider

Genetic algorithms have been used for radio networl{’de FO evaluat_e in order to achieve a near-optimf_:ll W.MN
planning for years [19]-[23]. Cabari et al. [19] apply solution, meaning that the throughput in the WMN is fairly

a genetic algorithm for UMTS base station placement inShaer among the mesh points.

order to obtain a maximum coverage. It is claimed thatA Problem Formulation
the performance of the GA strongly depends on the fitness™
function. Another paper on UMTS optimization with genetic We assume that each mesh point is connected to only one
algorithms was published by Ghosh et al. [20] in 2005.gateway with a fixed routing and we can thus define the
Genetic algorithms are used to minimize the costs and tonesh network as a directed graghV, &), whereV is a
maximize the link availability of a UMTS network with set of mesh points,...,ny and€ = L is a set of links
optical wireless links to the radio network controllers. connecting the mesh points. A subs&t’ C V contains the
Besides Gosh et al. [20], Badia et al. [21] use genetigateways, which are connected to the Internet. Each mesh
algorithms for a joint routing and link scheduling for WMNs. point n; € V \ GW has a fixed route and gateway to the
The packet delivery ratio is optimized depending on thelnternet. The route is denoted & and consists of a set
frame length. It is shown that genetic algorithms solve theof links, R; C L. Thus, the mesh points connected to one
studied problems reasonably well, and also scale, whereagmteway can be considered as a tree and the complete WMN
exact optimization technigues are unable to find solutionsis a forest.
for larger topologies. The performance of the GA is shown As we do not have a fully meshed network, a lifikk;)
for a single-rate, single-channel, single-radio WMN. between mesh point and mesh poing only exists, if a
Vanhatupa et al. [22], [24] apply a genetic algorithm communication between these mesh points is possible within
for the WMN channel assignment. Capacity, AP fairnessthe mesh network. Letr; ; be the data rate of the link, ;).
and coverage metrics are used with equal significance tdhe goal is now to optimize the paths from each mesh point
optimize the network. The routing is fixed, using eithern; € V\ GW to the gateway so that the throughput in the
shortest path routing or expected transmission times. AWMN is fairly shared among the mesh points.
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B. Fairness and Capacity in Wireless Mesh Networks for a WLAN-based mesh network without using RTS/CTS.
To achieve a fair resource distribution among the mesH he dark gray area shows the two-hop area where no station

points, we use a max-min fair share approach introduced b§an transmit a packet when using RTS/CTS.

Bertsekas and Gallager [4]. A solution is max-min fair if

no rate can be increased without decreasing another rate to CD(y,ne)=13

a smaller value. Max-min fairness is achieved by using an

algorithm of progressive filling. First, all data rates ag¢t®

zero. Then, the data rates of all flows are equally increased

until one flow is constrained by the capacity set. This is the

bottleneck flow and all other flows have to be faster than

this one. Afterwards, the data rates of the remaining ﬂows

are increased equally until the next bottleneck is founds Th

a) One- and two-hop collision do-(b) Link load calculation depending

procedure is repeated until all flows are assigned a data ratgain of link (s, ns). on the carried number of flows.
Before assigning the data rates to the flows, the capacity _ N _ o
of the network has to be estimated. Therefore, we first have Figure 3.  Collision domain and its link loads.

to estimate the link capacities. The capacity of a single . o o

link is determined by the pathloss and the Signal to Noise The nominalload of such a collision domain is the number
Ratio (SNR). For the pathloss calculation, we use a modifie@f transmissions taking place in the collision domain. A
COST 231 Hata [25] pathloss model for carrier frequenciedransmissiortry ; ; corresponds to the hop from mesh point
between 2 GHz and 6 GHz. The model is proposed by théi {0 mesh point; taken by the flow towards mesh point
IEEE 802.16 working group as the WiMAX urban macrocell ¥+ i-€., (i,j) € Ry. The number of transmissions, ; on
model, but is also valid for WLAN mesh networks and is link (i,j) corresponds to the number of end-to-end flows
defined as crossing it:

Aij = |{kl(@,5) € Ry} 4)

Figure 3(b) shows the load per link for the same example
Here, f denotes the operating frequency ahdenotes the network as before. Each mesh point on the way to the
euclidean distance between mesh pointsand n;. The gateway produces traffic resulting in a traffic load of 5
pathloss model is used to calculate the SNR, which i®n the link (n1,¢:) and a load of 2 on the linkns, g1).
required to determine the maximum achievable throughputCorrespondingly, the number of transmissions in collision
The SNR is calculated as domainD; ; is

Ynin; = Ty — PL(ng,my, f) — (No + 10 - logio(W)), (3) mig= > st (5)
(s,t)€D;,;

where T, is the transmit power}N, is the thermal noise
spectral density (-174dBm/Hz), andl is the system band- Thus, the collision domain of linkn,, ns) consists of 13
width. Now, the Modulation and Coding Scheme (MCS) istransmissions in total.
selected with an SNR requiremey, ... that is smaller or In order to fairly supply all mesh points, we share the
equal to the link's SNRy,, ,,,. The MCS is chosen in such time resources among all transmissions taking place within
a way that the frame error rate lies below 1%. If the SNRthe collision domains of the corresponding links. Thereby,
requirement for the most robust MCS cannot be met, theve take the rategr; ; and the number of flows,; ; into
two mesh pointsy; andn; are not within communication account. The throughput ; of link 4, j is then defined as
and interfering range. 1

