
244

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Transport Reduction in a Production Grid

Leo van Moergestel, Erik Puik and Daniël Telgen
Department of Computer science

HU Utrecht University of Applied Sciences
Utrecht, the Netherlands

Email: leo.vanmoergestel@hu.nl
John-Jules Meyer

Intelligent systems group Utrecht University
Utrecht, the Netherlands

Email: J.J.C.Meyer@uu.nl

Abstract—In a production environment where different products
are being made in parallel, the path planning for every product
can be different. The model proposed in this paper is based
on a production environment where the production machines
are placed in a grid. A software entity, called product agent,
is responsible for the manufacturing of a single product. The
product agent will plan a path along the production machines
needed for that specific product. In this paper, an optimization
is proposed that will reduce the amount of transport between
the production machines. The effect of two factors that influence
the possibilities for reductions is shown in a simulation, using
the proposed optimization scheme. These two factors are the
redundancy of production steps in the grid and the number
of steps where the order of execution is irrelevant. This paper
presents for certain classes of production situations a method to
reduce the number of transport hops between the production
machines.

Keywords-Multiagent-based manufacturing; production path
planning.

I. INTRODUCTION

The production industry has had several revolutions. The
first revolution was the use of steam power to facilitate produc-
tion. The second revolution was the introduction of production
lines based on the use of electrical energy and resulting in mass
production. The rise of computer technology resulted in the
third revolution. Many production tasks were automated, pro-
grammable logic controllers (PLC), distributed control systems
(DCS) and robots were introduced on the production floor. The
latest revolution is the integration of information technology in
the production process as a whole. This has been described by
the term industry 4.0 or cyber physical systems. The effect is
that the requirements for manufacturing are rapidly changing
due to newly arrived technologies like 3D-printing and end-
user involvement using Internet technology.

At the Utrecht University of Applied Sciences, research is
done on agile manufacturing. The aim is to achieve low-cost
production of small quantities or even single user-specified
products. This means that hardware, as well as software should
be developed to make this possible. The work in this paper

is based on a paper presented at the Intelli 2015 confer-
ence [1] and other previous work. The hardware that has been
developed are cheap reconfigurable devices, called equiplets.
Equiplets consist of a basic platform on which specific front-
ends can be attached. When a front-end is attached to an
equiplet, it will be capable to perform one or several specific
production steps [2].

The software that is used in the production environment,
is based on multiagent technology [3]. An agent is an au-
tonomous software entity, having responsibilities and playing
a role in the whole manufacturing software infrastructure. Two
specific agent roles are the basis of the manufacturing system.
The role and responsibility to have a single product made is
assigned to a product agent. The role to control an equiplet and
to offer production steps is assigned to an equiplet agent [4].

This paper will focus on the product agents and specifically
the planning part of its role in the manufacturing. The main
goal in this production process is to minimize the flow cost
of products among the machines. Section II will show an
overview of the roles and responsibilities of the product agent.
This will also reveal the manufacturing concept used in our
research. In Section III the definition of terms used in the
paper are introduced and explained. After the introduction
of the terms, the path planning approach is the topic of
Section IV. To test this approach, the implementation has
been tested in a simulated environment. The results of these
simulations are given in Section V on results and discussion.
In Section VI, related work is discussed among other work that
is related to this new manufacturing paradigm. A conclusion
and bibliography will end the paper.

II. AGENT-BASED MANUFACTURING

In the previous section, the concepts of product agent and
equiplet agent have been introduced. The manufacturing con-
cept will now be discussed. Industry 4.0 is also characterised
as a cyber physical system. In this section these two parts will
be explained starting with the physical aspect.

245

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. An equiplet

A. Physical aspect
As stated in the introduction, the actual production is done

by so-called equiplets. The equiplets are placed in a grid
topology for reasons that will be explained at the end of this
section. Each equiplet offers one or more production steps and
by combining a certain set of production steps, a product can
be made. The set of production steps that can be performed,
depends on the type of front-end that is attached to the equiplet.
This way every equiplet acts as a reconfigurable manufacturing
system (RMS) [5]. In Figure 1 an equiplet is shown. This
equiplet is a pick-and-place machine based on a delta-robot
mechanism. Agent technology opens the possibilities to let a
grid of these equiplets operate and manufacture different kinds
of products in parallel, provided that the required production
steps are available [4].

B. Cyber aspect
Equiplets are represented by an equiplet agent. Every prod-

uct requires a given set of production steps and the equiplets
in the grid should implement these steps to make it possible
to manufacture a specific product. Every product has its own
software entity or product agent that is responsible for the
manufacturing of a single product. By letting this product agent
interact with the equiplet agents the actual manufacturing will
take place. In the grid, more than one product agent can be
active at any moment, so different products can be made in
parallel.

