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Abstract—This paper demonstrates how neural networks can
be applied to model and predict the functional behaviour of
disordered nano-particle and nano-tube networks. In recently
published experimental work, nano-particle and nano-tube net-
works show promising functionality for future reconfigurable
devices, without a predefined design. The nano-material has been
treated as a black-box, and the principle of evolution-in-materio,
involving genetic algorithms, has been used to find appropriate
configuration voltages to enable the target functionality. In
order to support future experiments and the development of
useful devices based on disordered nano-materials, we developed
simulation tools for predicting candidate functionalities. One of
these tools is based on a physical model, but the one described
and analysed in this paper is based on an artificial neural network
model. The advantage of this newly presented approach is that,
after training the neural network to match either the real material
or its physical model, it can be configured using gradient descent
instead of a black-box optimisation, speeding up the search for
functionality. The neural networks do not simulate the physical
properties, but rather approximate the nano-material’s transfer
functions. The functions found using this new technique were
verified back on the nano-material’s physical model and on a
real material network. It can be concluded from the reported
experiments with these neural network models that they model
the simulated nano-material quite accurately. The differentiable,
neural network-based material model is used to find logic gates,
as a proof of principle. This shows that the new approach has
great potential for partly replacing costly and time-consuming
experiments with the real nano-material. Therefore, this approach
has a high relevance for future computing, either as an alternative
to digital computing or as an alternative way of producing multi-
functional reconfigurable devices.

Keywords—nano-material network; neural network; simulation;
unconventional computation; evolution-in-nanomaterio.

I. INTRODUCTION AND MOTIVATION

This paper is an extended version of the preliminary work
reported in [1] that was presented by the first author at the
FUTURE COMPUTING 2016 meeting in Rome. It demon-
strates parts of the research that has been carried out within
the framework of the FP7-project NASCENCE: NAnoSCale
Engineering for Novel Computation using Evolution [2]. More
details on the conceptual ideas and outcomes of this project
can be found in [3], including many references to recently

published work within the framework of the project. In the
NASCENCE project, that was funded by the European Com-
munity, disordered networks of gold nano-particles have been
successfully used to produce reconfigurable logic, with a very
high degree of stability and reproducibility [4]. More recently,
similar results have been obtained within the NASCENCE
project with networks consisting of composite materials based
on nano-tubes [5]. These breakthroughs present a proof of
principle that indicates very promising prospects for using such
nano-materials to perform more complicated computational
tasks. But there are still many challenges that have to be
addressed, and the production of and experimentation with these
nano-material networks is very costly and time-consuming. An
example network that has been used in the experimental work
of [4] is shown as an atomic-force microscopy (AFM) image in
Figure 1. We apologise for the rather bad visibility that is in fact
quite typical for AFM images with such a high resolution (the
small dots represent nano-particles of about 20 nm in diameter).

Figure 1. AFM image of one of the fabricated nano-particle networks in [4]

In order to predict candidate computational tasks of such
networks, but avoiding the waste of scarce and expensive
resources involved in experimentally exploring these nano-
particle networks, we developed simulation tools for examining
and predicting the capabilities of these nano-material systems.
One of the considered simulation tools [6] is an extension of
existing tools for simulating nano-particle interactions, like
SPICE [7] or SIMON [8]. The latter tools are all based on
Monte-Carlo simulations, using a physical model, and they

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



have been validated for known designed systems from literature
consisting of very small numbers of particles. Although these
methods can, in principle, handle arbitrary systems of any size,
their scalability and use for networks consisting of hundreds
of nano-particles is a serious issue. Moreover, nano-particle
networks like the ones used in [4] to date cannot be produced
according to a predefined specific design.

To illustrate this, an example of one of the fabricated nano-
particle networks that was used in the experimental work of [4]
is shown as an AFM image in Figure 1. The AFM image clearly
demonstrates the disordered nature of the fabricated nano-
particle networks. Therefore, due to their disordered nature, it
is not possible to use a physical model to accurately describe
and predict the properties of such nano-material systems.

In the earlier mentioned conference paper [1], an alternative
approach has been introduced and analysed, with little detail
due to the page limit. We provide more details of the approach
and results here. This novel approach is based on training
artificial Neural Networks in order to model and investigate
the nano-particle networks. Neural Networks (NNs; [9] [10]
[11]) have proven to be powerful function approximators and
have, especially recently, been applied to a wide variety of
domains with great success [12] [13] [14]. Being essentially
treated as black-boxes themselves, NNs do not facilitate a
better understanding of the underlying quantum-mechanical
processes that take place in the nano-material. For that purpose,
physical models are more appropriate. But, in contrast to
physical models, NNs provide differentiable models and thus
offer interesting possibilities to explore the computational
capabilities of the nano-material. In the sequel, NNs will be
used, in particular, to search for configurations of input voltages
such that the nano-material computes different Boolean logic
functions, such as AND, OR, NOR, NAND, and XOR.

