
20

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

Design of Web services filtering and clustering system

Witold Abramowicz, Konstanty Haniewicz, Monika Kaczmarek, Dominik Zyskowski

Poznan University of Economics, Department of Information Systems,

 Al. Niepodległości 10, 60-967 Poznań, Poland

{w.abramowicz, k.haniewicz, m.kaczmarek, d.zyskowski} @kie.ae.poznan.pl

Abstract

The need for filtering of services results from the

ever growing number of available Web services that

may be used to compose various business applications.

Some of the available Web services offer similar

functionalities, thus the need to differentiate between

them occurs. The Semantic Web services filtering

process is therefore based not only on the ontological

description of functional aspects of services (i.e. what

a service does), but also on a description of non-

functional ones (i.e. how it performs its functionality).

Within the filtering process, both functional and non-

functional aspects of a service expressed using

ontology are confronted with the preferences a user

specified and the description of a composite

application the service may become a part of. One of

the weaknesses of the described filtering process is

lack of high efficiency and its complexity as processing

ontological descriptions and reasoning on them is

time-consuming. In order to speed-up the filtering

process, clustering techniques narrowing down the set

of potential services to be considered by the filtering

mechanism may be applied. In this article the

architecture for Semantic Web services filtering and

clustering system is briefly discussed.

Keywords: Semantic Web services, filtering,

clustering, architecture

1. Introduction

Service Oriented Architecture (SOA) systems may

be implemented using Web services technology, which

allows for easy creation of reusable components. These

components serve as building blocks to create

composite structures i.e. business applications that

should have high level of quality and consist of the

best-of-breed (i.e. the best available) components.

However, the market of services is not static and the

number and properties of services are changing

constantly. There were over 20.000 publicly available

services in 2005 [1], whereas about 1200 in 2004 [24].

According to the latest research of Al-Masri and

Mahmoud the number of publicly available Web

services between October 2006 and October 2007

increased by 131% [36]. With the augmented

appearance of service substitutes, a need emerges not

only to identify the functionally relevant services but

also to distinguish the best-fitting ones to be used

within the composition. Once relevant components are

identified, e.g. better in terms of non-functional aspects

than the already used ones, the replacement of

components in the application may follow.

In order to efficiently perform the process described

above, the need for service selection, discovery and

filtering arises. Due to the overwhelming number of

Web services, which will exceed human cognitive

capabilities, automation of these processes is strongly

recommended. It may be achieved by using semantics

and Semantic Web technologies [2] - in the

consequence by the exploitation of Semantic Web

services (SWS) paradigm. However, although using

semantic allow for automation, most of the processes

based on the ontology are time and resource

consuming.

In this article, which is related to our ICIW 2007

publication [38] we propose architecture and

algorithms for filtering and clustering to support

identification of relevant services and selection of the

best-fitting Semantic Web services to be used by a

business system using external Web services. The

proposed system is an extension of the F-WebS project

[4] and may be used also in the context of Semantic

Web services e-marketplaces [37].

The structure of the article is as follows. First, in the

section 2 the related work is discussed. Then, we

present a motivating scenario that will justify the

application of service filtering system. In the next

section the basic definitions relevant to the concept of

service filtering and clustering are presented. In the

following section the architecture of the implemented

system is shown. Finally, the future work and

conclusions are given.

21

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

2. Related work

Semantic Web services and their applications are

one of the most popular research topics these days.

Some researchers focus on creating the adequate

semantic description of a Web service that would make

this idea possible – e.g. OWL-S [3], WSMO [5],

WSDL-S [6] or SAWSDL [28] while others

concentrate more on mechanisms and algorithms used

within the Semantic Web services description based

interactions [7]. Many of the publications on service

interactions tend to put more emphasis on certain

aspects of reasoning [8, 9] rather than on focusing on

current constraints and foreseeable evolvement of

service interactions.

The ultimate challenge in the SWS world is still an

issue of expressive description, reasoning mechanisms

and their efficiency [14, 15]. Dealing with the

ontologized description of a service implies the

necessity to use the appropriate reasoning engines.

Researches in AI and knowledge representation

emphasize the fact that a choice between

expressiveness of the notation and efficiency has to be

made (due to feasibility of the task). Taking this issue

into account most of the initiatives in the SWS field

decides to use description expressed in the terms DL

[12]. Nevertheless, the efficiency of the performed

processes is still an open problem.

There are many publications describing the

architecture of Semantic Web services systems

performing various interactions among others also

discovery and matchmaking of services in various

domains [9, 10, 11, 12, and 13]. What is more, there is

tremendous research effort in several EU-funded

projects (some still ongoing) that deal with Semantic

Web services and their applications in business context

(e.g. ASG [12], METEOR-S [13], SUPER [25]). To

our best knowledge there is none among them using the

algorithms described in this paper.

