
389

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Taming the Complexity of Elasticity, Scalability and Transferability in Cloud
Computing

Cloud-Native Applications for SMEs

Peter-Christian Quint, Nane Kratzke
Lübeck University of Applied Sciences, Center of Excellence CoSA

Lübeck, Germany
email: {peter-christian.quint, nane.kratzke}@fh-luebeck.de

Abstract—Cloud computing enables companies getting computa-
tional and storage resources on demand. Especially when using
features like elasticity and scaling, cloud computing can be a very
powerful technology to run, e.g., a web service without worries
about failure by overload or about wasting money by paid use
of unneeded resources. For using these features, developers can
use or implement cloud-native applications (CNA), containerized
software running on an elastic platform. Nevertheless, a CNA
can be complex at planning, installation and configuration,
maintenance and searching for failures. Small and medium-sized
enterprises (SMEs) are mostly limited by their personnel and
financial restrictions. So, using these offered services can facilitate
a very fast realization of the software project. However, by using
these (proprietary) services it is often difficult to migrate between
cloud vendors. This paper introduces C4S, an open source system
for SMEs to deploy and operate their container application
with features like elasticity, auto-scaling and load balancing.
The system also supports transferability features for migrating
containers between different Infrastructure as a Service (IaaS)
platforms. Thus, C4S is a solution for SMEs to use the benefits of
cloud computing with IaaS migration features to reduce vendor
lock-in.

Keywords–Cloud-Native Application; Elastic Platform; Microser-
vice; SME; Vendor Lock-In; Container Cluster; Cloud Computing;
Elasticity; Scalability; Transferability

I. INTRODUCTION

Note: This paper presents our research prototype C4S
(Container Cluster in Cloud Computing System), which was
previously presented in [1]. This extended paper includes
further information about our target user group, CNAs as basic
technology and more details about C4S.

Infrastructure as a service (IaaS) enables companies to
get resources like computational power, storage and network
connectivity on demand. IaaS can be obtained on public or
private clouds. Public clouds are provided by third parties for
general public use. Type representatives are Amazon’s Elastic
Compute Cloud (EC2) and Google Compute Engine (GCE).
Private Clouds are intended for the exclusive use by a single
organization [3]. They are mostly installed on the respective
company’s own infrastructure. OpenStack is a cloud platform
for providing (not exclusively) private clouds. One big benefit
using cloud computing is the elastic scaling. Elasticity means
the possibility to match available resources with the current

demands as closely as possible [4]. Scalability is the ability of
the system to accommodate larger loads by adding resources
or accommodate weakening loads by removing resources [4].
With auto-scaling, resources can be added automatically when
they are needed and removed when they are not in use [5]. The
resources are allocated on demand and the customer only has to
pay for requested resources. The system described in this paper
will support several, public and private, cloud environments.
Features like elastic scaling and transferability will also be
available. We define transferability as the possibility to migrate
some or all containers between different cloud platforms. This
is needed to avoid vendor lock-in by the cloud providers, which
is a major obstacle for small and medium-sized enterprises
(SMEs) in cloud computing [6]. Only a few research projects
deal with the specific needs of SMEs in cloud computing [7].

In the last few years, container technologies like Docker
became more and more common. Docker is an open source and
lightweight virtualization solution to provide an application
deployment without having the overhead of virtual machines
[8]. With Docker, applications can be easily deployed on
several machine types. This makes launching containers from
the same application (image) possible, e.g., on a personal
computer or a datacenter server.

Container clusters like Kubernetes (arose from Google Borg)
[9] and Mesos [10] can deploy a huge number of containers
on private and public clouds. A big benefit of cluster tech-
nologies is the horizontal scalability of the containers, the
fast development and the contained software defined network,
which is often necessary for distributed container applications.
Container and container cluster software are mostly open
source and free to use.

C4S is designed to (automatically) deploy and operate con-
tainer cluster applications without vendor lock-in. Moreover,
the system will be able to monitor the cloud platform, the
container cluster and the containers themselves. Beside bare
reporting, the system will offer methods to keep the application
running in most failure states. Altogether, the C4S can make
container cluster cloud computing technologies usable for
SMEs without large and highly specialized IT departments.
C4S is especially designed as a cloud solution for SMEs.

This paper is structured as follows: Section II deals with the
target group of the upcoming C4S cloud management system.
The technical background in form of cloud-native applications



390

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. SME definition of the European Union [2]

Enterprise category
Headcount:

annual work
unit

Annual
turnover

Annual
balance

sheet total
or

Medium-sized <250 ≤ EUR 50 million ≤ EUR 43 million
Small <50 ≤ EUR 10 million ≤ EUR 10 million
Micro <10 ≤ EUR 2 million ≤ EUR 2 million

and elastic platforms is explained in Section III. The C4S
prototype is introduced in Section IV, followed by the major
requirements of the system and the reasons for their selection
in Section V. The architecture of the research prototype is
presented in Section VI, the usage scenarios in Section VII and
followed by a report about the current development status in
Section VIII. The intended validation of concept is delineated
in Section IX. Related work is described in Section X. Finally,
the conclusion follows in Section XI.