Having computed the maximum data rate of each link tij=——="3. (6)
according to the pathloss, we now have to calculate the > dé’,,,
capacity of each link taking interference from neighboring (5:)€Ds;
mesh points into account. Therefore, we use the concepf we assume that link(ny,ns) supports 54 Mbps based
of Collision Domains (CDs) introduced by Jun and Si-on the pathloss and the SNR, the throughput would be
chitiu [26]. The collision domainD; ; of a link (i, ) 4.15Mbps due to a collision domain size of 13. However,
corresponds to the set of all link&,¢), which can not before setting this throughput to nodg we have to follow
be used in parallel to linKi, j) because the interference the principle of max-min fairness.
from a transmission on linKs,¢) alone is strong enough  An algorithm to determine the max-min fair throughput
to disturb a parallel transmission on lirfk j). Figure 3(a) allocation based on the definition of collision domains is
shows the collision domain of linkns, ns). The one-hop given by Aoun and Boutaba [27]. The algorithm iteratively
collision domain illustrated in light-gray denotes the aare determines the bottleneck collision domain and allocdies t
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data rates of all flows traversing this domain. If in our ex- sufficient solution is achieved. In the following, we explai
ample in Figure 3 the linkn4, g1) would be the bottleneck, the steps of our WMN optimization approach in more detail.
all mesh points traversing the link would be assigned to this
throughput, in our cases, n4, ng, n7, ng. As link (nq, ns)
and link (g1, no) also belong to the collision domain of link
(n1,¢1) but do not transmit over the bottleneck link, the | [ [] []
time resources occupied by the bottleneck link are sutgdact | [7] [] []
from the two links.

In the next step of the iteration process, only the remaining
collision domains are considered. This way, we calculate
the throughput of each flow, which is needed to evaluate

Random population

Initialize

. . Individuals ordered by fitness
Evaluation via

Jfitness function® D D D D D D Crossover

—

the fitness of the WMN. The iteration stops when all flows Bestindividuals

are assigned. If in our example the next bottleneck cotiisio _

domain is link (g1, n2), the remaining maximum supported hew population Individuals of Progenies of

rates are assigned to the last two links. Algorithm 1 clasifie O E netgeneraton, | -pestindviduals

the procedure of assigning the rates. B 1T B0 [ I B —— [0 [}

Algorithm 1 Max-min fair resource distribution based on Figure 4. Workflow of a genetic algorithm.

collision domains.
LO=7F all flows are unassigned 1) Network EncodingBefore going through the steps of
2: L={(i,4)Ini; >0} allactive links  he " genetic algorithm, the WMN has to be encoded. The
& piy =1, 0,5 € L all links have full  gncoding must be simple without any redundancy in order

capacity not to prolong the runtime of the genetic algorithm. As
4 ] we assume that each mesh point is connected to only one
5: lteration gateway, the network encoding has to represent a spanning
6:  forall links (i,j) € £ _ tree with the gateway as root, cf. Figure 5(a). This means
& mij = . t)EE:D As,t nominalload  {hat the graph does not contain any cycles and each mesh
1)ED; -

o t 5= 1 — throughput share per flow point has only one route towards the gateway. Such a tree

structure can easily be encoded in a list, where the next hop
o end for of each mesh point, which the traffic has to take in order to
10'. (u,v) = argming ezt bottleneck CD reach the gateway, is stored. This list representation ®f th

: V)= i,j)€L biyj

11: B={k € O|R,NDy., # 0} bottleneck flows  €Xxample network from Figure 5(a) is shown in Figure 5(b).
' “r Considering for example mesh point, the next hop is node

dr,
(s,t)ED; j st

122 by =1ty foral ke B set bottleneck rates o

133 O=0\B adapt unassigned flows n, and the next hqp of mesh pom is the gateway. Thus,

14 pig=pij— Seep|Re N Dijl - tu adapt free t.he complete rgutmg of a WMN is handled with a simple
capacity of all Chs ’ ’ ’ list representation. -

15 L =L\D,, adapt active links Besides the routing, we also want to optimize the channel

allocation. Although each mesh point can be equipped with
several network interface cards, the channel of the link
towards the gateway is fixed as shown in Figure 5(a). Thus,
the channel allocation can be done in a similar way as the
o o o ) routing. Therefore, the list is extended with one more row,
After describing the principle of collision domains and spowing the channel of the next hop towards the gateway, cf.

max-min fair throughput allocation, we now explain the rigyre 5(b). This simple list represents the tree structiire
workflow of a genetic algorithm in detail. Figure 4 shows the

complete procedure of a genetic algorithm for the planning
and optimization of WMNs. Firstly, a random population is
created with a predefined number of individuals. The fitness

of each individual is evaluated using the fithess function
and the individuals are ordered according to the fitness ch
value. The best individuals, the elite set, is kept for the ne
population. Afterwards, the crossover and mutation operat
are used to create the remaining number of individuals
for the new population. The procedure is repeated until a Figure 5. Example network and its list representation.