The filtering of Web services and then Semantic

Web services was first proposed by Abramowicz et al.

[4]. It takes advantage of the achievements in SWS

description and discovery area [9, 16, 17, 18 and 19] as

semantic-based Web services filtering uses a variant of

matching algorithms similar to ones used in Semantic

Web services discovery process.

The idea of Web services clustering is not a novel

one. First attempts were made based on the WSDL

service description [20]. However, the effective and

precise SWS clustering is still an ongoing research

topic. The majority of researchers have left illusions of

any reasonable results based on adoption of standard

methods derived from the information retrieval field.

At the moment, the only feasible solutions base on the

employment of semantics and creation of similarity

measures that take advantage of the underlying

ontologies [20, 29]. It also seems that the most

important issue associated with Web services clustering

is the similarity measure, which has to fully map the

relationships between various, differently formulated

however similar Semantic Web services.

3. Motivating scenario

One of the reasons to build system according to the

SOA paradigm and use the Web services technology is

to easily and rapidly compose applications out of

available services. Even though, the current state of

publicly available Web services is far from the

envisioned one, a user has an access to a variety of

simple services that may be used to create a piece of

software of real utility to business users.

The aim of this example is to sketch up a real world

situation where not only a practical Web services based

application is created but also it is maintained with the

support of Web services filtering and clustering system.

The domain of application has been selected based

on the following criteria:

• current availability of services,

• possibility of application,

• perks from application,

• relative ease of services description.

In our opinion the best domain for the practical

illustration of our research is a financial area which has

two following advantages: existing variety of services,

wide spectrum of potential applications also for non-

enterprise end-users.

An exemplary application built out of services is

designed to manage personal finance, having an access

to bank accounts, and authority to transfer money

among accounts, buy or sell. This ideal example is

based on general assumptions that the application can

represent its user having all his rights. Discussion of

soundness of this statement is beyond the scope of this

article.

Table 1 enumerates necessary services (to be

specific - service types, not the exact Web services)

which have to be encapsulated to form desired

application.

The mentioned elements may form an application

that invests any superfluous money on bank accounts in

one of the possible ventures. For example, by analyzing

the exchange course between any pair of currencies, a

user can decide (basing on a suggestion made by the

discussed application) to play arbitration games by

exchanging money from one currency to other. The

user can choose alternatively to make a deposit in a

22

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

bank that has a higher interest rate that the one that

possesses additional funds. Examples can be easily

multiplied.

Table 1. Financial services

Service Functionality description

financial

situation

service should enlist all the liquid assets

and on this basis one may undertake

decision

money

transfer

an application to be useful has to be able

to transfer money from one account to

other, thus the need of transfer

functionality

exchange

course

exchange course informs user of the ratio

between currencies

trend trend functionality should return

tendency of some input data. E.g.

introducing average price of some

commodity, the functionality should

return whether there is steady rise, fall,

stagnation or some seasonal fluctuation

risk risk service in the simplest mode should

describe the deviation of prices of any

commodity throughout some time

invest-

ment

situation

investment situation should list the actual

state of all investments made. It should

be based on their history.

invest-

ment

history

investment history apart from delivering

data to the investment state should

provide some manner of report creation

for introspective reasons

interest

monitor

interest monitor should be able to

provide maximum information of interest

rates of different commodities, such as

stock options, raw materials, precious

metals etc.

transfer

cost

informs about financial viability of

transaction (whether there should be a

gain that is lesser than the cost).

The sheer power of the proposed solution lays in the

constant monitoring of elements and providing

suggestions for any possible tweaks and exchanges in

the orchestrated workflow. Imagine that new kind of

Web service that provides more accurate

approximation of trend or risk evaluation should

appear. The system will filter out any Web service that

can be an upgrade for any of the components used in

the application taking into account both functional and

non-functional parameters that were defined by the user

in his profile.

This stage is crucial for the system as not only users

may enhance their application but also they may be

sure that the elements they use are the best ones fitting

their needs and preferences.

4. Web services filtering and clustering

This section is divided into three subparts. The first

one provides general information on the process of

both clustering and filtering. The second describes

various considerations of the clustering task. Finally,

the third subsection presents details of the filtering

process.

4.1 General information

In general, information filtering can be described as

specifying which objects from a given stream are

relevant to a given profile. According to [21], a profile

is a representation of regular information interests that

may change slowly over time, as conditions, goals and

knowledge change. This representation is used in

filtering systems to provide users with information with

the highest relevance.