II. CLOUD COMPUTING AND SMES

SMEs are mostly financially and personnel-wise restricted
(see the European definition of SME [11]) and the management
of container cluster applications with features like transferabil-
ity and elasticity is complex. Thus, it can be hard to handle
this complexity for a small (maybe only one person size) IT
department. In the beginning, using services like IaaS might
be very simple but the use of advanced cloud technologies
like clusters, containers and cloud benefits like auto-scaling
and load balancing can quickly grow into complex technical
solutions. The cloud provider supplied services (e.g., auto-
scaling) might pose another issue due to often having non-
standardized service APIs. This is often resulting in inherent
vendor lock-in [12]. However, there are products and services
to manage multi-provider-clouds like the T-System Cloud
Broker [13]. These management solutions also have disadvan-
tages, i.e. they are mostly commercial, proprietary solutions
and also often inherently designed for very big companies.
These kind of cloud broker services move the dependencies
from the cloud provider to the system/service provider like
T-Systems. Amazon EC2 Container Service works only with
Amazon EC2-instances, which means there is still a vendor
lock-in. Both solutions just shift vendor lock-in to another
company or another level of IaaS provisioning. Creating an
open source system for easy deployment and managing of
cloud applications in a container cluster would support SMEs
using these technologies which reduces worries about vendor
lock-in.

Our research is about avoiding vendor lock-in in cloud
computing. Although our upcoming system is usable for all
type of companies, we have placed the emphasis on a solution
for SMEs because of their huge potential when using cloud
technologies. The majority of companies located in Europe
can also be defined as SME and we surmise that our solution
for SMEs can rather easily adapt for the use in large companies
than otherwise.

There are several definitions about SMEs. The Statistical
Office of the European Union (Eurostat) defines SMEs by three

Micro sized	companies	(	101.549,37	€)

Small	sized	companies		(147.270,34	€	)

Medium	sized	companies		(171.779,28	€)

Large sized	companies		(281.787,66	€)

0,00 50.000,00 100.000,00 150.000,00 200.000,00 250.000,00 300.000,00
Turnover	 in	€	by	one	person

SMEs

Figure 1. Average turnover by employee in ICT companies, separated by
company type (data from 2013) [15]

thresholds criteria: Staff headcount and either annual turnover
or annual balance sheet total (see Table I and [2], [14]). 99.76%
of all companies in the information and communication sector
(ICT) are SMEs (958,663 in total, data from 2013) [15].
Regardless of this, the turnover per employee is significantly
depending on the size of the company (see Figure 1). We
suspect that the economy of scale is partly a reason for this:
Mass production can reduce the cost of a single part [16].
In the case of ICT SMEs, this might be reasoned by small
IT-facilities and limitated hardware performance.

However, cloud computing can help SMEs to bridge the
disadvantages. A large scale of computational resources is not
limited to large companies any more. So, instead of buying
a server to calculate something in a week, a single person
can also use cloud computing to rent more powerful virtual
machines which can do this job in a day or even faster.
Worries about investment risks can be avoided by using cloud
computing. Resources can be requested on demand. This pay
on demand model combined with auto-scaling functionality
can prevent unnecessary costs [17] when, e.g., a new web
service does not have the intended success. On the other hand,
if the new service is widely used, there is no danger of service-
crash because of inadequate resources. E.g., Animoto, a small
video creation service company, scaled from 50 servers up
to 3,500 in three days [18] as a result of a viral growth.
For most companies, especially SMEs this is probably not
possible in this manner by using own infrastructure. However,
there is a lack of standardization in cloud computing. Different
cloud providers offer different cloud services. Because of non-
existing or supported standardized APIs, also nearly similar
services provided by different vendors are often not swappable.
Oftentimes, this makes a migration to another provider expen-
sive and time-consuming [19] and is economically not use-



391

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ful/possible, especially for SMEs with financial and personal
limitations.

Cluster

VMs

Services

Provided by

Figure 2. The elastic platform can be a cluster consisting of VMs. These
VMs can be offered by different cloud providers.

III. CLOUD-NATIVE APPLICATIONS (CNA)

Migrating to the cloud also provides requirements for the
application architecture. Although, it is possible to use a single
virtual machine to run an, e.g., monolithic and not distributed
application in a cloud environment, the most useful features of
cloud computing, like elasticity and scaling, cannot be used or
only with big restrictions. In order to apply these features, the
application has to be designed to run on distributed systems.
Our solution restricts the usable software architecture on CNAs
only. This might be a hard limitation but enables running ap-
plications in an auto-scaling, fault-tolerant and highly available
way with the possibility to migrate to any cloud infrastructure
anytime.

A. Definition of Cloud-Native Application

As its name implies, cloud-native applications are designed
for working in cloud computing environments. In research,
the term ”cloud-native” was firstly used in 2012 by F. Ley-
mann and his research group (the corresponding conference
papers: [21], [22]). In general, there is no completely accepted
definition of the term ”cloud-native”. This paper follows the
understanding proposed by [20]:

A cloud-native application is a distributed, elastic and hor-
izontally scalable system composed of (micro)services which
isolates state in a minimum of stateful components. The
application and each self-contained deployment unit of that
application is designed according to cloud-focused design
patterns and operated on a self-service elastic platform.

B. Components of a CNA

To create CNAs according to the proposed definition, the
following technologies may be used:

Microservices. From legacy, applications have been often
designed according to a monolithic software architecture. That
means, a program is designed as a monolithic block. This
block contains all or the most parts of the application. In
contrast, in the microservice architectures, the application is
spliced into (micro)services. Each service should be small and
focused on doing one thing well [23]. This has a lot benefits in
elastic cloud computing. The development and maintenance is
simplified in a way that the services can be developed in small
teams which operate independently and are specialized in a
particular area. Each service can be updated without touching
other application parts. Another big feature is the scalability
of the single services. Instead of creating more and more
instances of the whole monolith, only the required services
have to be increased. Of course, microservices also bring
new complexity to the application design. It is important to
define what the individual service should contain. In practice,
microservices are often not fully self-sufficient but expanding
and updating a service should not require the need to adjust
all other services.

The microservice architecture is used by well-known com-
panies such as Netflix, Twitter, Dropbox and Amazon.