16: Stop criterion:O = ()

C. Optimization Using Genetic Algorithms

node nn N N Ng Ns Ng Ny Ng
nexthog g1 & m m M g ng N
channel| chy ch, chy ch, chy ch, chy chy

(a) Example network. (b) List representation.
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one gateway and each gateway in the wireless mesh network 3) Selection Principle:After the evaluation of a popu-
is encoded in a similar way. The list representation is latetation, we select a set of solutions, which have the highest
used to perform the genetic operations and to evaluate thfgtness of all and keep them in the new generation. This set
fitness of the WMN. is called the elite set. In the results section, we vary the si
2) Evaluation via Fitness FunctionThe evaluation part of the elite set in order to see the influence on the solution.
of the optimization is the heart of the genetic algorithm.As the number of individuals of a population is fixed for all
Based on the fitness value, the GA decides, which individgeneration steps, the remaining number of individuals are
uals should be kept in the new population. Hence, it rategreated by crossing and mutating the genes.
the performance of the genes and allows only the best to be The selection of the individuals for applying the genetic
replicated. operators is thereby based on the fitness and furthermore
The fitness of the WMN is estimated using the allocateddepends on the number of needed new individuals. et
throughputs of each flow. The fitness functio\') of the ~ be the number of needed new individuals aifa) be the
evaluation represents the user satisfaction and the &airle ~ selection probability for individuak. Then, the number of
the resource allocation. Some fitness functions might lea@rogenies generated based on individuare
to a complete unfair resource distribution in the WMN.
Therefore, we evaluate the performance of several differen g(x) = [lw- s(@)|- )
fithess fL.mct|on.s in Sect|on. V. Several combinations OfThe selection probability(z) depends on the relation be-
the functionsmin(Ru), median(Ryr), mean(Rr), and ' . .
. X ; ) tween the fitness of solutiom and the sum of all fithess
var(Ryr) are used, which are applied on all routing links . )
. . ! values from the complete population, which means that new
of a network solutionV. The functionmin (R) calculates . = -~ ) Lo
. : . individuals are more likely to be created from individuals
for example the minimum throughput of all links used in

routing schemé&r »,. We define the following eight different with a better fitness. This results in

fitness functions: s(@) = f(x) ®)
fiN) = min(Ry) = minimum throughputR ) J; £(7)
fa(N) = median(Ry) = median throughpyR )
£s(N) = mean(Ry) = mean throughpdR.y) 4) Crossover TypesThe crossover operator as well as the
3 N dian(R N mutation operator are now applied to the selected number
fN) = min(Ry) + median(Ry) of individuals. For the cross of genes, we use the standard
N = R 752 2-Point Crossover [28] and two other variants, which we
fsWN) = mean(Ru) — ”ar.( ) especially created for the planning of WMNSs, the Cell and
Ffo(N) = min(Ra) + median(Ry) + me‘mc(RN ) the Subtree Crossover.
71 2-Point Crossover
f2(N) = Z (‘T — ) ~T(z’) The 2-Point Crossover is a widely used extension of the
et 1-Point Crossover. While the 1-Point Crossover changes
7] -1 the list representations of two individuals until a certain
foN) = |T|*i-T(') point or from a certain point on, the 2-Point Crossover
8 a — ¢ Y exchanges subsets, which are randomly chosen sublists of

the individuals representation, the genotype. Thus, & star
The last two functions weight the link throughputs with and an end point, denoting the range of the sublist, are
a factor depending on the corresponding throughput valuezhosen each time the 2-Point Crossover is applied.
Therewith, we aim to achieve a kind of max-min fairness not An example of the crossover is shown in Figure 6. The
only with the throughput allocation made by the evaluatingsublists of two individuals should be crossed, namely the
algorithm but also with the fitness value from a reasonablgouting and channel allocation of mesh pointsto ns. The
fitness function. For this purpose, an ascendingly sort#d li resulting progenies of the individuals show one charastieri
T of the throughputs of all routing links in the solutioi  of this reproduction approach. It created solutions, which
is used. Each throughput value froffi is weighted with ~ contain mesh points with no connection to any gateway.
a factor depending on its place in the list, giving moreThis happens due to the unregulated and absolutely agbitrar
weight to lower positions. This results in a fitness valueselection of the gene subset, which is meant to be exchanged.
with which mainly smaller link throughputs are optimized

at the expense of higher ones. The parametef function Looking at the progeny of individual 2, mesh points
fs(N) is a constant, which we set to 1.5 ands set to 8 nq,n2,n6,n7,ns have no connection to any gateway and
for the experiments in Section V. thus, the crossover results in an unreasonable solution.
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o o Figure 7. Cell Crossover between two individuals.
progeny of individual 1 progeny of individual 2

Figure 6. 2-Point Crossover between two individuals.
Subtree Crossover

The last crossover type is the Subtree Crossover. In
On the other hand, the 2-Point Crossover has created @ontrast to the Cell Crossover, not a complete gateway tree
reasonable progeny of individual 1. is exchanged but only a subtree. Therefore, the Subtree
Since the 2-Point Crossover may lead to unconnecte@rossover chooses mesh points randomly and crosses the
solutions, we have to be careful when evaluating the fitnesgntire subtree with the mesh point as root. Similar to the
of the resulting solutions. Thus, we adapt the fitness foncti Cell Crossover, the channel allocation is exchanged tegeth
to with the routing information.
f(/\/) = f(N) — diss(V), (9) The Subtree Crossover (_)f two subtrees is shown in Fig-
ure 8. The chosen mesh points argandn3. The crossover
which includes now theliss()V) term denoting the number of subtreenz only causes a small change in the tree structure
of nodes with no connection to any gateway. Hence, thén contrast to the subtree crossovemgg. Here, some nodes
throughput contained irf (\) presents the positive costs of of the subtree are connected to different gateways in the two

the network whilediss()) stands for the penalty costs. individuals. After the crossover, mesh pointg, and nio
belong to gatewayy, in the progeny of individual 2. This
Cell Crossover reduces the number of long branches of gateyalyut there

In contrast to the 2-Point Crossover, the Cell Crossove}s still potential for further optimization.

does not exchange sublists but complete cells. The crossove

operator randomly chooses a gateway and exchanges the

entire cell meaning that the routing information as well as®

the channel allocation is exchanged.
Figure 7 shows an example for the crossover of two & @

solutions. Black nodes denote the network gateways and the individual 1

light gray areas mark the chosen cell, which is exchanged. In @

the resulting progenies, the mesh points that have changed

their connection are marked dark gray. We can see that not

only link connections from mesh points are crossed, bu

some mesh points are now also connected to other gateways.