In the Fig. 1 the process flow in the Semantic Web

services filtering and clustering system defined based

on the general architecture of the filtering systems [21]

is presented. However, the filtering process has been

enhanced with few additional activities aiming at

increasing the effectiveness of the system (i.e.

clustering).

In this model three main functional sections can be

distinguished: service description creation (A), profile

creation (B), and filtering and refinement process (C)

(here comes into play clustering algorithm which not

only saves execution time but also improves refinement

of stored data). Each section consists of several

subprocesses.

Figure 1. Semantic Web Services Filtering and

Clustering

23

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

The filtering begins with clients of the filtering

system having relatively stable and long-term goals (to

consist of the best-of-breed components). Attaining

such objectives is connected with acquiring

information about new or updated services on the e-

marketplace. This entails a demand for information,

which is subjected to continuous changes mainly due to

natural change of users’ goals, conditions (e.g. change

in components that are part of a composite application)

or changes on the e-marketplace itself. The users’ or

applications’ information needs can be represented in

the form of profiles placed in the filtering system. In

our system, the profiles are represented by enhanced

OWL-S description [4] (OWL-S with extended list of

non-functional properties, so that larger number of

quality aspects would be taken into account in the

filtering process). Additionally, user preferences

assigned to the specific component of a business

application are also included in his profile (e.g. the

credit card payment service needs to be secure).

Simultaneously, service providers attempt to

distribute their services, so that users become aware of

them. Such services are represented as semantic

artefacts that are amenable to computer processing. In

order to make service descriptions and user profiles

comparable, both are reduced to sets of attributes that

map objects to a common representation. That is why

as the service description within our system again

enhanced OWL-S was used.

Moreover, in order to increase the effectiveness of

the filtering process, the clustering analysis on profiles

and services is performed. Main goal of the clustering

algorithm is to shorten the duration of the matchmaking

between the user’s profile and the profiles of services

stored in the repository. The efficiency paradigm of

this task limits the range of feasible algorithms to those

which can update their clusters within the online

transaction and make use of medioids as the common

denominator for the whole cluster.

4.2 Clustering details

Before we delve into the matter of medioids, their

definition and selection has to be introduced into

general set of assumptions and representations used for

the need of the clustering task.

By enhancing Web services with semantic

annotation a new set of additional information is

introduced. This information set is represented by

already mentioned domain ontology and should be used

within the clustering process.

Traditional approach to representation of entities for

clustering needs [32] postulates a vector-like

representation of every service. Naive implementation

would follow this idea by mapping ontology to a vector

of data where every consecutive field would denote

either absence or presence of some trait taken from the

abovementioned domain ontology and checked with a

Web service in scrutiny.

In addition to fact that this approach seems to be an

excess in terms of meaningfulness (one has to bear in

mind that ontologies grow and evolve, one vector

cannot suffice all Web services without assumption of

changelessness [33]), one should also consider the

sheer amount of data that has to be loaded into

computer’s memory for the sake of computation.

Every Web service description takes into account

four most important aspects: inputs, outputs,

preconditions and effects (the same assumption is used

within the filtering phase that is discussed in more

detail later on in this section). Due to the fact that

preconditions and effects are hard to define without

considering every usage scenario, practice has dictated

to annotate only inputs and outputs.

When these two are taken into consideration, a Web

service can be described as pair of two vectors, first for

all input parameters and second one for output

parameters.

outputsofvectoro

inputsofvectori

oiws

−

−

=),(

Formula 1 - Web service description as a pair

of input and output vectors

If a Web service is to be perceived as an abstraction

for function, vector of outputs can be replaced by a

single value. Nevertheless, in a general usage scenario

there are two vectors which size depends on the

buoyant environment as any domain ontology which is

used for description of every parameter is prone to

change.

The key element of clustering task is a

representation of distances among all Web services

stored in a system. However, a general distance

function to be used for Web services clustering is hard

to define due to varying number of parameters and

interactions occurring among services. Here, one has to

consider a usage of distance matrix, where a distance

among services is presented as a pair of two values

where, in accord to representation chosen before, first

value represents distance between input parameters of

two Web services and the other distance of output

parameters.

24

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

() ()

() ()















odwsidwsodwsidws

odwsidwsodwsidws

nnnnnn

nn

,,1,1,

,1,11,11,1

,,

,,

L

MOM

L

Formula 2 - Distance matrix for semantically
annotated Web services

Where dwsx,yi denotes distance between Web

service’s x inputs and Web service’s inputs y and

dwsx,yo between output vectors.

Of utmost importance is to emphasize once more

that we deal with varied entities. Varied to the point

where one has to compare sets of information

describing different number of parameters.