To enable the exploration of the computational capabilities
of the nano-material by an NN, the NN needs to be trained
first with data collected from the measurements on the nano-
material. Since a physical model and an associated validated
simulation tool for the nano-particle networks have already
been developed [6], such training data can be obtained from
the simulated nano-material. This also provides an opportunity
for predicting functionalities in small nano-particle networks
that have not been fabricated yet. This in turn can inform
electrical engineers on the minimum requirements necessary
for obtaining such functionalities, without the burden of costly
and time-consuming fabrication and experimentation. As soon
as the NN has been trained, searching for arbitrary target
functions is very fast, and can happen without any access to
the nano-material or its physical model.

The rest of the paper is organised as follows. Section II
provides some technical details on the gold nano-particle
networks that have been used in the experimental work of [4].
This section also describes the choices that have been made
and that form the basis for the physical-model based simulation
tool of [6], combining a genetic algorithm with Monte-Carlo
simulations for charge transport. Section III presents simulation
results obtained with these tools for an example network.
Section IV shows how an NN was trained for modelling
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Figure 2. Illustration of a disordered network of gold nano-particles

the example network, using data collected from the physical-
model based simulation tool. An analysis of the results is
presented in Section V. Section VI is a newly added section that
contains results of experiments that were performed after the
FUTURE COMPUTING 2016 meeting. In these experiments
a real material sample was used for collecting data to train an
NN-model and predict functionalities, that were also validated
afterwards using the real material. We finish the paper with a
short section with some conclusions as well as an outlook to
future work in Section VII.

II. NANO-PARTICLE NETWORKS AND THEIR SIMULATION

In collaboration with the NanoFElectronics group at the
MESA+ institute of the University of Twente, networks
consisting of commercially available nano-particles of size
5-20 nm consisting of gold, and junctions of alkanedithiol of
length 1-3nm have been produced. The alkanedithiols stick
to the metal and can form junctions (tunnel barriers) between
particles. Figure 2 shows an illustration of such a network. The
central circular region is about 200 nm in diameter. Recall that
an AFM image of a real network has been shown in Figure 1.
In a later stage, other organic molecules have been tried as well,
but this is not relevant for the physical model or the simulation
tool, only for the setting of the parameter values.

The networks investigated in the experimental work of [4]
are relatively large (in the order of a hundred particles) and
disordered. An artist’s impression of such a network is given
in Figure 3. More details on the production process and the
electrical characterisation of these networks can be found in
[4].

Under energetically favourable circumstances, the transport
of electrons in such nano-particle networks is governed by
the Coulomb blockade effect [15]: transport is blocked, except
at almost discrete energy levels; there exactly one electron
can jump. The dynamics of such a system is governed by
stochastic processes: electrons on particles can tunnel through
junctions with a certain probability. For such systems, there
are basically two simulation methods to one’s disposal: Monte-
Carlo Methods and the Master Equation Method [16] [17].
Since the number of particles is large, the Monte-Carlo Method
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Figure 3. Artist’s impression of a disordered nano-particle network

is the best candidate. This method simulates the tunnelling
times of electrons stochastically. To get meaningful results,
one needs to run the algorithm in the order of a million times.
Doing so, the stochastic process gives averaged values of the
charges, currents, voltages, etc. The approach for obtaining
functionality is based on these physical effects combined with
genetic algorithms for finding suitable settings of certain control
voltages on configuration leads, as explained in more detail on
the example network in the next section. This section concludes
with a short explanation of the basic principles of evolution-in-
materio and genetic algorithms.

Evolution-in-materio (EIM) is a term coined by Miller and
Downing [18] that refers to the manipulation of physical
systems using a form of computer-controlled artificial evolution
[18]-[22]. It is a type of unconstrained evolution in which,
through the application of physical signals, various intrinsic
properties of a material can be heightened or configured so
that a useful computational function is achieved.

The central idea of EIM is that the application of some
physical signals to a material (configuration variables) can
cause it to alter how it responds to an applied physical input
signal and how it generates a measurable physical output (see
Figure 4) [18].

Physical outputs from the material are converted to output
data and a numerical fitness score is assigned based on how
close the output is to a desired response. This fitness is assigned
to the member of the population that supplied the configuration
variables. Ideally, the material would be able to be reset before
the application of new configuration instructions. This is likely
to be important as without the ability to reset the material,
it may retain a memory from past configurations. This could
lead to the same configuration having different fitness values
depending on the history of interactions with the material.

Mappings need to be devised which convert problem domain
data into suitable signals to apply to the material. An input-
mapping needs to be devised to map problem domain inputs to
physical input signals. An output-mapping is required to convert
measured variables from the material into a numerical value
which can be used to solve a computational problem. Finally, a
configuration-mapping is required to convert numerical values
held on a computer into physical variables that are used to
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Figure 4. Concept of evolution-in-materio [18]

“program or configure” the material.