Elastic Platform. An elastic platform includes one or
several container clusters and is used for the automatic de-
ployment of the cloud-native application. The elastic platform
uses resources in form of virtual machines. These resources
are offered by private and/or public cloud provider.

However, these virtual machines used as nodes in the
cluster must not necessarily be running on the same cloud
infrastructure (see Figure 2). Popular open-source container
clusters are Kubernetes, Apache Mesos and Docker Swarm.

Reference Model. The NIST-Definition of cloud-computing
[3] defines three service models and four deployment models.
These models are very common and useful for a lot of tasks.
However, they are not fine-grained enough to describe the
technology layers of a CNA suitable in an engineering point
of view. For our research we use the cloud-native reference
model (ClouNS) described in [20]. As shown in Figure 3,
ClouNS consists of six layers covering four view points. The
node centric view point covers the architectural layers 1-3.
The layer 1 is the physical host. In cloud computing this
part is mostly controlled by the IaaS provider and not visible
for the user. The second and third layer corresponds to the
IaaS model of the NIST definition. Usually, the IaaS provider
offers a set of virtual machine types and operating system
images to the user which can select a fitting configuration.
However, the virtual machines are mostly connected to an
internal network and useable over the internet. The Layer 3
also provides a standardized way of self-contained deployment
units (e.g. the Docker engine). The cluster centric view point
covers Layer 4. This describes the elastic platform and has
often three sublayers. The cluster scheduler connects several
(up to over one hundred thousand) nodes (Layer 3) to a logical
unit. This enables a cluster of (Layer 3) nodes from different
IaaS providers and makes an interoperable cloud and also
the migration from one cloud platform to another possible.
The use of a scheduler can avoid vendor lock-in. The overlay



392

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Cloud-native Application Reference Model (ClouNS), taken from [20]

CNA reference model C4S developer task

Standardized way of deploying a clustered 
container runtime environment for CNA

Use only commodity services offered by public IaaS 
vendors

Description language for cloud-native applications

Figure 4. Developer task



393

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network enables the communication between the containers in
the cluster. Popular implementations are Flannel and Weave.
Some overlay network solutions (like Weave) also enable
an encrypted communication which facilitates interoperable
working cluster with a high security. The orchestrator arranges
the containers on different machines and enables (depending of
the used cluster software) load balancing, container scaling and
increases the fault tolerance by distributing container instances
of the single images on several nodes. The service centric view
point covers Layer 5. A (micro)service can also consist of
a composition of containers. These containers are stored in
the cluster (Level 4) and cannot be assigned to the specific
(Layer 3 and under) machines. The application centric view
point covers Layer 6, the application. If a Layer 5 service can
be used over a human machine interface, it can also be a Layer
6 application. Usually, Layer 6 applications are a combination
of Layer 5 services and often corresponding the SaaS model.
This reference model is used to classify the single technologies
of our cloud-native system and simplifies the description of our
system architecture.

IV. RESEARCH PROTOTYPE C4S

C4S is our upcoming prototype to deploy and control CNAs.
The system is designed to handle the high complexity of

a container cluster with benefits like elasticity, auto-scaling
and transferability. Feature requirements and the technical
specifications are explained below and illustrated in Table II.
As shown in Figure 4, a solution to define secure, transferable
and elastic services of typical complexity will be provided by
designing and developing a generic cloud service description
language. Thus, these services are deployable to any IaaS cloud
infrastructure. This work promotes the implementation of easy-
to-handle, elastic and transferable CNAs. The basic idea of our
approach is to limit the use of cloud provided services to the
basic - using computational and storage resources in the form
of virtual machines. All other offered services increase the
risk of vendor lock-in. Therefore, we use already available
container und cluster technologies to provide features like
auto-scaling, elasticity, load balancing and fault tolerance.

Next to avoiding proprietary services, we avoid vendor lock-
in by the possibility of a fast, easy and always executable
cloud platform migration. As illustrated in Figure 2, a cluster
consists of several nodes. These nodes do not necessarily run
on the same platform. This allows creating an interoperable
cloud system. Of course, this technology has a high degree
of complexity. Because of the limited (personal and financial)
resources of most of the small companies, little (in extreme
one man sized) IT departments must also be able to handle
this complexity. Therefore, we focus on the usability of the
interfaces and a high degree of automation. For a future
validation of our approach we are developing the prototype
system C4S. We will show the feasibility of a system which
avoids vendor lock-in, supports cloud features like scaling and
load balancing and can hide the inherent complexity for the
use of SMEs. We assume, that the requirements (described in
the next Section V) of the prototype are also included in a
future system designed for the productive use.

V. MAJOR REQUIREMENTS OF C4S

C4S is a system designed for an easy access to cloud
computing benefits without having dependencies like IaaS
vendor lock-in. To fulfill this goal the following technical and
practical conditions are required.

A. Cloud-Native Applications

The basic feature of C4S is to deploy a distributed cloud-
native (container) application on cloud environments. There-
fore, the user can easily configure the needed containers, the
interfaces and the cloud environments. According to this con-
figuration, the system can automatically deploy the application.
The system will also monitor the application and inform the
user if a failure is detected. According to the error, the system
will try to fix it automatically to minimize the downtime. The
user has an overview over the running application and can
also get information about every single container. After the
initial deployment, changes of the container composition are
still possible. So, application parts (e.g., container types) can
be replaced, e.g., to keep the application up to date.