For a product to be made, a sequence of production steps has
to be done. More complex products need a tree of sequences,
where every sequence ends in a half-product or part, needed for

the end product. As a software representative of the equiplet,
the equiplet agent advertises its capabilities as production steps
on a blackboard that is available in a multiagent system where
also the product agents live. A product agent is responsible
for the manufacturing of a single product and knows what to
do, the equiplet agents know how to do it. A product agent
selects a set of equiplets based on the production steps it needs
and tries to match these steps with the steps advertised by the
equiplets. This selection of equiplets is called the planning and
scheduling phase. The planning and scheduling of a product is
an atomic action, done by the product agent in cooperation
with the equiplet agents and takes several steps [6]. The
planning and scheduling is atomic to prevent problems that
arise if more product agents want to schedule steps on equiplets
at the same time. If one agent is planning and scheduling, other
newly arriving product agents have to wait until the agents
finishes the allocation of equiplets. Let us assume that a single
sequence of steps is needed.

1) From the list of production steps, the product agent
builds a set of equiplets offering these steps;

2) The product agent will ask the equiplets involved about
the feasibility and duration of the steps; Actually the
equiplet agent will run a simulation of the step required
using the parameters given, to check the feasibility and
duration of the step.

3) Next the product agent will generate a path along
equiplets;

4) The product agent will schedule the product path using
first-fit (take the first opportunity in time for a produc-
tion step) and a scheduling scheme known as earliest
deadline first (EDF) [6];

5) If the schedule fails, the product agent reports this to the
user and proposes a later production time if possible.

For more complex products, consisting of a tree of sequences,
the product agent spawns child agents that are each responsible
for a single sequence. A child agent has the same functionality
as the parent agent, but is only responsible for a subset op
production steps. The parent agent is in control of its children
and acts as a supervisor. It is also responsible for the last single
sequence of the product. In Figure 2, the first two half products
are made using step sequences < σ1, σ2 > and < σ3, σ4 >.
These sequences are taken care of by child agents, while
the parent agent will complete the product by performing the
step sequence < σ4, σ7, σ2, σ1 >. It means that every single
product agent, child or parent, has only a single sequence of
steps to perform by itself.

1 2

3 4

4 7 12

Figure 2. Manufacturing of a product consisting of two half-products

Some important features of the manufacturing model are:
• Every product agent is responsible for only one product

to be made;
• The requests for products arrive at random;

246

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Every product will have its own path along the equiplets
during manufacturing;

• The product agent will guide the product along the
equiplets.

In the final implementation, a webinterface helps the end-
user to design his/her specific product [2]. At the moment
all features are selected, a product agent will be created.
Because every product can have a different walk along the
equiplets, the equiplets are in a grid arrangement that turns
out to be more efficient than a line arrangement as used in
batch processing [7].

III. STEP PATH AND PRODUCT PATH

This section will define the concepts step path and product
path. In Subsection III-A, step path classes will be introduced
and in Subsection III-B special cases of step paths are dis-
cussed.

Consider a situation where a product is built by 11 pro-
duction steps. Let us assume that we have 3 equiplets A, B
and C. Equiplet agent A offers production step set EA =
{1, 2, 3, 4, 8}, EB = {5, 6, 7} and EC = {9, 10, 11}. The
product agent representing our 11-steps product will choose
equiplet A first to perform steps 1, 2, 3 and 4. Next equiplet
B is used to perform steps 5, 6 and 7. Then, we need again
equiplet A for step 8 and finally equiplet C for the last tree
steps 9, 10 and 11. This so called step path is visualized in
Figure 3.

1 2 3 4

5 6 7

8

9 10 11

equiplet A

equiplet A

equiplet C

equiplet B

production steps

step path
product

path

Figure 3. Step path and product path

Definition 1 (Step path). A step path is a path along a
sequence of production steps that a product agent has to follow
to complete a product.

In the example that is visualised in Figure 3 where the step
path is shown, another path emerges. This is the path along the
equiplest involved. In case of the example, it is a path from
equiplet A to equiplet B, from equiplet B to A and finally from
equiplet A to equiplet C. This type of path will be referred to
as product path.

Definition 2 (Product path). A product path is a path along
a sequence of equiplets that a product agent has to follow to
complete a product.

A. Step path classes
In the previous example of our 11-step product (Figure 3)

the production steps are in line so our path is a single thread.
Figure 4 shows the two possibilities that are considered in
this paper: a single line and a tree structure where two half-
fabricates are combined.

sequentialsteps

3

joining half products

1

JOIN

2 3 4

1 2

4 5

6

Figure 4. Two combinations of sequential production steps

When these product paths as shown in Figure 4 are written
in sets (using: {...}) and tuples (using: < ... >) this results in:
• Single path, with tuple notation for a fixed order of steps:

< σ1, σ2, σ3, σ4 >
• Joining half products:

< {< σ1, σ2, σ3 >,< σ4, σ5 >}, σ6 >

B. Special cases of step paths
In some situations, the order of steps is irrelevant. This

results in several possibilities for the step paths. Only one
path of these possibilities should be chosen and the number
of possibilities is n! in case we have n steps with irrelevant
order. This situation can be seen in Figure 5.