EIM is a bottom-up approach where the intrinsic underlying
physics of materials is exploited as a computational medium. In
contrast to a traditional design process where a computational
substrate, e.g., silicon, is precisely engineered, EIM uses a
bottom-up approach to manipulate materials with the aim of
producing computation. Yoshihito discussed a closely related
concept of “material processors” which he describes as material
systems that can process information by using the properties
of the material [23]. Zauner describes a related term which
he refers to as “informed matter” [24]. It is interesting that
inspection of much earlier research publications reveals that
ideas similar to EIM, albeit without computers, were conceived
in the late 1950s (particularly by Gordon Pask, see [25], [26]).

One of the key ingredients in EIM is the use of genetic
algorithms, a form of computer-controlled artificial evolution.
The main elements of a genetic algorithm are shown in
Algorithm 1.

In evolutionary computing, the term genotype (or chromo-
some) is used to refer to the string of numbers that defines
a solution to a search problem. The individual elements of
the genotype are commonly referred to as genes. To solve a
computational problem requires an assessment of how well a
particular genotype represents a solution to the computational
search problem. This is called a fitness function. The “survival-
of-the-fittest” principle of Darwinian evolution is implemented
by using a form of fitness-based selection that is more likely
to choose solutions for the next generation that are fitter rather
than poorer. Mutation is an operation that changes a genotype
by making random alterations to some genes, with a certain
probability. Recombination is a process of generating one or
more new genotypes by recombining genes from two or more
genotypes. Sometimes, genotypes from one generation are
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Algorithm 1 Genetic Algorithm

1: Generate an initial population of size p. Set the number of
generations g to 0
2: repeat
3:  Calculate the fitness of each member of the population
4:  Select a number of parents according to the quality of
their fitness
5:  Recombine some, if not all, of the parents to create
offspring genotypes
6:  Mutate some parents and offspring
7. Form a new population from the mutated parents and
the offspring
8:  Optional: promote a number of unaltered parents from
Step 4 to the new population
9:  Increment the number of generations g <— g + 1
10: until (g equals the number of generations required) or (the
fitness is acceptable)

promoted directly to the next generation; this is referred to as
elitism (see the optional step in Algorithm 1).

III. AN ILLUSTRATIVE EXAMPLE

As an example which is still relatively small and manageable,
but shows interesting features, the described methods have
been explored on the symmetric 4 x 4-grid consisting of the
components shown in Figure 5.

Figure 5. A symmetric 4 X 4-grid of 16 nano-particles with leads

In Figure 5, the 16 green dots represent the nano-particles; in

between are the tunnelling junctions, with fixed C' and R values.

The two input leads and the single output lead are depicted
as I; and I, and O, respectively. Voltages are applied to the
configuration leads V;-Vjy, according to a genetic algorithm,
and also to a back gate; this back gate is connected through
tunnel barriers (a silicon oxide layer) to all nano-particles (for
convenience we have not shown the back gate in the figure).

The fitness of the sets of configuration voltages is determined
by how close the output for the four input combinations of the
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Boolean truth table is to the desired logic. More details can be
found in [6].

1) Evolved Boolean Logic: Applying the developed simula-
tion tool to the small network of Figure 5, it was possible to
evolve all basic Boolean logic gates, using different computed
(simulated and optimised) settings of the values of the free
variables (the configuration leads voltages and the back gate
voltage). The solutions for four of the cases, namely AND,
NAND, OR and XOR, are illustrated as contour plots in
Figure 6. The four plots are functions of the two input signals;
the voltages of both inputs range from 0 to 10 mV, horizontally
as well as vertically; the colour scheme ranges from blue for
small values to red for high values of the output.

(a) simulated AND (b) simulated NAND

~ .
.-

(d) simulated XOR

(c) simulated OR

Figure 6. Contour plots of simulated evolved logic in the 4 X 4-grid

2) Discussion: From an electrical engineering point of view,
the simulation results are very interesting, for several reasons.
First of all, the example of Figure 5 can be configured into any
of the basic Boolean logic gates, using only 16 nano-particles
of size 5-20 nm. If one would like to design and build the same
functionality with transistors, one would require at least 10
transistors. Secondly, in the designed circuit one would have
to rewire the input and apply it at different places, whereas in
the nano-particle network each of the input signals is applied
at exactly one place. Even with current transistor sizes below
20 nm, the designed circuit would require the same or more
space, and would dissipate substantially more energy.

It is interesting to note, that in the experiments with the real
material samples [4], all basic Boolean gates were also evolved
within an area with a diameter of around 200 nm, but with only
six control voltages. However, currently these samples consist
of 100-150 particles that are self-assembled into a disordered
network.
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Figure 7. AFM image of an NP-network (a), the input voltages in mV
applied to V71 and Vino (b) and the different logic outputs in pA read
from IoyT (¢ and d) [4]