B. Elastic Platform

The elastic platform (Layer 4 in the ClouNS model), tech-
nically a container cluster, is used for the automatic deploy-
ment of the cloud-native application. The elastic platform
uses resources in form of virtual machines (Layer 2). These
resources (Layer 2/3) can be obtained by private and/or public
IaaS platforms. These virtual machines, used as nodes in
the cluster, must not necessarily be running on the same
cloud infrastructure. So, this architecture enables the use of
a multiple-providers environment. Also, a provider migration
is always possible. According to the configuration, the system
can create virtual machines automatically and integrate them
to the cluster. Another included benefit is the possibility of
terminating and correspondingly down scaling of the elastic
platform in the scope of functions. In the practical use, the
elastic platform can be composed of open-source container
cluster systems such as Kubernetes, Apache Mesos and Docker
Swam.

C. Elasticity, Load Balancing and Auto-Scaling

As described in Section I, cloud computing enables features
like elasticity, scalability and load balancing. C4S enables the
user to handle the inherent complexity of these features in
an easy way. C4S will have auto-scaling features. Thus, it is
necessary to differentiate between scaling the services (Layer
5) and the cluster (Layer 4).

Service scaling: C4S will be able to detect overload of the
payload services. In this case, C4S scales the services with
deploying more container instances on the elastic platform.

Platform scaling: The system also detects if the cluster has
only a few free resources left to orchestrate the container. In



394

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. Relation of the CNA reference model [20] and the functionality of C4S.

(According to [20])
View Point Classification Layer Classification Features of C4S

Application Centric View Point Application Layer 6 Description Language for defining
Deploying and controlling

Service Centric View Point (Micro-) Service Layer 5 Monitoring
Scaling

Cluster Centric View Point Cluster Layer 4

Deploying and controlling
Load Balancing
Monitoring
Scaling

Node Centric View Point
Node Layer 3 Creating and Terminating

Virtual Node Layer 2 Monitoring
Physical Host Layer 1 (Task of the provider only)

this case, the system automatically requests new virtual ma-
chines provided by the IaaS vendors. After the new resources
are available they will be used to extend the cluster. Of course,
downscaling the container application and the elastic platform
is also supported. So, the cost for unneeded machines can
be reduced. Downtime (or other system failures) because of
overload can be prevented or shortened.

Load balancing is depending on the used cluster software.
At first C4S will support Kubernetes. This software is designed
to orchestrate containers, so it provides load balancing func-
tionality.

D. Prevent Dependencies

To avoid vendor lock-in by the cloud provider, the system
can install a multi-cloud container cluster with transferability
features. All or some containers can migrate from one cloud
provider to another on demand. Accordingly, the user can
select the using IaaS platform(s) and is able to change this
choice anytime. To prevent dependencies by used software
and services, the C4S will be published under MIT license.
It is recommended that all third-party parts like the cluster
software are also open source. Thus, the consuming companies
can adapt the source code to their special needs and are able
to avoid dependencies to the C4S themselves. The system has
to be designed in a generic way for several IaaS platforms (see
Figure 5, fourth block). Beside the cloud platforms, the users
should not be limited by the choice of the container cluster.
The modular architecture enables later extensions for missing
cluster connectivity (see Figure 5, third block).

E. Optimization for SMEs

The inherent complexity of this architecture has to be use-
able by SMEs with only a few (in extreme one person size) IT-
staff. To hide the complexity, the user should be able to set all

necessary parameters easily. Therefore, especially the graph-
ical user interface will be developed under consideration of
usability aspects. To handle the complexity, C4S needs a high
degree of automation. This includes features like auto-scaling
the services (Layer 5-6) and auto-scaling the elastic platform
(Layer 4 and involved Layer 3). Scaling the services depends
on the resource consumption of the individual container type.
The system creates or terminates container instances in the
cluster automatically. Auto-scaling of the cluster is done by
creating or terminating virtual machines (Layer 2). So, C4S
requests and obtains new VMs and integrates them as nodes
(Layer 3) automatically into the elastic platform (Layer 4). In
the reverse direction, unused resources should be set free to
save money. Therefore, the system can request a termination
of machines automatically. Hence, they are not available as
nodes for the elastic container platform any more.

VI. SYSTEM ARCHITECTURE OF C4S

The architecture, as illustrated in Figure 5, is divided into
four blocks. The core of C4S are the monitoring, the de-
ployment and the storage engine. The user can manage the
deployment and get the monitoring events over two interfaces.
The other two parts are the elastic platform and the IaaS
environments.

A. Interfaces

For deploying, managing and controlling the cloud-native
application and the elastic platform, the user can use two
different types of interfaces:

The Command Line Interface (CLI) can be used to
get monitoring information about the cloud-native (container)
application, the elastic platform and the host-machines (VMs
running on an IaaS platform). The user can manage actions
like the initial start of the application and cluster deploying.
Therefore, the configurations have to be set manually and the



395

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

...

IaaS
P

latform
s

Deployment Engine

VMs VMs VMsVMs

Data	Storage	EngineMonitoring	Engine

C
ontainer
C

luster

1

2

3

4

Cloud Service & Platform
Description Language

$_Command Line InterfaceGraphical User Interface

Figure 5. Architecture overview

Cloud Service Description Language has to be used for
defining the cloud-application. Configuring the elastic platform
has to be done with the use of the Cloud Platform Description
Language.

The web-based Graphical User Interface (GUI) can be
used for a more visual and simpler interaction with C4S.
The GUI provides graphical overviews for observing the used
IaaS infrastructure, the cloud-native application and the elastic
platform. Next to loading and storing the configuration (defined
with the Cloud Platform Description Language and the Cloud
Service Description Language), the user can use web forms
to set the parameters. C4S automatically converts the set
values into the required language format. In later developing
processes several useful workflows will be integrated. So, this
will help the user, e.g., to select the optimal host machine
type for the individual purposes or processing a cloud provider
migration.

After installing C4S, the cloud-native application and the
platform do only have to be configured over the interfaces.
Creating and deleting virtual machines, installing the elastic
platform and deploying the application on the platform will be
automatically done by the system without manual interaction.