Thus, a need for heuristic functions to bring

different Web services to a common denominator in

terms of inputs and outputs occurs.

In the general case, the distance is calculated with

use of reasoner, yet it can be delegated to other

software if one would decide to ignore other than

hierarchical relationships in domain ontology. It is a

common practice due to difficulties with evaluation of

the impact that these other types of relationships

impose to the problem domain – in some cases they

introduce ambiguity in others they are irrelevant.

The complexity of distance computation is of O(n2)

class due to the need of cross-examination of every

parameter of a first service against every parameter of a

second one. The same situation appears within the first

stage of general filtering phase. It is to be remembered

that this procedure is performed for each pair of

services in the system and that the distance matrix is

not symmetric due to the nature of relationships and

their meaning for distance computation (simple

inversion of values is not a valid value of inverse

distance measure).

For the sake of discussion, consider following

assumptions as to the values representing relations

among concepts:

• when two parameters in question annotated

with concepts from a domain ontology are

subsuming one another a default value of 0.75

is used,

• default value for subsuming concepts is being

modified depending on number of levels

between them, when an ontology is treated as

a taxonomy – i.e. how much more general one

concept is from the other (default 0.75 is

reserved for case of simple derivation – no

other concepts lay on the path from the more

general one to the less general one),

• when dealing with inverted subsuming

concepts a default value of 0.25 is introduced

that can be modified in analogical manner to

the above-described one,

• when two concepts match a value of 1 is used,

• when there is no relation between parameters

0 is used to denote the state.

When one is presented with three different

semantically annotated Web services i.e. ws1, ws2 and

ws3 which for the presentation’s sake have the same

number of input and output parameters, one can

observe how distance is represented in general.

()()

()()25.0,25.0,5.0,25.0

5.0,0,75.0,1

3,1

2,1

=

=

dws

dws

Formula 3 - An example of distances between

Web services
Where dwsx,y denotes distance between a Web

service x and a Web service y.

As mentioned before, the situation in the example is

rather simple one. Nevertheless, it can be used to

demonstrate that average which could be easily applied

to answer which Web service is closer to the first one is

not applicable when the assumption of equal number of

parameters is removed.

A first step to forging out of good heuristic function

which would serve us in distance measurement is to

answer a question of variable parameter number in

Web services to be compared.

It is known that when a Web service has less input

parameters in comparison to another one the situation

is far from being optimal for the algorithm. We cannot

assume that a Web service is worse (in terms of

effectiveness) due to a fact that it does not use of all

information in our possession. This statement is

derived from observation of extra parameters that are

treated as default values thus bearing no interest to the

user in terms of his preferences. The possible

composition of parameters (inputs or outputs) has not

been proved to give satisfactory results in general use

cases [34].

We can make an assumption that a parameter

described by a more general concept is more desirable

than a parameter described by less general one when

we deal with input parameters and in reverse manner

when we deal with output parameters (the more

specific, the better).

Lack of relation between parameters is to be

penalized in a manner similar to the situation when the

number of parameters is different for both Web

services.

25

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

When we employ a reasoner to answer whether two

concepts are in relation (one subsumes the other one or

they are identical) or no relation is present and the

assumption of taking into account hierarchical relations

holds we face a problem of meaningful information

loss. Pray consider two concepts that are siblings (thus

share a common parent). We can speculate that they

can be in strong relation despite the fact that reasoner

returns no relation value. To enable algorithm not to

miss this kind of data it has been enhanced by a routine

that check which concepts are instantiated and which

serve only as classification ones.

If one is to consider a concept of currency that has

only two subconcepts, euro and dollar concepts it is

easy to weed out all input and output parameters that

are of these types. Highly probable is that no service

would employ a concept of currency but its

specialization, either euro or dollar. Thus, we gain

knowledge that the two are in strong relation and are

possibly interchangeable.

All these is gathered and presented along with

example of computation of distance measures among

Web services in every cluster represented by medioids

in further part of the section. Nevertheless, one can

easily see that all presented steps were introduced to

show how original distance matrix is to be transformed

into a one that can be used by one of the well described

clustering algorithms (dwsx,y – transformed distance

measure between two web services).

















nnn

n

dwsdws

dwsdws

,1,

,11,1

L

MOM

L

Formula 4 – Transformed distance matrix for

semantically annotated Web services

We have proposed to represent the medioid as a

most general Web service’s profile i.e. the profile

which has the factor of generality of the highest rank

(the factor of generality is the weighted average of

inputs, outputs and the existence of necessary non-

functional parameters). This approach has been used by

[29]. The issue with this factor arises from the fact that

some Web services can take more inputs as others yet

provide the same functionality (as depicted above in

the section). It is easy to depict such an example. Let us

assume that in the domain ontology the notion of

amount of money is defined as an actual amount and

the currency which applies to it. One Web service may

take only one input with the stated amount of money

already with the currency denominator, other may take

two separate inputs one for the number, another for the

currency. Controlling the domain ontology gives the

ability to state that the inputs from the second Web

service are encompassed by the one from the first.