In Figure 7(a) we see the same AFM image as before of
one of the real networks that was used for the experiments in
[4], where the two input electrodes and the output electrode
are denoted by Vini1,Vine and Ipyr, respectively. Time-
dependent signals in the order of a hundred mV were applied
to the input electrodes as illustrated in Figure 7(b), and a
time-dependent current in the order of a hundred pA was
read from the output electrode. The other five electrodes and
the back gate have been used to apply different sets of static
configuration voltages. Using a genetic algorithm, suitable sets
of configuration voltages have been found to produce the output
functions of Figure 7(c,d). Red symbols are experimental data,
solid black curves are expected output signals (matched to
the amplitudes of the experimental data). We observe two
clear negators (inverters) for the input functions P and @ in
Figure 7(c), and we observe a variety of Boolean logic gates
in Figure 7(d), including the universal NAND and NOR gate.
Supplementary work in [4] reveals that all these gates show
a great stability and reproducibility. For the exclusive gates
(XOR, XNOR) spike-like features are observed at the rising and
falling edges of the (1,1) input, as might have been expected
for a finite slope in the input signals. More details can be found
in [4].

The remarkable thing here is not that we can produce logic
gates using the electrical and physical properties of charge
transport in neighbouring nano-particles. What is remarkable,
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is that we can do this with one and the same sample of
a disordered nano-particle network in a circular region of
about 200 nm in diameter, and by using only six configuration
voltages. This shows the great potential for the approach. Note
that a similar designed reconfigurable device based on today’s
transistor technology would require about the same space, and
it would also require rewiring of the input signals to multiple
inputs.

The experimental results as well as the simulations show
the great potential for the approach, both in the bottom-up and
top-down design regime. This could have a huge impact on
future computing, either as an alternative approach to digital
computing or as an alternative way to produce reconfigurable
multi-functional devices, e.g., to support further down-scaling
of digital components. Currently, we are not aware of any
production techniques for constructing samples that come
anywhere close to the 4 x 4-grid structure of Figure 5.

To obtain more insight in the underlying currents and physical
phenomena, and with the long term goal to fully understand
what is going on in terms of electron jumps and currents through
these nano-particle networks, in [6] visualisation tools have
been developed to analyse the processes that are taking place
over time. In Figure 8, some pictures visualising the currents
through the network are presented, in this case, as an example,
when the network was configured as an AND. The amplitude
of the currents is proportional to the area of the red arrows in
the figure. The currents are all averaged over time. The tool
also enables the calculation of variances, and it can show fast
animations of the electron jumps as well. It is still an open
problem to deduce an explanation for the patterns and jumps
that cause the 4 x 4-grid to behave as a logic AND (or one of
the other basic Boolean logic gates).
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Figure 8. Averaged current patterns for simulated AND in the 4 X 4-grid

Figure 8 gives an impression of how complicated the traffic
of electrons in such networks can get, and can hopefully in the
future lead to more insight as to why they behave as logic. The
plots do not explain anything as yet. We are currently trying
to find macroscopic laws from the numerics, like real (first
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order) phase transitions, but so far without success. We have
made similar pictures for the other Boolean logic functions,
but they are not relevant for this paper. Therefore, we omitted
them until we are in a better position to explain the relationship
between the flow pattern and the observed logic.

In the next two sections, the use of artificial NNs to simulate
the nano-material will be explained, as well as how to use the
data collected from the above physical-model based simulations
to explore the functionalities in the example of the 4 x 4-grid.

IV. NEURAL NETWORKS

The key idea of this paper is to show how to use an NN-
model for approximating the mapping from the input voltages
to the output current, by training the NN on many randomly
chosen examples. By using this approach, the aim is that the
NN becomes a differentiable model of the potentially complex
structures and processes that take place inside the nano-material.
While the example that we use throughout will only treat the
search for Boolean logic functions performed by the nano-
particle network, the future goal is to use the NN-models in a
more general sense to assess:

e Complexity of the nano-material: based on the training
process, one can estimate whether the material contains
learnable, interesting structures, only noise (if the training
process cannot minimise the error), or simple structures
(if the training of the NN-model turns out to be trivial).

e Predictability: if the trained NN becomes a good model
of the nano-material, then it can further be used to predict
outputs of the nano-material for any given inputs, and
for searching for target functionalities.

e Function: the NN-model can be used as a substitute for
the real nano-material. One can search for functionality in
the NN-model first instead of performing measurements
in the real nano-material. This can be particularly useful
if the nano-material has, e.g., a limited lifespan or in
case the experiments in the lab are very costly and time-
consuming.

An example of a specific NN that turned out to be suitable
for our experiments is illustrated in Figure 9.

Figure 9. Illustration of an NN with two hidden layers

The NN of Figure 9 is used in the sequel for approximating
the mapping from the input and configuration voltages to the

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

344

output current, by training them using many randomly chosen
examples, generated with the physical-model based simulation
tool. By solving that task for a specific nano-particle network,
the trained NN becomes a differentiable model for the complex
quantum-mechanic interactions within the material sample. The
voltages on the configuration leads and the input electrodes
are scaled to have zero mean and unit variance, and serve
as inputs to the NN. Referring to the 4 x 4-grid of Figure 5,
in Figure 9, I; and I, denote the two input leads, b denotes
the back gate, and ci,co,...,c5 denote the other leads, in a
symmetric fashion, so ¢; represents V; and Vy, and so on,
whereas O denotes the output lead. A simplified illustration of
the 4 x 4-grid is presented in Figure 10. The training objective
is to minimise the Mean Squared Error (MSE) on the (also
standardised) current of the output.