3

4

2

4

3

2 3

2 4

3 2

3 4

4

4

2

3 2

1 5

Figure 5. A set of steps with irrelevant order

In formula, this means that the set-notation is used for the
steps with irrelevant order:

< σ1, {σ2, σ3, σ4}, σ5 > (1)

Parallelism can be achieved if the product has a tree structure
as in Figure 6. On the left side of this figure, four incoming

247

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

arrows, each denoting the start of a production path can be
seen. Each path will construct a subpart for the final product
and because these paths are independent, these subparts can
be made in parallel. At every join in the figure these sub-parts
are combined to be input to the next step or steps.

Figure 6. A tree of steps

In the situation of a tree structure a collection of product
agents for a single product will be used. The start situation
will be one agent, but this agent will spawn child-agents for
the separate tuples. The parent agent is in control of its children
and acts as a supervisor. It is also responsible for the last single
sequence of the product. In Figure 6, we start at the right-hand
side and walk backwards to the beginning of the production on
the left. At every join child-agents will be created. The parent
will wait for its children to complete their subpart. This will
be done for every join and will be repeated until the start
of the tree structure. When all agents succeed in planning
and scheduling, the production will start. At every join the
child agents are absorbed by the waiting agent, taking over the
collected information and continuing the path until the end is
reached as a single agent.

Part A

Part F

Part E

Part
C

Part
D

Product

Part B

Figure 7. Product consisting of subparts

This situation arises many times, because most products
consist of subparts (Figure 7). The product agent at the root of
the tree will finally collect all information from its children.
The effect of this decomposition of complex products is that
every product agent only has to deal with a single tuple

of production steps. The relationship between these product
agents is the fact that they are working on the same product.

IV. PATH PLANNING

A product agent should plan a path along the equiplets.
This path will depend on the product steps to be done and
the equiplets involved. In this section, a graph-based model of
the production is presented followed by matrix-based repre-
sentations. These matrix-based representations will be used in
the optimization system that is the main subject of this paper.

A. Graph representation
The production system can be represented using special

classes of graphs, such as a bipartite graph and a tripartite
graph.

Definition 3 (Bipartite graph). A bipartite graph is defined
as a triple G = (V1, V2;E) where V1 and V2 are two disjoint
finite sets of vertices and E = {(ik, jk) : ik ∈ V1, jk ∈ V2; k =
1...d} is a set of edges. Let |V1| = m and |V2| = m.

V

E
1

V2

V

E
1

V2

Figure 8. Bipartitegraph and complete bipatitegraph

If all vertices of V1 have edges to all vertices of V2 the
graph is called a complete bipartite graph. If |V1| = m and
|V2| = n this is denoted by K(m,n).

Definition 4 (Product set). Let V1 and V2 be two sets. The
product set of V1 and V2 is the set of all ordered pairs (i, j)
such that i ∈ V1 and j ∈ V2. This is written as V1 × V2

By definition of the product set, it means that a bipartite
graph is complete if E = V1 × V2. The product set is also
called Cartesian product.

248

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 5 (Tripartite graph). A tripartite graph is defined
as a quintuple G = (V1, V2, V3;E1, E2) where V1 and V2 and
V3 are three disjoint sets of vertices and E1 = {(ik, jk) :
ik ∈ V1, jk ∈ V2; k = 1...d1} and E2 = {(jn, hn) : jn ∈
V2, hn ∈ V3;n = 1...d2} are two sets of edges. Let |V1| = m
and |V2| = m.

S EqP

1

2

3

4

5

1

2

3

4

1

2

3

Figure 9. A tripartite graph as it occurs in the production system

In Figure 9 the situation is shown for the agile production
system. On the left side the products to be made are in set P . In
the middle, the set S of steps is displayed and on the right the
set Eq of equiplets. Edges show the connection between the
products and the steps as well as the steps and the equiplets.
The step path for product P1 is:

< σ5, σ2, σ4 >

There are four equiplets, where Equiplet 1 offers steps σ1 and
σ4, Equiplet 2 offers step σ5, Equiplet 3 offers steps σ2 and
σ5 and Equiplet 4 offers step σ3.

B. Step matrix

Consider a grid G of N equiplets, together offering M
production steps, this grid can be described by a matrix. This
matrix is called step matrix.The step matrix Gstep shows the
mapping of equiplets to production steps.

Gstep =


a11 a12 . . . a1N
a21 a22 . . . a2N

...
...

. . .
...

aM1 aM2 . . . aMN

 (2)

In this matrix, aij = 1 if equiplet Ei offers step σj , otherwise
aij = 0.

C. Optimization

A step path is a sequence of production steps. For instance,
consider a product to be built with three production steps, this
product has step path:

< σ5, σ2, σ4 > (3)

Let us assume a simple grid with four equiplets E1, E2, E3

and E4, each offering a set of steps. The steps offered by an

equiplet are denoted between parentheses as in E1(σ1, σ4).
This grid can be described by this set of equiplets:

{E1(σ1, σ4), E2(σ5), E3(σ2, σ5), E4(σ3)} (4)

This situation can also be described by the step matrix Gstep.