Therefore for such a simple case in which we have the

two mentioned services put together in the cluster the

first Web service is chosen for medioid. In current

implementation the output has greater weight in the

generality factor as obtaining what we want neglecting

all what we do not need, has a greater value to the

potential user.

The arising questions of possible multiple inputs out

of which some do fit into the pattern and others do not,

is generally well handled as the stored Web services

provide only one functionality (one Web service does

one thing, thus resembles a function in programming

language). Furthermore, if one is to decide whether the

Web service fits into a cluster by examining whether

the output suits the not neglected inputs thus satisfying

the goal of algorithm.

When medioids are chosen, one has to decide on the

number of clusters in the repository. If we are to

consider only the most general concepts (as F-WebS

uses OWL, most general concepts are those derived

directly from owl:Thing) we have to put certain amount

of trust into domain ontology architect’s skills in the

matter of granularity choice of the main concepts.

Alternatively, one can use expert’s approach to

amend possible shortcomings of granularity induced by

the ontology architect and come up with a number that

is more desirable.

Natural algorithm for clustering when medioids are

present is Partitioning around medioids [35]. There are

four main steps in the algorithm:

• Initialization. Setting desired number of

clusters (k). Domain is not covered by any of

clusters. We initialise k medioids.

• Algorithm checks for the closest element to

one of k medioids.

• Test for stop criterion is performed. Is the

whole domain covered by the target number of

clusters? If the answer is affirmative,

algorithm ends its work, else it goes on.

• Medioids are updated with freshly found

closest elements and thus a need for their

recalculation arises. When finished, the

algorithm returns to the second step.

Equipped with all the necessary information it is time

to review an example. Let us consider the situation with

three Web services:

26

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

• ws1 has four input parameters: begin, end,

stock-exchange and country. It has one output

parameter of euro type.

• ws2 has two input parameters: time-period and

market, it has one output parameter of dollar

type

• ws3 has one input parameter of country type

and one output parameter of timestamp type.

Services are described with the following example

domain ontology.

Figure 2. Example domain ontology

First phase takes into account number of parameters

(whether an over or underflow is present) and it pairs

best fitting parameters along with evaluation of their

numerical relation. The phase is shown in Table 2.

Table 2. First phase of distance measure

transformation

First part of the table 1 informs us of which services

were analyzed. Second part gives information of paired

parameters, their relation (notice use of 0.4 for

parameters that would have no relation in standard

reasoning yet were classified as instantiations of

general concept) and underflows (column -) and

overflows (column +) in the number of parameters.

The second phase is started with computation of

distance of input parameters using following formula:

()eld i 05.01.01 −−= µ

Formula 5 – Distance measure for input
parametres

Where µ stands for relations average in the analyzed

parameters, l for underflow of parameters and e for

overflow of parameters.

For our example results are presented in table 3.

Table 3. Input distances matrix

services ws1 ws2 ws3

ws1 1 0.2 0.35

ws2 0.675 1 0

ws3 0.85 0 1

Due to the fact that every service has only one

output calculations of output distance are obvious and

presented in the table 1.

The final step is to combine transformed inputs and

outputs to come up with transformed distance matrix.

This is achieved by applying the formula 6:

() hddd oiws −+= 55.045.0

Formula 6 – Final transformation of distance
measures

Where di is a distance measure of inputs, do is a

distance measure of outputs and h is penalty applied

when the absolute difference between is greater than

0.4 and is greater than 60% of value expressed by first

part of formula 6.

Final distance matrix is presented in table 4.

Table 4. Final distance matrix

services ws1 ws2 ws3

ws1 1 0.31 0.1575

ws2 0.52375 1 0

ws3 0.135 0 1

27

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

4.3 Filtering

The filtering algorithm works in two stages. The

first stage, ontology-based filtering aims at detection of

service substitutes. It is quite similar to the typical

matchmaking process. There are a few algorithms that

match functionalities of provided and requested

services [7]. Some of them are divided into stages,

while some do everything in one step. We decided to

take advantage of the method proposed in [19]. For

more details regarding the filtering process see [4].

Analyzed elements of OWL-S service description

are following: inputs, outputs, and service category.