Figure 10. Simulated 4 X 4 nano-particle grid used for data generation

Deep feed-forward NNs have proven to be powerful function
approximators, and especially recently they have been applied
very successfully in a wide range of domains. They consist
of a sequence of layers, where each layer computes an affine
projection of its inputs followed by a pointwise non-linear
function

h =¢(Wx+b),

where 6 = {W, b} are the parameters of the layer.

By stacking these layers, one can build non-linear functions
of varying expressiveness that are differentiable. In theory, these
networks can approximate any function to arbitrary precision
given enough layers and hidden units, and they also work very
well in practice. This motivates the choice to use such deep
feed-forward NNs to model the input-output characteristics of
the nano-particle networks that were described earlier.

Figure 11 illustrates the different phases in the use of NN-
simulations to search for functionality in the nano-material,
starting with the training of the NN-model from data obtained
from the real material or its physical model, then querying the
trained NN-model for configurations that should provide a target
functionality, and finally checking whether this functionality is
indeed observed in the real nano-material or physical model.

For the purpose of training, the NNs are presented with pairs
of input and output combinations taken from the real material
or the physical model. The inputs are passed in, propagated
through the NN, and the resulting output of the NN-model
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Figure 11. Closing the loop between the real nano-material or its physical
model and the NN-simulation

is compared to the output of the real material or physical
model. The difference between the output of the NN-model
and the desired output (error) is propagated back through the
NN-model in order to calculate the error gradient with respect
to the particular network parameters 6. The full training is done
by Stochastic Gradient Descend (SGD), meaning that the above
is repeated over and over again while adjusting the parameters
of the NN-model a little bit at each step. For efficiency reasons
the gradients are calculated for batches of input and output
combinations, hence a stochastic approximation of the full
gradient is obtained.

Being essentially black boxes themselves, NNs do not directly
facilitate a better understanding of the underlying quantum-
mechanical processes, but they offer interesting possibilities to
explore the computational capabilities of the nano-material.
The trained NN is a differentiable approximate model of
the nano-material: it maps inputs to outputs in roughly the
same way as the real nano-material. This property can be
used to run the model “backwards”: find inputs that produce
certain desired outputs by using a backpropagation algorithm
to perform gradient descent, this time not on the weights but
on the inputs. Here, it was required to go even further and
use backpropagation to search for functions; in particular, the
aim is to find settings of the configuration leads such that
various combinations of the input leads (logic pairs) produce
corresponding desired (logic) outputs. For this purpose, the
NN must first be sufficiently well trained, which depends on
data collected from the nano-material or the physical model.
Afterwards, searching for arbitrary functions is very fast and
can happen independently of the nano-material or the physical
model.

A. Clustering and Visualisation

Some structure in the data can be difficult to recover by
modelling it with an NN. To deal with these cases, we also
employ two standard techniques from datamining: visualisation
and clustering. Visualisation harnesses the powerful human
pattern recognition abilities to discover structure that would
otherwise remain hidden. Clustering, on the other hand, is
an unsupervised learning method that tries to automatically
partition the data into subsets (clusters) that are similar within,
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but dissimilar in-between clusters. The most commonly used
clustering method is the K-Means method, which minimises
the following function:

K
f(X,S,@) :Z Z HX_/LkHQv

k=1x€Sk

where X = {x1,...,xy} is the data, S is the partitioning of
the data, and 0 = {yu1,...,ux} are the cluster centres. This
minimisation is done by initially setting the cluster centres
randomly and then alternating between the two steps: 1)
reassigning the points to the cluster with the closest centre
and 2) moving all p; to the centre of their cluster 4.

B. Closing the Loop

The configurations of the nano-material or its physical
model that were searched for in the NN-model should then be
confronted back with the source of the original data — the real
material or the physical model. The purpose of such experiments
is to close the loop, as illustrated in Figure 11, between the
real materials, their simulations and the data mining models.
This serves as a verification of whether the NN-models are
sufficiently suitable models for representing the properties of
the real material.

V. RESULTS OF SIMULATIONS ON 4 x 4 GRID

In this section, the results of the NN-modelling of the 4 x 4
grids of Figure 10 are presented. The main subsections describe
the way the data was collected and processed (Subsection V-A),
and the way the NN-model was obtained and analysed (Subsec-
tion V-B). It should be emphasised again that this means we
developed an alternative NN-model based on the data obtained
from a physical model of a nano-particle network, not on data
obtained from a real nano-particle network. In Section VI,
we present similar results based on data obtained from a real
nano-tube network.