E1 E2 E3 E4

σ1 1 0 0 0
σ2 0 0 1 0
σ3 0 0 0 1
σ4 1 0 0 0
σ5 0 1 1 0

(5)

A product agent will make a selection of these equiplets based
on the production step or steps that must be performed to
construct the product. Next, the product agent will ask the
equiplet if the steps offered are feasible given the parameters
for the steps. The positive response from the equiplet agent
contains an estimated time to complete a given step. This
information about the duration of a step will be used in the
scheduling phase. When a negative response is received by the
product agent it will discard the equiplet. Several solutions to
map the steps to equiplets may exist. A sufficient solution for
the given situation with a minimum of transitions is:

< E3(σ5), E3(σ2), E1(σ4) > (6)

To find an efficient solution, we try to minimise the transi-
tions or hops between different equiplets. This is done by using
a so called production matrix Gp. This production matrix can
be derived from the step matrix by selecting the rows of the
production steps in the same order as in the tuple that describes
the step path < σ5, σ2, σ4 >.

E1 E2 E3 E4

σ5 0 1 1 0
σ2 0 0 1 0
σ4 1 0 0 0

(7)

The production matrix can be reduced by eliminating the
columns that contain only zeros. This means that the equiplet
on top of this column is not involved in the production of
this specific product. In this case the column under E4 will
be removed. This results in a matrix (8) where for every σi in
this step path a row of a production matrix is created:

E1 E2 E3

σ5 0 1 1
σ2 0 0 1
σ4 1 0 0

(8)

The rows have the same order as the sequence of steps.
Matrix element αij gives the relation between equiplet Ej

and production step σx at row i. If the step σx at row i is
supported by equiplet Ej then αij = 1. Not supported steps
result in αij = 0.

Optimization should result in a new matrix, that will be
called the path matrix, where αij has a slightly different
meaning and can be different from 1 or 0, giving the product
agent a clue for its choice. The product agent will choose
the equiplet corresponding with the highest value of αij . The

249

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

optimization is minimizing the transitions for a product from
equiplet to equiplet. The optimizing algorithm will search for
columns j with sequences of αij = 1 and increment the values
in a given sequence by the length of the sequence minus one.
This will be done for all columns starting with αij = 1. The
matrix of the example has a column under E3 with a length
of 2, with the result that the values of this sequence will be
incremented by 1. The production matrix transforms to the
path matrix (9):

E1 E2 E3

σ5 0 1 2
σ2 0 0 2
σ4 1 0 0

(9)

A value higher than 1 means that more steps can be done
in sequence on the same equiplet. Based on this matrix, the
product agent will choose equiplet E3 for steps σ5 and σ2.
The path matrix can be cleaned up by changing values that
will not be used in the path to zero.

E1 E2 E3

σ5 0 0 2
σ2 0 0 2
σ4 1 0 0

(10)

The optimization algorithm works stepwise and can be com-
pletely automatised. First the best starting point is searched
for. This will reveal the best equiplet(s) to start with. Let us
assume that we have n steps in the step path. This results
in a production matrix of n rows. Suppose that the algorithm
reveals a maximum set of k steps to be completed by one
equiplet as a start. This means that after completing this
sequence of k steps, n − k rows, representing n − k steps,
should still be done. We reached this point of n − k steps
to be done, with the minimum of movements of the product
between equiplets. The algorithm is applied to the remaining
part (the n− k rows) of the production matrix, without taking
into account the previous k rows. We reach a new situation
where the number of rows is again reduced. This is repeated
until the number of remaining rows is 0. Because of the
fact that after every iteration we reach a situation with the
minimum of movements of the product between equiplets, the
final situation, where the number of rows to be done is 0, will
also be reached with the minimum of movements.

D. Region with irrelevant order of steps

Now, consider the situation where there exists a region in
the production matrix where the order of steps is irrelevant.
This region will be referred to as a region with irrelevant step
order. If this irrelevant step order region concerns the whole
production matrix, there are no borders with a region where
the order is fixed as discussed before. We will discuss this
situation first and next a situation where the irrelevant step
order region is embedded in two regions with fixed order.

When there are no borders with other regions, the used
approach is the following: generate a vector v from the matrix

where we sum all separate columns. This means for element
vj of vector v, assuming a matrix with N rows:

vj =

i=N∑
i=1

αij (11)

From this vector the highest value will be chosen as a start.
The irrelevant region will decrease by vj and a new vector will
be generated for the remaining smaller region until all steps
needed are taken into account.

When there are borders, a slightly different approach will be
used. At the border at the top of the irrelevant step order region,
there should be a sequence of at least one step resulting from
the fixed step order region. In this case a search will be done to
find the best match with this already available sequence from
the previous region. The same approach holds for the region at
the bottom. A special case in this situation could be a sequence
that has the size of the special region. Such a sequence will be
called a tunnel and special care should be taken. If there are no
matches at the upper or lower border, first matching sequences
should be investigated. Matching sequences will not introduce
a hop and if these matching sequences at top of border do
not cover the whole special region, the tunnel can eventually
be used introducing two hops, but if the matching sequences
on top and bottom together cover the region only one hop is
needed.