B. Engines

C4S contains several engines. As shown in Figure 6, these
engines are interacting to realize features like auto-scaling the
platform and the services.

The Monitoring Engine is an important part of the system.
C4S will support several monitoring systems. So, the system
has to monitor the services and also the elastic platform
(clustered virtual machines provided by the IaaS platform).
The system will proactively collect data and information from

all services, the cluster software and the host systems of
the platform. In case of the platform monitoring, the system
analyzes, e.g., CPU performance, memory usage, free disk size
and other performance data. This makes it possible to detect
failure states, usage and load problems (like less free resources
by high load of the cluster). The monitoring engine is also
able to get statistics about the services. So, the health status of
every container type can be analyzed. If the monitoring engine
detects events such as under- or overload, the deployment
engine will be notified.

The Deployment Engine is responsible for deploying the
elastic platform and the services on it. Therefore, the engine
can request the creation or termination of virtual machines
running on a cloud platform. The new assigned VMs will
be attached to the elastic platform to enlarge it. The engine
can send a request to terminate a VM to the IaaS platform.
The termination of VMs decreases the cluster. Thus, this can
reduce the cost because only necessary machines are in use
and the customer does not have to pay the IaaS provider
for unused resources. In combination with the monitoring
engine, the deployment engine is used for platform auto-
scaling and makes the system more fault tolerant, too. So,
if a few machines break down because of errors on the
infrastructure of the cloud provider, the system automatically
creates virtual machines on another provider to prevent or
compensate downtime of the application. The workload of
the containers can trigger to create or free more of them.
The engine is also responsible for deploying the cloud-native
application (in form of a service-composition) on the cluster.
So, new services or service updates (switching the running
service implementation) can be deployed with the deployment
engine.

The Data Storage Engine is compatible with several block



396

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Data flow diagram of the deployment and the monitoring engine

and object storage systems to avoid vendor lock-in. The engine
enables scalability and security features for data storage (not
illustrated).

C. Elastic Platform

According to the configuration, the elastic platform will be
installed automatically. The first versions of C4S will support
Kubernetes. However, the system is designed generically to
enable future extensions. So, several container cluster will be
supported in later versions. The deployment engine can enlarge
or decrease the cluster by creating or terminating cluster nodes.
The deployment of the containers (cloud-native application)
will also be controlled by the deployment engine. Next to
scaling the container application and the cluster itself, other
features like load balancing are included.

D. IaaS Platforms

According to the configuration, the required computing
and storage resources (in form of virtual machines) will
be requested automatically from the private and/or public
IaaS platform(s). Therefore, C4S includes the ”ecp-deployer”,
published at [24]. Currently, AWS and OpenStack Mitaka is
directly supported. However, the deployer is designed to load
plugins for supporting new platforms or new versions of them
in a simple manner. This is also well documented to enable
an uncomplicated extension-development.

VII. WORKFLOWS

C4S is designed for deploying and controlling cloud-
native applications and the elastic platform. Like shown in
Figure 7, this can be done in the following logical steps:

1. The user can use the command line interface and also the
graphical interface to deploy and control the application.
First of all, the elastic platform and the application have
to be described.

1a. For defining the container-composition (image type,
hierarchy, connection, etc.), C4S uses a cloud service
description language. Using the CLI, this can be done
manually. Alternative, if using the GUI, the set parame-
ters will be parsed automatically into the correct format.

1b. Next to the parameters of the IaaS providers, the ma-
chine types, the credentials, the platform type (e.g.
Kubernetes or Apache Mesos) also scaling limitations,
load balancing setting and so on, have to be configured.
Therefore, the cloud platform description language has
to be used. Similarly to step 1a., this can be done in a
comfortable way using the GUI or using the CLI directly.

2a. According to the settings, the system gets resources
by the IaaS provider/cloud-platform in form of virtual
machines.

2b. The created virtual machines will be automatically in-
cluded as nodes to the elastic platform.

3. Now, C4S starts deploying the applications (e.g. Docker
container-composition) on the cluster. After that, the ini-
tial deploying of the cloud-native application is finished.

n. (Without illustration:) According to the description, C4S
is able to create/terminate virtual machines to scale the
cluster itself.

To avoid vendor lock-in, it is important for C4S to support
several elastic platforms (e.g. Kubernets or Apache Mesos)
and IaaS provider. Nevertheless, C4S is designed to migrate
between different cloud provider in an uninterruptible pro-
cess. The user only has to set the configuration of the target
provider (named ”Provider B” in Figure 8) and command the
system to start the migration. According to Figure 8, C4S will
automatically process the following steps:

1. In general, the container type should be deployed on
several different nodes for failure protection and for an
uninterruptible migration.



397

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IaaS	Platform
(e.g.,	OpenStack,	
Amazon	AWS,	
Google	GCE,..)

Virtual Machines

Cloud Platform
Description 
LanguageC

lusterVM

Cloud Service
Description 
Language

Cloud-native app.

$_

1

Describe elastic platform1b

1a Describe cloud-native application

2a Create VMs 2b Add resources to the cluster

3 Deploy application on cluster

Figure 7. Deploying workflow

2. At first, C4S allocates virtual machines provided by the
target vendor to enlarge the elastic platform.

3. After the system terminates a ”Provider A” virtual ma-
chine, the cluster decreases and containers are missing.
The elastic platform detects that containers are missing
and starts deploying them anew. In this way, the sys-
tem terminates all machines from the original provider
successively.

4. In the end, no virtual machine of the initial used provider
is in use any more. The migration is completed and
in accordance with the normal activities of the elastic
platform, load balancing and scaling processes will be
done on demand.