Mesh pointsnig, n12, 717, n1g are connected to gateway

in the progeny of individual 2 while they were attached to ®

gatewayg; before. The reason is that the number of mesh

points belonging to one cell differ between the individuals Figure 8. Subtree Crossover between two individuals.

Therefore, we also have to attach unconnected nodes after

the Cell Crossover, which can be seen in the progeny of ]

individual 1. In addition to the exchange of routes, theD: Mutation

assigned channels are exchanged, which is not shown in While the different crossover variants help to avoid run-

the figure for the sake of readability. ning into local optima, the mutation operator increases the

progeny of individual 1 progeny of individual 2
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Table |
SIMULATION SCENARIOS.

Parameter Scenario S1  Scenario S2
Topology G2MP71 G6MP38
Population size 150
Elite set size 50

individual mutated individual Number of generations 400
Crossover type Subtree Crossover

Cell Crossover

Figure 9. Routing mutation of three mesh points. 2_Point Crossover

Number of crossed subtrees rand(0,7) rand(0,5)
Number of mutations rand(0,20) rand(0,10)
performance of WMNs with slightly modifications of the Fitness function LI N)

routing structure and channel allocation. For the optimiza
tion of WMNSs, the number of mutations are chosen based on
the scenario size and the mutation of the routing and channdlhe second scenario contains a smaller number of mesh
allocation are applied independently from each other. points and a larger number of gateways. We choose this
For the routing scheme, the mutation operator substituteslearly different topology in order to show the influence
some randomly chosen positions of the routing code wittof the crossover operators depending on the number of
new information taken from a set of potential neighbors,mesh points. The 38 mesh points and 6 gateways of the
which would not cause the creation of cycles and would nosecond scenario are allocated in an area of 1.5km x 1km.
harm the tree structure of the solution. An example for theThe minimal distance between users is 60 m and between
mutation of the routing scheme from three nodes is showrgateways 450 m. We call this scenario GGMP38.
in Figure 9. Here, the links towards the gateway of the The differences in the settings of the two configurations
three gray nodes are mutated. For the channel allocatiolepend on the used topology of the corresponding scenario.
the mutation operator randomly chooses a channel from Bue to the larger number of mesh points contained in
list of possible channels and substitutes randomly chose®2MP71, we configure Scenario S1 with more mutations
links from the WMN. and more exchanged subtrees than Scenario S2. Thereby, we
According to the workflow diagram shown in Figure 4, keep the relation between crossover and mutation at a fixed
the mutation operator is applied after the crossover on théevel suitable for the investigation of the genetic opesto
progenies of the crossover. The mutated individuals tageth  Besides the parameters of the genetic algorithm, the
with the elite set form then the new population and closegeneral parameter settings are shown in Table Il. These
the circle of the genetic algorithm. parameters only affect the characteristics of the network ¢
nections. The parameters carrier frequency, channel band-
width, and available channels decide to some extent the
After introducing genetic algorithms in detail and showing performance of the mesh point connections in a network
our modifications and extensions for wireless mesh netsolution but they do not have an impact on the effectiveness
works, we now want to evaluate the performance of theof the genetic algorithm. Therefore, we do not considerrthei
genetic algorithm. The influence of every part of the genetidmpact on the resulting solutions.
algorithm’s workflow is thereby evaluated separately. tfirs

V. PERFORMANCEEVALUATION

we take a look at the influence of the fitness function o Table i S
on the resulting solution. Afterwards, the size of the elite ENERAL PARAMETER SETTINGS.
set is investigated followed by the population evolution Parameter Value
for the three different crossover types. Finally, we show Carrier frequency 3500 MHz
the influence of the two genetic operators crossover and &hannel baﬁdwidr:h 63% 'mz
. . . aximum throughput . ps
mutation on the resulting network solution. Available channels 3500 MHz, 3510 MHz
. . . Antenna power 25dBm
A. Simulation Settings Pathloss model WiMAX urban macrocell model

For the creation of the results presented in this section,
we use the two scenarios introduced in Table I. Although we
evaluated a large number of different scenarios, we highlig
only the two most different ones here. The first one consist®-
of 2 gateways and 71 mesh points distributed over an area of As the fithess function is the heart of the genetic algo-
2km x 1.2 km. Thereby, the minimal distance between meshithm, we first take a look on the influence of different fithess
points is 60 m and between the two gateways it is 700 mfunctions on the resulting solution. Therefore, eightetifint
For the sake of readability, we call this scenario G2MP71fitness functions, described in Section IV, are applied.