Two caveats should be mentioned here. If the boundary with
a fixed region has more than one maximum (that should be
equal of course), these possibilities should be investigated for
the best fit. This means we have to look for the maximum in
the fixed region that can be extended to the longest sequence
by adding a member of the vector v. The number of maxima
(not the maxima itself) will give a clue about where to start,
at the top or the bottom border. This will be shown in an
example.

Another caveat has to do with overlapping sequences in
irrelevant step order region. Consider the situation for a
irrelevant region depicted in the matrix (12):

E1 E2 E3

σa 1 0 0
σb 1 1 0
σc 0 1 1
σd 0 0 1

(12)

Generating the vector v will result in (2, 2, 2). However, the
choice to be made depends on the next vector that would
result from this choice. If the middle maximum is chosen,
the resulting vector v is (1, 0, 1) resulting in a total of two
transitions or hops. If the selection was for the first maximum
the resulting v would be (0, 1, 2), while choosing the last
maximum v would be (2, 1, 0). Both of the latter situations
result in only one hop.

As an extra example of the approach discussed so far,
consider the situation shown in Figure 10. At the top are two
maxima having a value of 3, resulting from the evaluation
of the previous fixed order region. The bottom has only one
maximum, also resulting from the evaluation of the following
fixed order region. The vector for the irrelevant order region is:

250

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

irrelevant
order
region

0 3 0 0 3 0 0 0
1 1 0 0 1 1 0 0
0 1 0 0 0 1 0 0
1 1 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 2 0 0 0 0 0 0

.

.
Figure 10. Border situations

(2, 3, 0, 0, 2, 4, 0, 0). Because the bottom border has the least
number of maxima, we start there to fit with the vector values.
If we started at the top, we could choose the first fit, but
then we would loose the fitting possibility at the bottom. If
the fitting at the bottom is performed, only one row is left
to be handled, having vector (0, 0, 0, 0, 1, 1, 0, 0). This vector
fits with one of the maxima at the top border resulting in
matrix (13), having only one hop.

.
0 0 0 0 4 0 0 0
0 0 0 0 4 0 0 0
0 5 0 0 0 0 0 0
0 5 0 0 0 0 0 0
0 5 0 0 0 0 0 0
0 5 0 0 0 0 0 0
.

(13)

E. Alternative paths

Having a path with a minimum of hops is nice, but in
some cases it might by handy to have some alternatives at
hand. To generate alternatives with the same number of hops,
two possibilities can be used. When these possibilities are
combined, a total number of four optimum paths can be
calculated. However, it is not guaranteed that these paths are
different. By using simple examples these approaches will
be demonstrated. Consider the matrix (14), having no special
region.

0 1 0 1 0 1 0 0
0 1 0 0 1 1 0 0
0 1 0 0 1 1 0 0
0 0 0 1 1 0 0 1
0 0 0 1 1 0 0 1
0 0 0 1 1 0 0 1
1 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0

(14)

If we apply the optimization algorithm starting from top to
bottom and choosing the maximum most on the left, it will

result in matrix (15):

0 3 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 4 0 0 0 0
1 0 0 0 0 0 0 0

(15)

An alternative can be found by starting at the bottom, but
again choosing the maximum most to the left. Now we get
matrix (16):

0 1 0 0 0 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 5 0 0 0
2 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0

(16)

Possibility number three can be found by again starting at the
top, but now choosing the maximum most to the right. The
result is shown in matrixx (17):

0 0 0 0 0 3 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 3 0 0
0 0 0 4 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 0 0 0 1 0

(17)

The fourth possibility can be found by starting at the bottom
and selecting the maximum most on the right, resulting in
matrix (18):

0 0 0 0 0 1 0 0
0 0 0 0 5 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 2 0

(18)

An interesting aspect is looking at the percentage or number of
equiplets that overlap. By this is meant the number of equiplets
that are used in two alternatives. Table I shows this overlap
for the four different solutions found. This overlap is very
dependant on the initial matrix given, but from this example
it becomes clear that the smallest overlap and perhaps the one
of the best alternatives to our first solution is solution four
where both strategies (starting top/bottom, choosing right/left)
are changed.

Two remarks should be made at this point. First, when there
are more than two maxima to choose from, only the maxima
most on the left or most on the right will be chosen in the

251

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. percentage of overlap

1 2 3 4
1 100 25 50 0
2 25 100 0 48
3 50 0 100 25
4 0 48 25 100

approach presented here. The idea of generating alternatives
is to find another path with an equal numbers of hops, not to
find all alternative paths with an equal number of hops. The
algorithm should be fast and simple, as it is now. An alternative
path should be considered if the scheduling constraints, like
deadline or load of a certain equiplet give rise to looking for
an alternative solution.