VIII. COMPLETED RESEARCH AND CURRENT
STATUS

Our system is designed for CNAs. This includes the use of
container virtualization (e.g., Docker, Rkt). Container based
operating system virtualization can be used for scalable and
high-performance tasks [25]. For using more than one con-
tainer, container cluster can be used to operate in in a highly
available and scalable way. The cluster itself also contains
a software-designed network (SDN). C4S is based on this
technology. As internal part of C4S, it is important to know
if the network performance impact using these technologies
is acceptable or not. Therefore, we developed ppbench [26],
a tool for benchmarking network performance according to
the use of container technology, the use of a cluster/SDN,
the message size, the machine type and the programming
language. It could be determined that the performance impact
depends on all factors. Therefore, it is not possible to make
basic disclosures about what is generally the best programming
language or the ideal message size or if the use of a SDN
has an acceptable impact on the network performance in
general. However, with ppbench, reasonable combinations of
these parameters can be determined in the context of a CNA
design. The biggest insights from the benchmark tests are: the

selection of the programming language has a big effect on the
performance and the impact of a SDN depends on the machine
type - using high-core machines can make the impact of the
SDN negligible. All our findings about performance impacts
using container and container clusters are published in [26],
[27], [28], [29].

A Container Cluster should run on homogeneous machine
types to provide fine-grained resource allocation capabilities
[10]. Our solution for a migratable and/or interoperable cloud
system requires an elastic platform consisting of nodes (virtual
machines) provided by multiple providers. Accordingly, the
choice of machine types of different providers is not trivial.
We developed EasyCompare, an automatic benchmark suite for
selecting most similar virtual machines provided by different
cloud service providers. We used our tool to compare VMs
provided by the two public cloud service providers Amazon
Web Services and Google Compute Engine. In our benchmark
experiments we compared 195 machine pairs and could only
identify three machines pairs with a high similarity. All other
machine pairs (over 98.5% of all possible combinations)
are not or only useable with restrictions as cluster nodes.
Although the selection of suitable machines is limited, the
recommended pairs consist of ”n1-standard” (GCE) and ”m3”
(AWS) machines. These machine types are universally useable
and not limited to special tasks. They are also cost effective
and not the most expansive machine types. Especially for
SME, the limited selection options can have the advantage
of a fast and simple decision. Particularly with regard to the
performance, we generally recommend the machine-pairs with
the highest amount of cores. We have published more details
about EasyCompare and the benchmark results in [30], [26].

This first release of the elastic container platform deployer
is accessible under [24]. The tool enables creating, deleting
and changing an elastic platform consisting of many nodes
which can be provided by different IaaS platforms/vendors
in an easy manner. We have chosen Kubernetes as cluster
software for the first version. Nevertheless, the deployer still
supports OpenStack, Amazon AWS and Google GCE.



398

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Cluster
VM

Container

Migration

2

4
1

3

IaaS
Provider	A

IaaS
Provider	B

Figure 8. Migration workflow

TABLE III. Functional range of the planned releases

Version Features
0.1 Kubernetes on OpenStack,

Amazon AWS and Google GCE
0.2 Storage extension
0.3 Auto-scaling features
0.4 Deployment language
1.0 Stable version

We will continuously release new versions of C4S after
finishing significant parts. The rough planning, shown in Table
III, did not include smaller releases which contain bugfixes,
the GUI and enhancements to other cloud platforms or cluster
software. We plan to release a stable version of C4S by the
end of 2017.

IX. INTENDED VALIDATION OF CONCEPT

It will be shown that SMEs can manage a container cluster
over (multi) cloud platforms. At first it will be demonstrated
that building a system which fits all the required features is
possible. Therefore, a working, open source C4S prototype
which conforms the requirements set in Section V will be
developed. The system has to be implemented in a modular
and extendable way. As a cluster platform, C4S will support
Kubernetes first, other cluster environments will follow. Pre-
senting interchangeability and the open source type of C4S
will show that dependencies by the used software can be
prevented. To avoid vendor lock-in by the cloud provider,
the prototype must be able to install a multi-cloud container
cluster. First, the system will be compatible with the IaaS cloud
platform type representatives Amazon EC2, Google GCE and
OpenStack. To support other platforms, appropriate drivers
can be implemented. Transferability features like moving all
containers from one cloud platform to another will be imple-
mented. Terminating all containers and virtual machines on

one provider and creating them on another at the same time,
without changes in features like elasticity and auto-scaling, will
proof that C4S is preventing vendor lock-in. The software will
also manage container application deployment. It will deploy a
container cluster, create and terminate containers and is usable
for deploying applications. Also, workloads will be created to
test the auto-scaling features. With enforced failure states, the
robustness of the system will be demonstrated. It will be shown
that the system is able to keep the applications running even
when containers and virtual machines get disconnected. In the
second part of the proof of concept, a company will employ
the software. Thus, the expense for a small business using the
container cluster manager will be evaluated. Finally, a proof of
concept will be realized by several business companies. These
companies will use the C4S system on their own for testing
a productive application deployment with real workload. Load
balancing, elasticity, auto-scaling and transferability features
will be applied in production. This way it will be shown that
SMEs can handle the complexity of a container cluster ap-
plication running on multiple cloud platforms without vendor
lock-in or dispensing with features like auto-scaling.

X. RELATED WORK

Currently, technologies related to our workspace like con-
tainer, cluster and cloud computing are still under hyped
development. A lot of these technologies are still in productive
use, also as a technical baseof very successful IT companies
like Netflix, Amazon and others. Because of the hype and
also the productive use by big companies, technologies, e.g.,
Docker are rising their opportunities and scope very fast.
However, till now we couldn’t find a solution which fits all
requirements and features set in Section V, but there are several
solutions with overlapping features and/or usage scenarios
available.