A. Data Description

The experiments that are described here are on a simulated
4 x 4 grid (see Figure 10). The goal is to see 1) how well
we can model the nano-material with a neural network and
2) to see whether we can use a trained NN to find logic
functions. The simulated material consists of 16 gold nano-
particles arranged in a 4 x 4 grid. It has a total of 13 electrodes
(12 leads on the periphery and one backgate) attached to it.
Two of these leads were used as inputs ([, I2), one as output
(O) and the other 10 as configuration leads. The goal of the
measurements was to explore the functions that the nano-grid
with 2 inputs can compute while varying the voltages at the
configuration leads. Only symmetric functions (with f(a,b) =
f(b,a)) were considered. So, in order to keep things simple,
the 10 configuration leads were restricted to be symmetric, thus
leading to 6 degrees of freedom for configuring the function.
The nano-material was formally treated as a function fy(I7, I2)
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parameterised by 0 = {c1, 2, 3, ¢4, ¢35, b}. To model the whole
space of functions it can embody, a deep feed-forward NN was
trained in order to predict the output current from the two inputs
and 6 configuration voltages. Roughly one million samples were
collected from simulations, where each sample corresponds to
a run with these 8 voltages set at random, and one resulting

output current that has been reached after a settling period.

Figure 12 shows the distribution of the target samples in the
collected data.
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Figure 12. Initial distribution (a) and zooming in (b) of the training targets as
contained in the data generated from the simulation

Figure 12(a) shows the initial distribution of the training

targets as contained in the data generated from the simulation.

It is clear that the data to be modelled forms a narrow peak
around zero. The tails contain only widely distributed values
close to zero. Zooming in the data as illustrated in Figure 12(b)

provides a better insight into the interesting simulation outputs.

From the data samples collected, 90% of these samples were
used for training the NN-model and the rest for validation. For
completeness, the visualisation of the parameter sweep across
the two inputs is depicted in Figure 13.

The scatter plot of Figure 13 shows the outputs as a function
of the varying input voltages, while the remaining leads are
supplied with random voltages.

B. Analysis

The voltages on the configuration leads and the inputs
are scaled to have zero mean and unit variance and serve
as inputs to the NN-network, as depicted in Figure 9. The
training objective is to minimise the mean squared error (MSE)
on the standardised output voltage. The optimisation is done
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Figure 13. Scatter plot of the outputs

using minibatch stochastic gradient descent with Nesterov-style
momentum. Training is stopped once the MSE on the validation
set did not decrease for 5 epochs, or after a maximum of 100
epochs.

The hyperparameters of the networks were optimised by ran-
dom search over 40 runs [27]-[29]. The following parameters
were sampled at random:

e learning rate 7 log-uniform from [10~%,107!]
e number of hidden layers from {1,2,5,10}
e number of units in each layer from {8, 16, 32, 64,128}

e activation function from {ReLU, tanh, sigmoid}.

The best performing network had 2 hidden layers with 128
rectified linear units each and was trained with a learning rate
of 7~ 1.6 - 1072, This is the network we use for the rest of
the analysis.

1) Using the Model: The trained neural network model was
used to find the logic functions by backpropagation of the
error all the way to the inputs, i.e., following the error gradient
for the inputs performs the gradient descent towards the input
configurations that represent the example logic functions.

The dataset contains samples (input vectors) that have
different values for the input leads, but share the same (random)
values for the configuration leads along with the desired output
values (perceptual aliasing). Gradient descent is then used to
minimise the mean square error by adjusting the values for
the configuration leads, but their values are kept the same for
all examples. Formally, given the NN-model f of the nano-
material, we define an error over our /N input/output pairs
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i=1
The gradient is then calculated using backpropagation:

oE of

(4)
00 o" )80

= (f(.1".6) -

2) Global Optimisation: One problem with the method
described above, is that it only performs a local search, which
means that the solution it converges to might correspond to a
bad local minimum (unlike when using evolutionary methods
to configure the materials or the material models). In order to
mitigate this problem, it was decided to first sample 10,000
random starting points (settings of the configuration leads), and

perform just 10 iterations of the described local search on them.

Only the starting point that leads to the lowest error is then
optimised further for another 5,000 epochs, in order to obtain
the final solution. In this way, we reduce the risk of getting
stuck in a poor local minimum. Each search comprises 420K
evaluations of the neural network, for a total of about a minute
on a modern CPU.

3) Removing Outliers: After training several NNs on the
simulation data, we discovered that more than half of the total
prediction error stems from less than 0.1% of the data. These
samples which account for most of the error also turn out to
be outliers in terms of their output values, as can be seen in
Figure 14.
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Figure 14. (a) Training and (b) validation errors of the worst 10% of the data

Figure 14 shows in (a) the training and in (b) the validation
errors of the worst 10% of the data. We can see that as the
mean square error (between the targets and outputs) goes
up, it becomes hard to predict the data. After re-running the
simulation, the targets become different due to the stochastic
behaviour of the simulation, which is confirmed by non-
predictability of such data using the NN-model.
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Figure 15 provides more insight into the distribution of the
most and least predictable data fragments.
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Figure 15. Most and least predictable data