Influence of Fitness Function

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

22

Figure 10 shows the throughputs of the mesh points of th€. Elite Set Size
best individual after 400 generations of Scenario S1. Ferth | ihis section. we examine the impact of the elite set

sake of readability, the curves of the eight different ﬁmes,size on the progress of the evolution using Scenario S1 and

functions are shoyvn in two separate .subfigures. The X-aXigpplving the Subtree Crossover only. Figure 11(a) illdesa
shows the normalized flow IDs, meaning the 71 mesh pointghe minimal throughput of three different elite set sizes

sorted by throughput, and the y-axis lists the throughput iy eraqed over 15 different initial populations. This tirtte

Mbps of the flows. x-axis shows the generation number while the y-axis lists
A curve completely parallel to the x-axis would mean ihe minimal throughputs.
a perfect fairness between all flows and a curve whose prom the figure it can be observed that the best perfor-
minimum throughput is abovg; () would mean that the  mance is achieved with a small elite set size. On the one
solution is max-min fair. This allows to see that the unfsiire pang, a large elite set includes a number of bad individuals,
resource distributions are achieved with the fitness foneti  \yhich are kept in the next generation and decrease the
f2(N) and f3(N). minimal throughput. On the other hand, with an elite set
Optimizing only the median witlf>(\), we do not pay size of 125, only 25 new progenies are generated. With this
attention to the rest of the throughput allocation. This iSsma” number of new unexplored genes, the progress of the
why the left part of thefo(N) curve stays very low. The genetic algorithm slows down, which can be seen on the
distribution of f5(\) also shows that some mesh points haveleft side of the figure. Similar solutions compared to an
a very high throughput compared to others. This happengiite set size of 10 might be achieved after several more
accidentally because the fitness function does not contrgjenerations. This means that the larger the elite set size is
their behavior as it focuses just on the throughput of thehe slower is the progress of the genetic algorithm. To prove
median. this statement, we performed the optimization of the same
Fitness function f5(N\), optimizing only the mean scenario for more different elite set sizes. The results are
throughput, also results in a very unfair solution. Here, th shown in Figure 11(b).
number of hops towards the gateway are minimized in order
to get some nodes with very high throughput, which boost
the mean value. In this scenario, four mesh points have ¢_,.| e o
throughput of over 24 Mbps while the throughput of all other £
flows is about 0.05 Mbps. goss

All other fitness functions result in a max-min fair re- £,

elite 5

elite 10

elite 125 elite 50 elite 125

elite 70

source distribution with a maximized minimal throughpat. | £o40 Eogof cited0  elero

the resulting solutions of; (N), fs(N), and fs(N), some =0 Eoss

flows have a very high throughput but not at the costs of °** w0 20 "0 o T
other flows.

] . ) ) ) . ~ (a) Three elite set sizes average(b) Performance of six elite set
The fairest solution is achieved with fithess function over 15 seeds. sizes.

f7(N) where all flows have a similar throughput of about 0.7
Mbps. The fitness function weights the throughputs of the

mesh points. Thereby, smaller throughputs have a stronger The figure reveals almost the same behavior as the previ-

mfIgence on the .f|tn.ess than higher throughputs..Th|s 'Bus one. Smaller elite sets cause faster evolution and tead t

achieved by multiplying the throughputs with the inversepeyer solutions. However, a too small elite set size is also

of the ascendingly sorted flow ID. bad as the figure shows for an elite set size of 5. With a

too small elite set, there might be a discrepancy between

the fitness of the elite set and the fithess of new progenies.
Thus, the elite set size should be chosen in dependence of
the population size.

Figure 11. Comparison of different elite set sizes.
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Examining the evolution of the population is an important
consideration needed to demonstrate the effectivenesgof t
genetic algorithm. Observing the evolution of the popolati
@ fiN) to f4(N). (b) f5(N) to fa(N). with every generation step helps to decide when to terminate
the algorithm. When the fithess is not increasing after an
additional number of generations, the genetic algorithm ca
be stopped because either a near-optimal solution is found
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Figure 10. Throughput allocation of the best individual.
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or the genetic algorithm is stuck in a local optimum. As but a good solution is always found after 400 generations.
the crossover operator helps to get out of a local optimumyVe tested the performance of Scenario S1 also after 1000
we take a look at the population evolution for all threeand 1500 generations, but the performance increase was
introduced crossover types. negligible compared to the throughput after 400 generation
The results shown in Figure 12 are generated with A comparison of the three crossover types shows that the
Scenario S1 from Table I. The x-axis shows the individu-highest minimal throughput after 400 generations is agtev
als sorted by fitness and the y-axis displays the minimalith the Subtree Crossover, followed by the results of the
throughput of each individual. The different curves illas¢é  Cell Crossover. The network solution with the worst perfor-
the generation progress during the genetic optimizatitxe. T mance is achieved when applying the 2-Point Crossover. In
elite set size is chosen to be one third of the completehe next subsection, we want to see if this is an exception or

population size. if the Subtree Crossover always leads to the best solutions.
In order to compare all three crossovers, we did not plot

the fitness but the minimal throughput on the y-axis. As theE. Effectiveness of Crossover

penalty costs are included in the fitness function of the 2- In order to show the effectiveness of the crossover type,
Point Crossover, cf. Section 1V, the fitness values would beye compare the performance of the three crossover operators
much lower for the 2-Point Crossover. Hence, we ConSideHepending on the number of mesh points and gateways in
only the minimal throughputs, which only represent thethe network. Furthermore, we want to find out if there is

positive costs. This is also the reason for the stronglyisgry  an interaction between the efficiency of the crossover types
curves on the left side of Figure 12(c). The individuals havegepending on the topology.

a large minimal throughput but there are a lot of unconnected The results for both scenarios from Table | are presented
nodes, which result in a lot of penalty costs and thus in lowein Figure 13. Figure 13(a) shows the evolution of the best
fitness. individual during 400 generations with different crossove
types and for not using the crossover operator at all for
Scenario S1. It illustrates the average results of 20 seeds
while applying a 95% confidence interval.

400th

150th D’g 0.7
S 06

20th 50th g
10th 15th ) z
1st 5th elite set £01

400th.

150th

204
0.3]

o

o

a
w
N

Subtree Crossover

Cell Crossover

20th 50th
10th 15th
1st 5th elite set

S

@

o
INg
©

50 100
individual number

(a) Subtree Crossover.