A. IaaS Management and Transferability

Container migration from one cloud provider to another is
an important feature of C4S.



399

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Vendor lock-in is caused, i.e., by a lack of standards
[19]. Currently the proprietary EC2 is the de facto standard
specification for managing cloud infrastructure. However, open
standards like OCCI and CIMI are important to reduce vendor
lock-in situations [31]. C4S includes a special IaaS driver for
each supported cloud provider. Other research approaches in
cloud migration can be reviewed under [32]. There are several
solutions like Apache Libcloud, KOALA [33], Scalr, Apache
jclouds and deltacloud and T-Systems Cloud Broker for man-
aging and deploying virtual machines on IaaS platforms.
Except for the T-Systems Cloud Broker, the solutions are open
source but have mostly payable services, reduced functionality
or limited virtual machine quantities. These systems support
features like creating, stopping and scaling virtual machines
on IaaS cloud platforms. Some of them like the T-Systems
Cloud Broker, Scalr and Apache jclouds are designed for cross-
platform IaaS deployment. In contrast to the C4S requirements,
the presented cloud managers are limited to IaaS managing and
do not offer container deploying services. Some of them do
not prevent vendor lock-in by cloud providers or create new
dependencies by itself (e.g., T-System Cloud Broker, KOALA
are limited to Amazon AWS API compatible services).

B. Application Deployment

Peinl et al. [34] have defined requirements for a con-
tainer application deployment system. These strongly coincide
with the requirements for the C4S system, which have been
discussed in Section V. The research group also gives an
overview about container cluster managing. For easy deploying
a container application with monitoring, scaling and control-
ling benefits, there exist several commercial solutions like the
Amazon EC2 Container Service, Microsoft Azure Container
Service and Giant Swarm. Limited to the providers own IaaS
infrastructure, these solutions are not designed for multi-cloud
platform usages, especially between public clouds (a require-
ment of C4S). Open source cluster managers like Apache
Mesos and Kubernetes are designed to run workloads across
tens of thousands of machines. The benefits and issues using
cluster technologies are a very high reliability, availability
and scalability [10] [9]. However, they are not designed to
create and terminate virtual machines (like AWS instances),
but to deploy applications on given resources. So, they cannot
prevent cloud provider dependencies on their own, but provide
essential ingredients to do so. Another cluster management
tool for increasing the efficiency of datacenter servers is
called Quasar which was developed by the Stanford University
and designed for maximizing resource utilization. The system
performs coordinated resource allocation. Several techniques
analyze performance interferences, scaling (up and out) and
resource heterogeneity [35].

XI. CONCLUSION AND OUTLOOK

In Europe, 98% of all companies are small and medium-
sized. With cloud computing, SME can have access to com-
putational resources which were limited to large companies in
the past. Cloud features like elasticity and scaling can make

the use of cloud resources more economical and effective.
However, nowadays these features are only offered as non-
standardized services by IaaS vendors. Using these services
leads to a dependence on the cloud provider. Our approach
is to use the base computational and storage resources only.
All other offered services increase the risk of vendor lock-
in. Therefore, we use already available container und cluster
technologies to provide features like auto-scaling, elasticity,
load balancing and fault tolerance. This is done by developing
a prototype system called C4S. The system is designed to
operate CNAs with the above named features in a vendor lock-
in free manner. It supports multi-IaaS-provider environments
and is designed to realize cloud-provider migrations. The
system is also implemented in a modular and generic way
to allow an easy adaptation to different cloud platforms and
container cluster software. The used technologies like the
container and the storage cluster have an inherent complexity.
Especially for SMEs with a small (in extreme one person sized)
IT department it is important to hide this complexity. Hence,
C4S provides a high degree of automation.

Although C4S is just under development, several function-
alities have been already implemented. The system can create
virtual machines provided by Amazon Web Services, Google
Compute Engine and OpenStack and utilize them as nodes
for the elastic platform (currently we have chosen Kubernetes
as cluster type representative for the first deployer release).
Decreasing the cluster by terminating virtual machines is
possible, too. The next step is the creation of a deployment
language for dedicated containers to run on a Kubernetes
container cluster, finding solutions for container cluster scaling
problems and handling stateful tasks like file storage. The
system will be implemented in a modular and generic way to
allow an adaptation for different cloud platforms and container
cluster software. With C4S, SMEs will be able to deploy and
operate their container applications on an elastic, auto-scaling
and load balancing multi-cloud cluster with transferability
features to prevent vendor lock-in.

ACKNOWLEDGMENT

This research is funded by German Federal Ministry of Edu-
cation and Research (Project Cloud TRANSIT, 03FH021PX4).
The authors thank the University of Lübeck (Institute of
Telematics) and fat IT solution GmbH (Kiel) for their support
of Cloud TRANSIT.

REFERENCES

[1] P.-C. Quint and N. Kratzke, “Overcome Vendor Lock-In by Integrating
Already Available Container Technologies - Towards Transferability in
Cloud Computing for SMEs,” in 7th. Int. Conf. on Cloud Computing,
GRIDS and Virtualization (CLOUD COMPUTING 2016), 2016, pp.
38–41.

[2] European Commission, “Commission recommendation (2003/361/ec)
of 6 may 2003 concerning the definition of micro, small and medium-
sized enterprises,” 2003. [Online]. Available: http://www.eur-lex.europa.
eu/LexUriServ/site/en/oj/2003/l 124/l 12420030520en00360041.pdf

[3] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.



400

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, 2010, pp.
50–58.

[5] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011, p. 49.

[6] N. Kratzke, “Lightweight virtualization cluster - howto overcome cloud
vendor lock-in,” Journal of Computer and Communication (JCC), vol. 2,
no. 12, oct 2014.