The second remark is that it is clear that alternatives in this
situation (with a fixed sequence of steps), are only possible
if steps are available at multiple equiplets. However, in case
of a production grid, it is a good design strategy if equiplets
are duplicated or that a certain step is available at more than
one equiplet. This will prevent the existence of a single point
of failure and will make the grid production platform more
reliable.

V. TEST RESULTS DISCUSSION

In this section, a description of the software implementation,
the results, the time it takes to run the optimisation and
discussion are presented.

A. Software implementation
To implement the optimisation algorithm, several command

line tools running under Linux were developed. These tools
were written in C, resulting in fast and compact applications.
The reason for choosing Linux was based on the fact that the
equiplet software and the agent platform for production, is also
Linux-based.

a) Generate production matrix: The first tool developed
was a tool to generate a production matrix. The parameters
used are the dimension of the matrix and the number of one’s
per row. An output example with 5 rows, 8 columns and 4
one’s per column looks like:

0 0 0 1 1 0 1 1
0 0 1 0 1 1 0 0
0 0 1 0 1 0 0 1
0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1

Because of the use of random numbers for determining the
position of one’s, many different matrices can be generated,
given the same parameters for the dimensions.

b) Analyse the matrix: The first step to get to an optimum
path is generated by the tool analyse. Given the previous
matrix, analyse will count the sequences of one’s in a column
and adjust the numbers accordingly, resulting in:

0 0 0 1 3 0 1 1
0 0 4 0 3 1 0 0
0 0 4 0 3 0 0 1

0 0 4 0 0 0 1 0
0 0 4 0 0 0 0 1

c) cleanup: The result of analyse should be adjusted to
get an optimum path. The tool cleaunup is used to adapt the
matrices generated by analyse It will start from the beginning
of a matrix and remove all irrelevant options, turning them to
zero’s. Another thing that will be done is adjusting the value
for overlapping paths. If the highest value for a column is not
unique, it will choose the one most to the left, this is the first
one found.

0 0 0 0 3 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 3 0 0 0
0 0 0 2 0 0 0 0
0 0 0 2 0 0 0 0

d) Handle special region: The tool special is used to
adapt the matrices generated by analyse and cleanup. The
first thing that will be done is counting the total of one’s in
the special region per column. Next it will look for the best
fit with the upper part, as well as a fit with the lower part.
An adjustment will be made to the fitting parts found so far.
Finally special will fill up the missing area with the best choice
available and continue until the special region is completed

e) Tools for generating alternatives: To generate alter-
natives and still using the previous tools that work from top
to bottim and left to right, two other simple tools have been
developed. The tool mirror will generate a matrix that has a
mirrored sequence of columns. For our example production
matrix this looks like:

1 1 0 1 1 0 0 0
0 0 1 1 0 1 0 0
1 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0

Using mirror twice will result in the original matrix again. The
tool upsidedown will generate a matrix where the sequence of
rows is inverted. For our example matrix this will look like:

0 0 1 0 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 0 1 0 0 1
0 0 1 0 1 1 0 0
0 0 0 1 1 0 1 1

Of course mirror and upsidedown can be combined resulting
in matrix:

1 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0
1 0 0 1 0 1 0 0
0 0 1 1 0 1 0 0
1 1 0 1 1 0 0 0

Using these two tools, the previous mentioned tools can still
be used without any adaptation. The matrices are changed and
the result can be put in the right order again.

252

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Results
To test the optimising approaches discussed in the previous

section, test sets have been generated. All these sets consist of
8 matrices. Thus, 8 equiplets are assumed and the production
requires 32 steps. First the effect of redundancy is investigated.
This is done by using test sets where at every row, there are
1, 2, 3 or 4 choices for equiplets to perform a certain step.
The results of using the optimization approach are shown in
Figure 11. In this figure, a slight decrease in the number of
hops is shown. This is expected due to the fact that higher
redundancy gives rise to longer sequences of steps on the same
equiplet, thus reducing the number of hops.

0

5

10

15

20

25

30

0 1 2 3 4 5

N
um

be
r o

f h
op

s

Redundancy

Figure 11. The effect of redundancy

Next, the effect of the size of the region where the order is
irrelevant is investigated. This is done by using the same test
sets that have been used to see what the effect of redundancy
is. The size of the region where the order of steps is irrelevant,
changes from 0 (no special region) until 32 (the whole matrix
is a special region) in steps of 4. The special region is always
placed in the middle of the matrix. The results for the test sets
where the redundancy is only 1, are shown in Figure 12. In
the subsequent Figures 13, 14 and 15 the results are shown
for test sets having a redundancy of 2, 3 and 4. In all figures
a decrease of the number of hops can be seen. This is also
a result that is expected, because a region where the order of
steps is irrelevant opens more possibilities to generate longer
sequences of steps on the same equiplet.