The algorithm starts whenever new service appears on

the market. It checks whether the functionality of the

service is relevant to any user profile. In order to

shorten the time it is compared not to each service

separately but to the medioid representing every cluster

of services. If the new service turns out to be relevant

to the given medioid, it is then compared to each and

every service from the cluster in question. The four

levels of matching between two properties/parameters

were distinguished

• Equivalence - concepts have the same

meaning;

• Subconcept - one concept is a subconcept of

the other concept;

• Unclassified - one of two concepts is not

classified;

• No relation - in other cases

Functions that determine levels of match use the

ontology reasoner Pellet [30].

The final result is an aggregation of results from all

partial comparisons. The new service is relevant to the

profile when the final result of ontology-based filtering

is higher than the threshold defined in the system. In

other cases new services are turned down and not

passed to further analysis.

The second stage of procedure is the constraint-

based filtering. Its objective is to identify the best

service from the set of relevant services according to

the user preferences. Some propositions to compute

utility function over the given parameters can be found

in [22, 23], it is also possible to compute a distance

measure, but it does not take preferences into account.

That is why we have decided to take advantage of a

multiple criteria analysis (MCA). Using this method

services can be compared according to their

characteristics, e.g. price, response time, accessibility.

To each characteristic a weight is assigned, reflecting

an application’s preferences [4]. The exact method

used to compare phenomena is computation of the

synthetic indicator. For example, if two services are

given, together with some statistics concerning their

characteristics e.g. response time, reliability etc., it may

occur that one of the services performs better according

to reliability, while the other is more accurate and less

expensive. Additionally, one service is paid by credit

card and another by wire transfer. The synthetic

indicator allows for comparison of such services, given

the vector of user preferences. For details concerning

this stage see [27]. The highest value is chosen as the

indicator of the best service. If the best service is the

incoming service then the user is notified.

5. Architecture of the system

The architecture of the system described in the

previous section should consist of at least few

components connected according to the SOA

paradigm. The conceptual architecture model of

Filtering and clustering system is presented in the fig.

3.

Figure 3. The conceptual model of the Filtering
and Clustering System

In order to perform the filtering of newly appearing

services, the system needs to store service profiles in

the repository. To be able to interact with service

providers and collect the information about new

services the system should have the broker

functionality (active search for new services, being

passive source on information for the filtering system,

performing all the necessary interactions with providers

in order to create system-processable service

descriptions and acquiring information about service

quality parameters). The other important component of

the system is the filterer. Its task is to perform the

analysis of QoS constraints and semantic matching

between two, potentially similar, Web services. Service

Clusterizer creates groups of similar profiles. The last

important element of the filtering system is a Service

Profiler. This component is used by clients to create

profiles of composite applications that use Web

services.

28

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

The idea behind the prototyping was to use as many

open source tools to increase the popularity of the

solution. The prototype of implemented system was

written in Java with use of XPath and MySQL as the

database server. In its earliest version the system had

Web-browser interface, as this way of communication

is extremely user-friendly (implemented in Java

servlets technology).

The appropriate experiment on the scenario

described in the section 3 was conducted. The results

were promising. The usage of the clustering algorithm

has no impact on the precision and relevance of the

system but it speeds up the process of processing the

single service. As it works independently of the service

discovery and filtering functionality, it may work in the

background continuously updating the created clusters

taking into account new services in the profiles. A brief

summary of all system components is given in

following subsections.

5.1 Service Repository

The service repository has two main functionalities:

it stores service profiles created by the system clients

and stores the information about all services on the

market. Initially we considered the division of these

two functions into two components. But some factors

convinced us to keep everything in the one repository

• the service registered by a user can be also a

new service on the market,

• clustering performed on the bigger sample of

services gives better results.

Service repository is a database. It also triggers Service

Clusterizer when new service appears.

5.2 Service Broker

The broker plays the role of intermediary between

providers and the system itself. Broker can actively

seek new services or be just passive receiver of

notifications from UDDIs. When new WSDL file

comes to the system it is automatically converted to

OWL-S format. Afterwards, the broker asks provider

for giving the information about non-functional

properties’ values of the service. When it is done, the

service description (profile) is stored in the repository.

Broker should give an interface that helps providers

complete descriptions of their services. This

functionality may be also provided as a stand-alone

application that converts WSDL services to OWL-S

format enhanced with parameters required by the

filtering.

5.3 Service Profiler

The Service Profiler’s goal is to help client express

his needs. A client, through specialized interface

defines the properties of Web services of which his

application consists. The OWL-S descriptions of every

atomic service are stored in the repository. Moreover, a

client can define desired values of QoS parameters.

Additionally, it is possible to put weights on these

parameters, because for example, one client prefers

cheap, but less reliable service, whereas other one is

able to pay more for more reliable Web service. Every

OWL-S file has accompanying vector of preferences.