50 0 150
individual number

(b) Cell Crossover.

Cell Crossover Subtree Crossover

2-Point Crossover

Crossover Off 2-Point Crossover

n
=)

minimal throughput (Mbps)
minimal throughput (Mbps)
N
N

400th 0 100 200 300 400

150th generation

e Figure 13.

15th  50th

=
2

100 200 300 400
generation

(a) Scenario S1. (b) Scenario S2.
Effectiveness of the crossover operator.

elite set

This scenario includes a high number of mesh points,
which are distributed in the coverage areas of only two
gateways. This results in deep tree structures with longsway
over multiple hops towards the corresponding gateway. Such
network structures seem to be crucial for the effectiveness
of the crossover types. We can observe that the Subtree

In all subfigures, we can observe that the higher theCrossover leads to a better solution than the other two
generation number is, the smaller is the fithess growth. Thisrossover types. The better performance of the subtree
slowdown is caused by the similarity of individuals. After approach is the result of the exchange of small connectivity
several generations, the individuals are quite similaiictvh components, which causes reasonable gene variations with-
means that the crossover does not generate new, unexploredt disturbing the tree structure. The other two crossover
genes. The only possibility to find better solutions is totypes show a lower performance whereby the unregulated
apply the mutation operator only. Therefore, we introduce2-Point Crossover even outperforms the intelligent Cell
the concept of local optimization in Section VI. Crossover approach. This results from the small number of

Evaluating the population evolution in other scenariosgateways, which causes the cross of only one cell per new
has shown that it highly depends on the topology structurg@rogeny and quickly leads to similar individuals.

5 100 150
individual number

(c) 2-Point Crossover.

Figure 12.
Crossover.

Generations progress using Subtree, Cell, ambird-
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Subtree

The results from Scenario S2 are shown in Figure 13(b).
In contrast to the previous scenario, the higher number of
available gateways leads to a better efficiency of the Cell
Crossover. Moreover, the small number of nodes belonging
to one gateway allows a larger variety of individuals. This
is due to the fact that small changes in the routing structure
cause higher changes in the network performance than O 10 in 0 w0
in Scenario S1. However, the Cell and Subtree Crossover,
which exchange only Connectivity components have a bettelfigure 14. Muta_tion ON/OFF in combination with three crossotypes

. tested on Scenario S1.
performance than the 2-Point Crossover.

The comparison of the crossover types shows that the
crossover operator should be selected based on the co¥!:- OPTIMIZATION OF THE WMN PLANNING APPROACH
sidered topology to achieve the best solutions. In the next |, ihe |ast section, we have seen the influence of the

subsection, we take allook at the |anuepce of the m“tat'orgenetic operators on the performance of the resulting wire-
operator on the evolution of the population. less mesh network. In this section, we take a look at the

influence of the genetic operators in dependence of the
F. Effectiveness of Mutation GA progress and introduce a local optimization technique
£ quickly improve the performance of the wireless mesh
petwork.

2-Point  Cell

mutation on

minimal throughput (Mbps)
g o 9O ¢ g
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$
| mutation off  Cell

The mutation operator causes small changes in the fitne
landscape and normally does not help to get out of loca
optima. However, in the last subsection we have seen that
applying only the mutation operator almost increases th
performance of the wireless mesh network to the same As crossover operations are very time consuming, we
level as compared to a scenario where both, crossovevant to see if the crossover types lead to better network
and mutation are applied. To investigate the influence o6olutions during all generations. Therefore, we compage th
the mutation operator, Scenario S1 is considered. Botlitness of the best parent with the fithess of the resulting
mutation operations, the routing and the channel mutationgrogeny for early generations as well as for late genersation
are applied on the progenies of the crossed individuals. Th&he genetic optimization runs for 500 generations and the
number of routing and channel mutations on each individuafesults in Figure 15 show the fithess of the Cell Crossover
are chosen randomly in the interval [0,20]. Figure 14 showsnd Subtree Crossover of 2000 samples.
the minimal throughputs during the progress of the genetic Looking at Figure 15(a), we can see that about 10 % to
algorithm for all three crossover types. 20% of all crossover operations lead to better progenies.

Surprisingly, the performance of the genetic algorithmAlthough this amount seems to be very low, we have to take
without mutation is generally low and the genetic algorithma look at the exact improvements. One early Cell Crossover
runs into a local optimum after a few generations. For theincreases the fithess from 0.9 to 1.2. This might be a step
Cell Crossover, the reason is simple because only 2 gatewaysit of two local optima in the fitness landscape. However,
are placed in the scenario. The minimal throughputs for thgerforming a Cell Crossover in the late stages of the genetic
other two crossover variants are higher compared to the Cedllgorithm always leads to worse progenies. The reason is
Crossover but still way below the throughputs achieved whersimple as a Cell Crossover of two near-optimal solutions
mutation is used together with crossover. This is becausare likely to create unreasonable progenies.
after a few generations, the created individuals are quite When applying the Subtree Crossover, the results are a
similar and thus, the genetic algorithm gets stuck in a localittle bit different as shown in Figure 15(c) and Figure 15(d
optimum. In contrast, when activating the mutation operato Although the percentage of better progenies is similar ¢o th
the fitness of the solution grows even after 400 generation€ell Crossover, the improvements are lower. The reason is
and there is still potential for further evolution. that the Subtree Crossover performs only small variations

This shows how crucial the mutation operator is for by exchanging subtrees, whereas the Cell Crossover changes
the evolution of the genetic algorithm. Without using the two complete cells. However, these small changes also have
mutation operator, similar individuals are created by thea bad influence when performing them at the end of the
three different crossovers. The best performance is hergeneration process and only one or two progenies are better
seen for the Subtree Crossover as the Subtree Crossover Hhan their parents.
the largest possibilities to create new genes. The mutation Thus, the amount of crossovers can be reduced with
operator instead ensures the creation of new unexploredicreasing number of generations. Before doing this, we
genes with slight changes in the routing scheme and channtdke a look at the influence of the mutation operator in
allocation, which fosters the evolution. dependence of the number of generations.