C. Speed
This section will give an impression of the speed of the

optimisation. The simulation where the optimisation was used,
was run on a standard desktop system with an Intel(R)
Core(TM)2 Duo CPU with a 2.33GHz clock and a 4096 KB
cache. The system had 4GB of memory. The operating system
was Linux (Ubunto 14.04 LTS). The command time was used
to measure the execution time of the simulation containing
the optimisation. The results for a manufacturing environment
with 8 equiplets and 32 production steps were:

0

5

10

15

20

25

30

0 4 12 16 20 24 32

N
um

be
r o

f h
op

s

Size of irrelevant region
8 28

Figure 12. The effect of the size of the irrelevant step region

0

5

10

15

20

25

30

0 4 12 16 20 24 32

N
um

be
r o

f h
op

s

Size of irrelevant region
8 28

Figure 13. The effect of the size of the irrelevant step region

real 0m0.225s
user 0m0.003s
sys 0m0.007s

This shows that the actual computing time is actually very
short in comparison to the transport time, where the time for
a hop might be in the order of seconds.

D. Discussion

The test sets were used to test the optimising approach
presented in the previous section and this approach turns out
to work in the given situations. Important is to emphasize that
reduction in transition or hops is an important optimization
for the grid production paradigm. In [7], a transport system
for the grid is described. This transport system is based on the
use of automated guided vehicles (AVG). It turned out that the
transport system becomes the bottleneck in a manufacturing
grid if the production steps are relatively short, which is in

253

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

5

10

15

20

25

30

0 4 12 16 20 24 32

N
um

be
r o

f h
op

s

Size of irrelevant region
288

Figure 14. The effect of the size of the irrelevant step region

0

5

10

15

20

25

30

0 4 12 16 20 24 32

N
um

be
r o

f h
op

s

Size of irrelevant region
248

Figure 15. The effect of the size of the irrelevant step region

our system mostly the case. The optimization proposed here,
will reduce the amount of AVG traffic and therefore alleviates
the problem described in [7].

The optimization used and described in this paper was devel-
oped with the grid-based agile manufacturing environment in
mind. The same approach can also be used in situations where
workers are available, who can do one or more specific tasks
needed in a certain project and where cooperation is required
to reach the final goal of the project.

VI. RELATED WORK

This section will start with an overview on agent-based
manufacturing. Especially the planning part will be given
attention. Next, related problems in production planning, op-
erations research and optimisation will be presented.

Important work in field of agent-based manufacturing has
already been done. Paolucci and Sacile [8] give an extensive
overview of what has been done. Their work focuses on

simulation as well as production scheduling and control [9].
The main purpose to use agents in [8] is agile production
and making complex production tasks possible by using a
multiagent system. Agents are also proposed to deliver a
flexible and scalable alternative for manufacturing execution
systems (MES) [10] for small production companies. The roles
of the agents in this overview are quite diverse. In simulations
agents play the role of active entities in the production. In
production scheduling and control agents support or replace
human operators. Agent technology is used in parts or sub-
systems of the manufacturing process. The planning is mostly
based on the type of planning that is used in MES. This type
of planning is normally based on batch production. We based
the manufacturing process as a whole on agent technology. In
our case, a co-design of hardware and software was the basis.
The planning will be done on a single product basis and not
on batch production.

Bussmann and Jennings [11][12] used an approach that
compares in some aspects to our approach. The system they
describe introduced three types of agents, a workpiece agent,
a machine agent and a switch agent. Some characteristics of
their solutions are:
• The production system is a production line that is built

for a certain product. This design is based on redundant
production machinery and focuses on production avail-
ability and a minimum of downtime in the production
process. Our system is a grid and is capable to produce
many different products in parallel;

• The roles of the agents in this approach are different
from our approach. The workpiece agent sends an invi-
tation to bid for its current task to all machine agents.
The machine agents issue bids to the workpiece agent.
The workpiece agent chooses the best bid or tries again.
This is what is known as the contract net protocol. In
our system the negotiating is between the product agents,
thus not disrupting the machine agents;

• They use a special infrastructure for the logistic subsys-
tem, controlled by so called switch agents. Even though
the practical implementation is akin to their solution,
in our solution the service offered by the logistic sub-
systems can be considered as production steps offered
by an equiplet and should be based on a more flexible
transport mechanism.

So there are however important differences to our approach.
The solution presented by Bussmann and Jennings has the
characteristics of a production pipeline and is very useful
as such, however it is not meant to be an agile multi-
parallel production system as presented here. Their system
uses redundancy to overcome the the problem that arises in
pipeline-based production when one of the production systems
fails or becomes unavailable. The planning is based on batch
processing.

Other authors focus on using agent technology as a solution
to a specific problem in a production environment. In [13]
a multi-agent monitoring is presented. This work focusses on
monitoring a manufacturing plant. The approach we use moni-
tors the production of every single product. The work of Xiang

254

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and Lee [14] presents a scheduling multiagent-based solution
using swarm intelligence. This work uses negotiating between
job-agents and machine-agents for equal distribution of tasks
among machines. The implementation and a simulation of the
performance is discussed. We did not focus on a specific part
of the production but we developed a complete production
paradigm based on agent technology in combination with a
production grid. This model is based on two types of agents
and focuses on agile multiparallel production. The role of
the product agent is much more important than in the other
agent-based solutions discussed here. In our model, the product
agent can also play an important role in the life-cycle of the
product [15]. The design and implementation of the production
platforms and the idea to build a production grid can be found
in Puik [16].