Altogether, they create a profile of an ideal atomic

service. Such a profile is later clusterized. This profile

is also matched against new services registered in the

system.

5.4 Service Clusterizer

This component handles the task of clustering of

atomic services stored in the repository. It is worth

noting that the criterion of the clustering process is the

functionality of a service. Thus, services of different

providers can be grouped in one cluster. The

granularity of clusters has several levels. The highest

level relates to service category, lower ones are created

according to the level of semantic equivalence between

services in the same cluster. Effects of the clustering

process are later taken into account during the filtering.

New services are compared only to corresponding

cluster. In the effect the number of comparisons is

dramatically lower, because for example new payment

service is not semantically matched to weather service.

5.5 Service Selector

Service selection is performed in two stages. The

first phase, called the ontology-based filtering, is

responsible for semantic matching of services

functionalities. In the next phase, the non-functional

properties are analyzed. When the overall level of

match between the new service and the service in

profile exceeds threshold value the client gets the

notification that new, better service was filtered by the

system.

6. Summary and future work

The presented architecture of the Semantic Web

services filtering and clustering system may solve some

of the problems of the SOA paradigm. The system

consists of several components dealing with one aspect

29

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

of the task. The elements are chained in a workflow

that reflexes the step-by-step solution. The results of

the filtering process as presented in Abramowicz et al

[4] are promising but not as precise as one could wish

for, mainly due to the ontology related problems. In our

opinion, one of the main problems is to define a precise

ontology and service profiles for Web services

description so the right services could be matched and

filtered according to the requirements and user's

preferences. We do not expect that clustering of Web

services will be a remedy for all the problems

connected with the efficiency of semantic matching

algorithms. However, the limitation of the set of

compared services can save a lot of time, as reasoning

on ontologies is undoubtedly time-consuming process.

Our next step is to show the results proving the

usability of the clustering in the filtering process.

Additionally, one of our goals is to improve the

semantic matching effectiveness by better description

of preconditions and effects. Well-prepared financial

ontology would be a great tool to achieve this goal. We

also plan to extend the list of non-functional features

that are taken into account during the constraint-based

filtering stage. Works driving at creation of upper and

lower ontology of non-functional properties are in

progress.

Another question is how the proposed approach

deals with composite services, that is, services that are

composed by other services that can be discovered and

replaced dynamically during the runtime. Orchestration

problems can arise during the execution of such

composite services when new potential services arise

during a discovery process. This is however, the aim of

the further research.

7. References

[1] Bachlechner, D., Siorpaes, K., Fensel, D. and

Toma, I. Web service Discovery – A Reality Check,

DERI Technical Report, January 2006

[2] Berners-Lee, T., Handler, J., Lassila, O., The

Semantic Web, Scientific American, May 2001

[3] OWL-S, http://www.daml.org/services/owl-s/

[4] Abramowicz W., Godlewska A., Gwizdała J.,

Kaczmarek M., and Zyskowski D. Application-

oriented Web services Filtering, in Proceedings of the

International Conference on Next Generation Web

services Practices (NWeSP 2005), pages 63-68, IEEE

August 2005

[5] WSMO, http://www.wsmo.org/

[6] WSDL-S, http://lsdis.cs.uga.edu/projects/WSDL-

S/wsdl-s.pdf

[7] Paolucci, M., Kawamura, T, Payne, T., Sycara, K.,

Semantic Matching of Web services Capabilites, In

Proceedings of the 1st ISWC, 2002

[8] Gonzalez-Castillo, J., Trastour, D., Bartolini, C.,

Description logics for matchmaking of services, In KI

Workshop on Applications of Description Logics,

2001;

[9] Li, L., Horrocks, I., A software framework for

matchmaking based on semantic web technology, In

Proceedings of the 12th International Conference on

the World Wide Web, Budapest, Hungary, May 2003.

[10] Bussler, Ch., Maedche, A., Fensel, D., A

Conceptual Architecture for Semantic Web Enabled

Web services, ACM Special Interest Group on

Management of Data: Volume 31, Number 4, Dec

2002

[11] Deng, S., Wu, Z., Li, Y., ASCEND: a framework

for automatic service composition and execution in

dynamic environment, in Proceedings of International

Conference Systems, Man and Cybernetics, 2004,

pages 3457-3461

[12] ASG http://www.asg-platform.org

[13] METEOR-S: Semantic Web services and

Processes, lsdis.cs.uga.edu/proj/meteor/SWP.htm

[14] Lara, R., Laursen, H., Arroyo, S., de Bruijn, J.,

Fensel, D., Semantic Web services: Description

Requirements and Current Technologies. In

International Workshop on Electronic Commerce,

Agents, and Semantic Web services, September 2003

[15] Abramowicz W., Godlewska, A., Gwizdała, J.,

Jakubowski, T., Kaczmarek, M., Kowalkiewicz, M.,

Zyskowski, D., A survey of QoS computation for Web

Services Profiling, In the Proceedings of ISCA 18th

International Conference on Computer Applications in

Industry and Engineering 2005, Honolulu, USA

[16] Verma, K., Sivashanmugam, K., Sheth, A.. Patil,

A., Oundhakar, S. and Miller, J., METEOR-S WSDI:

A scalable P2P infrastructure of registries for semantic

publication and discovery of web services. Inf. Tech.

and Management, 6(1):17–39, 2005.

[17] Lynch, D., Keeney, J., Lewis, D., O'Sullivan, K.,

“A Proactive Approach to Semantically-Driven Service

Discovery”, in the Proceedings of 2nd Workshop on

Innovations in Web Infrastructure, May 2006,

Edinburgh

[18] Srinivasan, N., Paolucci, M., Sycara, K...,

Semantic Web Service Discovery in the OWL-S IDE,

HICSS, p. 109b, Proceedings of the 39th HICSS'06,

Track 6, 2006

[19] Jaeger, M., Tang, S., Ranked Matching for Service

Descriptions using DAML-S. 2004

30

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

[20] Dong, X., Halevy, A., Madhavan, J., Nemes, E.,

Zhang, J., Similarity search for web services. In Proc.

of VLDB, 2004

[21] Belkin, N. J., Croft, W.B., Information filtering

and information retrieval: two sides of the same coin?,

Communications of the ACM, 35(12):29-37,1992

[22] Zeng, L., Benatallah, B., Dumas, M.,

Kalagnanam, J., Sheng, Q., Quality driven Web

Services Composition, in Proceedings of the 12th

international WWW conference, Budapest, Hungary,

May 2003,

[23] Liu, Y., Ngu, A.H.H., Zeng, L., QoS computation

and Policing in Dynamic Web Service Selection, in

Proceedings of the 13th international WWW

conference, New York, USA, ACM Press, May 2004

[24] Myeon Kim, S., Catalin Rosu, M., A Survey of

Public Web Services, WWW 2004, May 17–22, 2004,

New York

[25] SUPER: Semantics Used for Process management

within and between EnteRprises, http://www.ip-

super.org

[26] Aslam J.A., Pelekhov E., Rus D., The Star

Clustering Algorithm for Information Organization

Grouping Multidimensional Data, Recent Advances in

Clustering, Springer-Verlag, Berlin, 2006

[27] Abramowicz W., Haniewicz K., Kaczmarek M.,

Zyskowski D., Filtering of Semantic Web Servics with

F-WebS System, The Semantic Web: ASWC 2006

Workshops Proceedings, p. 317-324

[28] Semantic annotations for WSDL

http://www.w3.org/TR/sawsdl/#Intro

[29] Taush, B., d'Amato, C., Staab, S., Fanizzi, N.,

Efficient Service Matchmaking using Tree-Structured

Clustering, 5th ISWC 2006

Athens, GA, USA, November 5-9, 2006

[30] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A.,

Katz, Y., Pellet: A practical OWL-DL reasoner,

Journal of Web Semantics, 2006.

[31] Jaeger, M., Tang, S., Ranked Matching for Service

Descriptions using DAML-S. 2004

[32] Sebastiani F.: Machine Learning in Automated

Text Categorization, ACM Computing Surveys, 2002

[33] Noy N. F., Klein M.: Ontology evolution: Not the

same as schema evolution, Technical Report SMI-

2002-0926, Stanford Medical Informatics, 2002

[34] Srivastava B., Koehler J.: Web Service

Composition Current Solutions and Open Problems,

ICAPS 2003

[35] Kaufman L., Rousseeuw P.: Finding groups in

data: an introduction to cluster analysis, New York:

John Wiley and Sons, 1990.

[36] Al-Masri, E., Mahmoud, Q.H.,Investigating Web

Services on the World Wide Web, WWW 2008.

[37] Abramowicz W., Haniewicz K., Kaczmarek M.

and Zyskowski D. E-Marketplace for Semantic Web

Services, Service-Oriented Computing – ICSOC 2008:

6th International Conference, Sydney, Australia,

December 1-5, 2008.

[38] Abramowicz W., Haniewicz K., Kaczmarek M.,

Zyskowski D., Architecture for Web Services Filtering

and Clustering, International Conference on Internet

and Web Applications and Services (ICIW'07)