. Influence of the Crossover on the GA Progress
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Figure 15. Influence of the crossover on the fitness of theltiregu i )
progenies. Figure 16. Influence of the mutation operator on the GA pragres

B. Influence of the Mutation Operator Depending on the GAthe complete generation process, both mutation operations
Progress are performed with each individual of the elite set. If the

Th tati ¢ duct | Il modificati fithess after the mutation is higher than the fitness befare th
€ mutation operator conaucts only smail moarica Ionsmutation, the new individual is taken for the next populatio
of the individuals and it is thus expected that the fitnes

v slightlv ch fter th tation ; 4 F Snstead of the old one. If the fitness is worse, the new
only slightly changes after the mutation is performed. Fur- . :0 i discarded.

thermore, we want to evaluate if, in contrast to the crossove In Figure 17, we compare the fitness values of the ten
the mutation also leads to better results when applied en latbest individuals in a scenario with an enlargement of the

generation steps. The results for the two mutation opeyator _ . . L . .
) . R elite set size with increasing generation number and withou
routing and channel allocation, are shown in Figure 16. The

n enlargement. The val re aver ver 10 simulation
plots are generated based on 2000 samples taken at tﬁ enlargement. The values are averaged over 10 simulatio

e . .
beginning and at the end of a 500 generation run, runs with 500 generations. Except for the worst of all 10
As expected, the change in the fithess value is only

individuals, the enlargement of the elite set has a positive
L . nfluence on the fitness. On average, the fitness is increased
small after the mutation is applied. However, the number o y 8%.
improved individuals is larger for both mutation operators
compared to the crossover operations. The channel mutatiocp

Summarizing, a reduction of the number of crossover
. . . erations achieved by a stepwise enlargement of the elite
even yields better results in 50 % of all mutations. Although P y P g
the performance of both mutation operators decreases wi

et size has a positive effect on the fitness value. In additio
an increasing number of generations, still better indigldu

he runtime of the genetic algorithm is reduced due to the
. i . . maller number of complex calculations of the cr ver
are achieved in 5% to 10 % of all mutations, cf. Figure 16(b)s atler nu ber of complex calculations of the crossove
. operations.

and Figure 16(d).

Thus, the mutation operator should be applied during the
complete generation process. However, when reducing the
number of crossover operations with an increasing number M

9 10 mean
Influence of the enlargement of the elite set.

2

.5
[ without enlargement
[ Jwith enlargement
0 =

of generations, the number of performed mutations are also
decreased. In order to keep the number of mutations, the fol-
lowing mechanism is applied. Firstly, the elite set sizenis i
creased with each generation, which means that incregsingl
more individuals are kept for the following population. $hi
reduces the number of crossover and mutation operations.
Secondly, in order to apply the mutation operator during

Figure 17.
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C. Local Optimization and Population Size CY— 250 20 50
[l fitness before local optimization [l fitness before local optimization
) ) ) . 26 -fime_ss after local optimization 200 18 -f\lngss after local optimization 10
As we have seen in the previous figures, applying the =°[[Xrunime | [ runtime

crossover operator on late generations almost alwaystsesul 22 150F g1 02
in worse individuals. However, the mutation operator might £, wf  Ei14 20%
improve 'the individuals because it only .sllghtly.changes » w0 2 ”
the individuals. To take advantage of this, we introduce

1.0 —0 1.0 0

the concept of local optimization. After the normal genetic B ioni 20 B N ona 2
algorithm finishes, we take the five best individuals of the

last generation, copy them three times, and perform severéjl
mutations with them. Similar to the previous improvement,
the resulting individual is only kept if its fitness value is Figure 18. Relationship between population size, fitnesd, rantime.
higher compared to the fitness value before the mutation,

else it is discarded. This can be repeated more than gqditional 500 or 1000 generations but this would take much
thousand times because the computation time for mutatingyore time. Also the performance increase by enhancing the

) Scenario with an average of 18.@b) Scenario with an average of 23.6
Ps per mesh gateway. MPs per mesh gateway.

15 individuals is negligible. population size is negligible and almost doubles the ruatim
In order to investigate the effect of the local optimization
we take a look at the influence of the population size. The VII. CONCLUSION