The plots of Figure 15 show in (a) the first 10k and in (b) the
last 10k data sorted according to the MSE. The simulation was
executed multiple times. Vertical lines at each position depicts
the distribution of the outputs for the given input configuration
(the mean and the standard deviation). We can see that as the
distributions get wider, the NN-model tends to have a harder
time to predict the simulation outputs. The gradient for training
the NN-network is thus dominated by the few unpredictable
samples, leading the model to ignore the bulk of the data. For
these reasons, it was decided to remove those outliers entirely
from the dataset. After that the NN-network performed much
better in modelling the material, as can be seen from Figure 16.
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Figure 16. Experimental results after cleaning the data

Figure 16 shows the experimental results after cleaning the
data. The 0.05% of the data (which covers the unpredictable
subset) was removed in (a) from the training sets, and in
(b) from the validation sets. We can see that re-running the
simulations provides similar targets, hence the NN has no longer
problems with predicting the simulation output. All results from
here on have been obtained from the “cleaned” data.
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C. Logic Gates Search by Gradient Descent

The overall aim was to find configurations for the simulated
4 x 4 nano-grid that turns it into a multi-functional reconfig-
urable device for computing some well-known Boolean logic
functions, just like the physical-model based simulation did:
AND, OR, XOR, NAND, NOR, XNOR. For this goal, we first
had to decide which values of (zg,z1) to map (False, True)
to. The obvious choice is (0,1), but values of (0.2,0.8), for
example, would also still be acceptable. To circumvent the
problem of choosing these values, the same gradient descent
method was used to adjust the values for True and False for
the inputs as well.

In particular, the following was done for each function:

1) generate eight random numbers, while assuring that
xr1 > o

2) using these values, create a set of four input/output pairs
(see Table I)

3) perform gradient descent on these 8 values, while
maintaining 1 > g

The scheme by which the four input/output pairs are created
from the eight random values zg, 21, ...,2x7 for any of the
logic functions, is explained in Table I, in this case for the
logic OR. Note that this depends on zg < ;.

TABLE I. THE SCHEME FOR CREATING THE FOUR INPUT/OUTPUT
PAIRS (FOR THE LOGIC OR)

I I ‘ c1 c2 c3 cq cs b ‘ out

o o xro T3 T s Te o OR(F, F)
o Xy o T3 T4 Ts5 T X7 OR(F, T)
1 o T2 x3 x4 Ts Te 7 OR(T, F)
1 x1 T2 xs3 x4 x5 T6 x7 OR(T, T)

First, a global search for a good start point was performed
and then the resulting vector was optimised further. The results
can be seen in Figure 17. There, the resulting configurations
for five logic functions are illustrated (one logic function per
row). The leftmost column shows the desired output for the
logic function, while the second column presents the actual
response of the trained NN-model. In the rightmost column,
the corresponding configurations are visualised. Using these
back in the simulations based on the physical model, we obtain
the outputs as presented in the third column.

D. Results

From the plots in Figure 17, it can be seen that most of the
target Boolean functions can be performed by the nano-material
(according to the NN-model). Note that, what is most important
is the response of the model in the corners, since we do not
really care about values in between True and False. The smooth
plots are just there to show how the model is behaving, and to
give an impression on how robust the solutions are. For AND,
OR, NAND, NOR and XOR, the values in the corners match
the desired outputs quite well. In contrast, the search for the
XNOR function failed to produce equally satisfactory results,
indicating that this function might be difficult to perform for
the nano-material under the given setup.
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(d) NOR

(e) XOR

Figure 17. Gates found using the NN-model, with configuration voltages
(rightmost column), NN-model output (second column), desired logic
(leftmost column), and the regenerated outputs of the physical material model
(third column)

E. Verification in the Physical Model

The configurations found to represent the gates in the NN-
model were then used to simulate the physical material model
in order to see how well the model represents the original
material model. The third column in Figure 17 shows the
responses of the physical material model. Comparing these
visualisations to the second column in Figure 17, one can
see that the configurations found using the NN-model were
successfully used to configure the original physical Monte Carlo-
based model, and they produce similar outputs. We can observe
noise, superimposed on the physical simulation outputs caused
by the stochasticity of the simulation, whereas the NN-outputs
are smooth because the NN is a deterministic model. The main

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



result is that, even including the noise, the measurements of
the physical model constitute the same logic functions as those
found in the NN-model. To conclude, the NN-model can be
trained to simulate the physical model, and the configurations
found using the NN-model can be used to produce the same
desired behaviour of the physical material model.

VI. RESULTS OF SIMULATIONS ON SWCNT-SAMPLE

Very recently, we conducted similar experiments with real
material samples composed of thin films of composites of single-
walled carbon nano-tubes (SWCNTs). Instead of depositing
nano-particles on an electrode array, the material deposited
was a mixture of SWCNTs randomly mixed in an insulating
material. The insulating material was either PMMA/PBMA
(Polymethy/butyl methacralate) [30]. SWCNTs are mixed with
PMMA or PBMA and dissolved in anisole (methoxybenzene).
About 20 pL of material is then drop-dispensed onto the
electrode array. This is dried at 100°C for 30 min to leave
a film over the electrodes. SWCNTSs are conducting or semi-
conducting and the role of the PMMA/PBMA is to introduce
insulating regions within the nano-tube network, to create non-
linear current versus voltage characteristics.