The problem presented here is also related to the famous
travelling salesman problem (TSP) [17]. However, there are
important differences. In our case we try to reduce the number
of hops, not to find the shortest path. This has to do with
the fact that in our manufacturing model the transport of
products in the grid should be reduced to prevent the situation
of congestion and to reduce the production time for a certain
product. In our system the order of production machines to be
visited by a certain product is sometimes fixed and sometimes
irrelevant, making it a problem that differs from TSP.

A transport related problem in manufacturing is known as
the job shop scheduling problem [18]. This problem plays an
important role in standard production cell-based systems. In
that case the production time and availability of production
cells is the basis for the problem to be solved.

VII. CONCLUSION

In this paper, a path planning optimization approach has
been proposed an tested. The optimization turned to work
out as expected and results in a reduce of traffic among the
production machines. The optimization might be useful in
other situations as well, especially in situations of production
systems where the transport becomes a bottleneck. In future
research, other step classes can be included like the situation
where the order of sequences (tuples) of steps is irrelevant.

REFERENCES

[1] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Optimizing
product paths in a production grid,” The Fourth International Conference
on Intelligent Systems and Applications (Intelli 2015), St. Julians,
Malta, 2015, pp. 150–156.

[2] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Implementation
of manufacturing as a service: A pull-driven agent-based manufacturing
grid,” Proceedings of the 11th International Conference on ICT in
Education, Research and Industrial Applications (ICTERI 2015), Lviv,
Ukraine, 2015, pp. 172–187.

[3] M. Wooldridge, An Introduction to MultiAgent Systems, Second Edi-
tion. Sussex, UK: Wiley, 2009.

[4] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Decentralized
autonomous-agent-based infrastructure for agile multiparallel manufac-
turing,” Proceedings of the International Symposium on Autonomous
Distributed Systems (ISADS 2011) Kobe, Japan, 2011, pp. 281–288.

[5] Z. M. Bi, S. Y. T. Lang, W. Shen, and L. Wang, “Reconfigurable
manufacturing systems: the state of the art,” International Journal of
Production Research, vol. 46, no. 4, 2008, pp. 599–620.

[6] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Production
scheduling in an agile agent-based production grid,” Proceedings of the
Intelligent Agent Technology (IAT 2012), Macau, 2012, pp. 293–298.

[7] L. v. Moergestel, J.-J. Meyer, E. Puik, D. Telgen, M. Kuijl, B. Alblas,
and J. Koelewijn, “A simulation model for transport in a grid-based
manufacturing system,” The Third International Conference on Intelli-
gent Systems and Applications (Intelli 2014), Seville, Spain, 2014, pp.
1–7.

[8] M. Paolucci and R. Sacile, Agent-based manufacturing and control
systems : new agile manufacturing solutions for achieving peak per-
formance. Boca Raton, Fla.: CRC Press, 2005.

[9] E. Montaldo, R. Sacile, M. Coccoli, M. Paolucci, and A. Boccalatte,
“Agent-based enhanced workflow in manufacturing information sys-
tems: the makeit approach,” J. Computing Inf. Technol., vol. 10, no. 4,
2002, pp. 303–316.

[10] J. Kletti, Manufacturing Execution System - MES. Berlin Heidelberg:
Springer-Verlag, 2007.

[11] S. Bussmann, N. Jennings, and M. Wooldridge, Multiagent Systems for
Manufacturing Control. Berlin Heidelberg: Springer-Verlag, 2004.

[12] N. Jennings and S. Bussmann, “Agent-based control system,” IEEE
Control Systems Magazine, vol. 23, no. 3, 2003, pp. 61–74.

[13] D. Ouelhadj, C. Hanachi, and B. Bouzouia, “Multi-agent architecture
for distributed monitoring in flexible manufacturing systems (fms),”
International Conference on Robotics and Automation, ICRA, 2000,
pp. 2416–2421.

[14] W. Xiang and H. Lee, “Ant colony intelligence in multi-agent dynamic
manafacturing scheduling,” Engineering Applications of Artificial In-
telligence, vol. 16, no. 4, 2008, pp. 335–348.

[15] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Embedded
autonomous agents in products supporting repair and recycling,” Pro-
ceedings of the International Symposium on Autonomous Distributed
Systems (ISADS 2013) Mexico City, 2013, pp. 67–74.

[16] E. Puik and L. v. Moergestel, “Agile multi-parallel micro manufacturing
using a grid of equiplets,” Proceedings of the International Precision
Assembly Seminar (IPAS 2010), 2010, pp. 271–282.

[17] W. Cook, In Pursuit of the Traveling Salesman: Mathematics at the
Limits of Computation. Princeton University Press, 2012.

[18] S. Mirshekarian and D. Sormaz, “Correlation of job-shop scheduling
problem features with scheduling efficiency,” Expert Systems with
Applications, vol. 62, 2016, p. 131147.