larger the populatio_n size, the more new individuals are | this paper, we investigated the usability of genetic
created per generation resulting in a larger number of goodqorithms for optimizing wireless mesh networks. Thereby
mdmdgals. This means thz_it a large populatlon size has th§e showed that the performance of the genetic algorithm
potential to get to the optimal solution but requires moregepends on the applied fitness function. The fitness function
computation time. In order to find a good population size,is sed to evaluate the resulting network solution. We itives
we need to look at the fitness of the best individual for agated eight different fitness functions optimizing for exden
variety of population sizes and compare it to the runtime. 4o minimum, mean, and maximum throughput. The results
To see the influence of the population size as well as thghow that the fitness function should be chosen with care
local optimization, a genetic algorithm run with 500 gen- pecause some functions lead to an unfair share of resources.
erations is performed with an additional local optimizatio Using a fitness value built on weighted throughputs of all
of 2500 generations. We investigate the influence on twaetwork flows results in the best solutions. In addition to
different scenarios, with different average numbers oftmes choosing a good fitness function, we illustrated that it is
points per gateway, and increase the population size frorg|so important to choose the elite set size according to the
25 to 200. The results are shown in Figure 18. population size. A small population with a large elite set
The fitness values are averaged values of the best indiize often results in a local optimum. The elite set size also
vidual over ten runs of the genetic algorithm. The runtimehas an impact on the required number of generations to get
shows the minimal total runtime. In Figure 18(a) the localto a good solution. We showed that with an elite set size of
optimization only slightly increases the fitness of the bestbone third of the population size, a near-optimal solution is
individual. However, in a scenario with a larger number achieved after 400 generations.
of mesh points, the local optimization increases the fitness Besides the fitness function and the size of the elite set, the
between 5% and 7% depending on the population size, cyenetic operators crossover and mutation have to be clgreful
Figure 18(b). The reason is that such a scenario offers morgpplied. We adapted the operators to the requirements of
possiblities to assign the routes and channels, which argireless mesh networks and introduced two new crossover
evaluated in the local optimization process. variants called Cell and the Subtree Crossover. The evalu-
Taking a look at the population size, we want to pointation of the influence of these operators revealed that the
out that the performance increase is only visible up to aWMN-specific Cell and Subtree Crossover lead to better
population size of 100. When increasing the population siz&olutions compared to the well-known 2-Point Crossover.
to 200, a run takes twice as long as a run with a populatiotHowever, they have to be applied according to the network
size of 100, while the fitness increases only by 1.5% atopology. The Subtree Crossover shows the best performance
most. Thus, a population size of 100 is a good compromisén scenarios with a large number of mesh points per gateway
between the runtime of the genetic algorithm and the fithess/hereas the Cell Crossover leads to the best solutions in
of the resulting individuals. scenarios with a small number of mesh points per gateway.
Summarizing, we want to point out that a local optimiza- During the progress of the genetic algorithm, the contri-
tion of the best individuals is a good means to get to bettebution of the crossover operator to find the optimal solution
solutions without significantly prolonging the runtime bkt  decreases. After several generation steps, almost nor bette
genetic algorithm. A similar result might be achieved after solutions are achieved by applying the crossover operator.
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Here, only mutation leads to a better fitness of the solution.[6] F. Glover, “Future paths for integer programming and links
We have shown that a reasonable network optimization  to artificial intelligence,"Comput. Oper. Resvol. 13, no. 5,

is only possible by using mutation. The influence of the pp. 533-549, 1986.

mutation operato'r in combination Wi.th all crossover types [7] S. Sen and B. Raman, “Long distance wireless mesh network
was tested and it was prOVen that n a” cases it Strongly p|anning: prob|em formulation and so]ution”’ WWW '07:
fosters the evolution. Even in late generation steps, the  Proceedings of the 16th international conference on World
fitness of the resulting solution improved. Wide WebNew York, NY, USA, 2007, pp. 893-902.

In order tp benefit from the crossover operatpr to get out [8] B. He, B. Xie, and D. P. Agrawal, “Optimizing deployment
of local ‘?p“ma at the beglnrjlng of the evolution process of Internet gateway in Wireless Mesh Network§bmputer
and to still get to better solutions at the end of the genetic  communicationsvol. 31, no. 7, pp. 1259-1275, 2008.
optimization, we introduced the concept of an elite set
increase and a local optimization. With every generation [9] E. Amaldi, A. Capone, M. Cesana, I. Filippini, and F. Malu-
of the genetic algorithm, the elite set is increased, which ~ Celli. “Optimization models and methods for planning Wire-
decreases the number of crossover and mutation operations. less Mesh Networks,Computer Networksvol. 52, no. 11,

. e ) pp. 2159-2171, August 2008.
In order to still mutate the individuals, the mutation opera
is applied to the elite set and if a better solution is found,[10] A. So and B. Liang, “Minimum Cost Configuration of Relay
it is taken to the next generation. The local optimization and Channel Infrastructure in Heterogeneous Wireless Mesh
is done after the normal generations procedure finishes. Networks,”inNetworking Atlanta, GA, USA, May 2007, pp.

, , N 275-286.

Thereby, several mutations of the five best individuals are
performed and the resulting individuals are only kept in the[11] A. Raniwala, K. Gopalan, and T. Chiueh, “Centralized chan-
new generation of the local optimization if the fithess value nel assignment and routing algorithms for multi-channel wire-
is higher compared to the fitness value before the mutation.  less mesh networksACM SIGMOBILE Mobile Computing
Using these concepts, the performance of the WMN can gggfomm””'cat'ons Reviewol. 8, no. 2, pp. 50-65, April
be significantly increased with a minimal computational '
overhead. [12] A. Raniwala and T. Chiueh, “Architecture and Algorithms for

Thus, we showed that genetic algorithms are well-suited  an IEEE 802.11-based multi-channel wireless mesh network,”
for the optimization of wireless mesh networks. While other ~ in IEEE Infocom 2005Miami, FL, USA, March 2005, pp.
optimization techniques like linear programming fail to 2223-2234.

optimize large WMNSs, genetic algorithms solve the complex[13] Y-Y. Chen, S-C. Liu, and C. Chen, “Channel Assignment

structure of WMNSs in relatively small computation time. and Routing for Multi-Channel Wireless Mesh Networks

However, the parameters of the genetic algorithm have to  Using Simulated Annealing,” ifEEE Globecom 2006San

be carefully chosen and adapted to the applied topology. Francisco, CA, USA, November/December 2006.
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