Once these nano-tube networks have been fabricated, the
approach and methodology are exactly the same as already
described in earlier sections, except that we did not use a
physical model for gathering training date: First, input-output
data combinations were collected by more or less random
measurements on the real material. Then, these combinations
were used to train an NN-model. Finally, the NN-model was
used to predict suitable settings of the configuration variables
for the material to act as a Boolean logic gate, and these
settings were validated by trying them on the real material. We
complete this paper by giving a short description of one of the
experiments and its results for one particular material sample.

Outputs
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frequency (log-scale)
e =
) 2

=
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Figure 18. Distribution of the training targets obtained from the
SWCNT-sample

In this experiment, roughly 55 k combinations of input-output
date were collected from the SWCNT-sample. Two out of a
total of eight electrodes were used as the two inputs for the
logic function, one was used to read out an output, and the
remaining six were used to configure the material. The output
was sampled at 100 kHz, and averaged and rescaled between
0 and 1. The distribution of the output values is depicted in
Figure 18.
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Figure 19. Scatter plot of a sweep across the two selected input electrodes

The scatter plot in Figure 19 shows a sweep across the two
input electrodes while configuring the other six configuration
electrodes with random voltages. One can clearly observe the
variability of outputs provided by the SWCNT-sample.

A new NN-model with more hidden layers was used for
the simulations. It consisted of a feed-forward network with 5
hidden layers, each layer having 120 units; the applied output
function was ELU [31]. This NN-model was trained with the
ADAM [32] optimiser for 50 epochs. Figure 20 shows how
well the NN-model was able to match the training data.
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Figure 20. NN-model outputs compared to the outputs of the SWCNT-sample
on the validation set

As in the nano-particle network example, suitable config-
uration voltages for different logic gates were searched in
the trained NN-model, using gradient descent. The found
configurations were then verified on the same SWCNT-sample
that was used for the training data collection, hence closing
the modelling loop. The results are visually summarised in
Figure 21.

As in our earlier nano-particle network example, the resulting
configurations for five logic functions are illustrated (one logic
function per row). The leftmost column shows the desired
output for the logic function, while the second column presents
the actual response of the trained NN-model. In the rightmost
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Figure 21. Gates found using the NN-model, with configuration voltages
(rightmost column), NN-model output (second column), desired logic (leftmost
column), and the regenerated outputs of the SWCNT-sample (third column)
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column, the corresponding configurations are visualised. Using
these back on the SWCNT-sample, we obtained the outputs as
presented in the third column. Except for the XOR function, we
see quite a good match between the predicted configurations
from the NN-model and the actual performance of the SWCNT-
sample provided with these configurations.

VII. CONCLUSION

This paper has demonstrated how an artificial Neural Network
model can be applied to look for configuration voltage settings
that enable different standard Boolean logic functions in the
same piece of material consisting of a disordered nano-particle
or nano-tube network. The training of the Neural Network
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was based on generated random data from a physical-model
based simulation tool in case of the nano-particle networks,
and on real data in case of the nano-tube networks. The
results are promising and can inform the electrical engineers
about possible functional capabilities of these material systems,
without the need of fabricating and doing costly and time-
consuming trial-and-error experiments on real nano-material
networks. Of course, it is obvious that such experiments are
unavoidable if it comes to actually testing real networks for the
predicted functionalities. In fact, the capability of reconfigurable
Boolean logic in small samples of nano-material networks has
meanwhile been confirmed experimentally. It is likely, that
this proof of concept will be the starting point for exciting
new research, and open up the opportunity for a totally new
approach to developing multi-functional stand-alone devices.

Next steps in this direction first of all involve the simulation
of more real material samples, especially for larger nano-
material networks and for more complex functions. For this,
also new experiments are needed, in order to produce and
collect sufficiently many input-output combinations to enable
proper training of the Neural Network. This also requires new
fabrication techniques, involving larger nano-material networks
on micro-electrode arrays with more contact electrodes interfac-
ing with the material, and with a more sophisticated back gate.
The requirements can be predicted by simulations, in particular
if one wants to turn to more complicated functionalities, like
computational tasks that are difficult to perform with digital
computers. Secondly, it would be worthwhile to apply the
same modelling and simulation approach to other materials
that show interesting physical properties and behaviour, like
networks of quantum dots, sheets of graphene, and mixtures of
such materials. Note that the same approach was very recently
applied to samples of biological material consisting of slime
moulds for discovering Boolean gates [33]. Thirdly, a natural
next step would be to integrate the Neural Network modelling
approach with the evolutionary search technique. These are
amongst the future research plans we want to pursue.
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