[7] R. Sahandi, A. Alkhalil, and J. Opara-Martins, “Cloud computing from
smes perspective: A survey-based investigation,” Journal of Information
Technology Management, vol. 24, no. 1, 2013, pp. 1–12.

[8] J. Turnbull, The Docker Book: Containerization is the new virtualiza-
tion. James Turnbull, 2014.

[9] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems.
ACM, 2015, p. 18.

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation,
ser. NSDI’11. Berkeley, CA, USA: USENIX Association, 2011,
pp. 295–308. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1972457.1972488

[11] Definition recommendation of micro, small and medium-sized
enterprises by the european communities. Last access 12th Nov.
2016. [Online]. Available: http://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=uriserv:OJ.L .2003.124.01.0036.01.ENG

[12] N. Kratzke, “A lightweight virtualization cluster reference architecture
derived from open source paas platforms,” Open J. Mob. Comput. Cloud
Comput, vol. 1, 2014, pp. 17–30.

[13] “Cloud Brokerage - A single portal for all IaaS providers,” T-Systems,
Tech. Rep., 2014, whitepaper. [Online]. Available: https://www.
t-systems.com/whitepaper/77588/dl-wp-cloud-brokerage-tech.pdf

[14] European Union, “User guide to the sme definition,” 2015. [Online].
Available: http://ec.europa.eu/DocsRoom/documents/15582

[15] Eurostat, “Annual enterprise statistics by size class for special aggre-
gates of activities (NACE Rev. 2)[Code: sbs sc sca r2],” 2016.

[16] B. J. Pine, Mass customization: the new frontier in business competition.
Harvard Business Press, 1993.

[17] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica et al., “Above the
clouds: A berkeley view of cloud computing,” 2009.

[18] J. Bezos, “Amazon. com ceo jeff bezos on animoto,” Startup School,
2008.

[19] J. Opara-Martins, R. Sahandi, and F. Tian, “Critical review of vendor
lock-in and its impact on adoption of cloud computing,” in Information
Society (i-Society), 2014 International Conference on. IEEE, 2014,
pp. 92–97.

[20] N. Kratzke and R. Peinl, “ClouNS - A Reference Model for Cloud-
Native Applications,” in Proceedings of 20th. International Conference
on Enterprise Distributed Object Computing Workshops (EDOCW
2016), 2016.

[21] V. Andrikopoulos, C. Fehling, and F. Leymann, “Designing for cap
- the effect of design decisions on the cap properties of cloud-native
applications,” in Proceedings of the 2nd International Conference on
Cloud Computing and Services Science, 2012, pp. 365–374.

[22] S. Garcia-Gomez, M. Escriche-Vicente, P. Arozarena-Llopis, F. Lelli,
Y. Taher, C. Momm, A. Spriestersbach, J. Vogel, A. Giessmann,
F. Junker et al., “4caast: Comprehensive management of cloud services
through a paas,” in Proceedings of the 2012 IEEE 10th International

Symposium on Parallel and Distributed Processing with Applications.
IEEE Computer Society, 2012, pp. 494–499.

[23] S. Newman, Building Microservices. ” O’Reilly Media, Inc.”, 2015.
[24] ecp deploy. Last access 30th Nov. 2016. [Online]. Available:

https://rubygems.org/gems/ecp deploy
[25] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,

“Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 3, Mar. 2007, pp. 275–287.

[26] N. Kratzke and P.-C. Quint, “How to Operate Container Clusters more
Efficiently? Some Insights Concerning Containers, Software-Defined-
Networks, and their sometimes Counterintuitive Impact on Network
Performance,” International Journal On Advances in Networks and
Services, vol. 8, no. 3&4, 2015.

[27] N. Kratzke and P.-C. Quint, “ppbench - A Visualizing Network Bench-
mark for Microservices,” in Proceedings of 6th. International Confer-
ence on Cloud Computing and Service Sciences (CLOSER 2016), 2016.

[28] N. Kratzke and P.-C. Quint, “Investigation of Impacts on Network
Performance in the Advance of a Microservice Design,” in Cloud
Computing and Services Science Selected Papers, ser. Communications
in Computer and Information Science (CCIS), M. Helfert, D. Ferguson,
V. M. Munoz, and J. Cardoso, Eds. Springer, 2016.

[29] N. Kratzke, “About microservices, containers and their underestimated
impact on network performance,” Proceedings of CLOUD COMPUT-
ING, vol. 2015, 2015.

[30] N. Kratzke and P.-C. Quint, “About Automatic Benchmarking of IaaS
Cloud Service Providers for a World of Container Clusters,” Journal of
Cloud Computing Research, vol. 1, no. 1, 2015, pp. 16–34. [Online].
Available: http://jccr.uscip.us/PublishedIssues.aspx

[31] C. Pahl, L. Zhang, and F. Fowley, “Interoperability standards for cloud
architecture,” in 3rd International Conference on Cloud Computing and
Services Science, (CLOSER 2013), 2013, pp. 8–10.

[32] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud migration research: a
systematic review,” Cloud Computing, IEEE Transactions on, vol. 1,
no. 2, 2013, pp. 142–157.

[33] C. Baun, M. Kunze, and V. Mauch, “The koala cloud manager: Cloud
service management the easy way,” in Cloud Computing (CLOUD),
2011 IEEE International Conference on. IEEE, 2011, pp. 744–745.

[34] R. Peinl and F. Holzschuher, “The docker ecosystem needs consolida-
tion,” in 5Th Intl. Conf. on Cloud Computing and Services Science
(CLOSER 2015), 2015, pp. 535–542.

[35] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” ACM SIGPLAN Notices, vol. 49, no. 4,
2014, pp. 127–144.


