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Abstract— Patterns have been successfully employed for 
capturing knowledge about proven solutions to reoccurring 
problems in several domains. Despite that, there is still little 
literature regarding pattern generation or common pattern 
quality standards across the various domains available. This 
paper is an extended version of a short paper presented at 
PATTERNS 14 [1], in which we introduced an attempt for a 
universal (i.e., domain independent) pattern framework. Via 
basic set theory, it is possible to describe pattern sets that are 
composed of several subsets regarding pattern types, 
quantities, sequence, and other relevant factors. This further 
enables us to describe patterns as sets of interrelated elements 
instead of isolated entities, thus corresponding with the 
scientific reality of complex problems with multiple relevant 
factors. The framework can be used to describe existing 
pattern languages and serve as a basis for new ones, regardless 
of the domain they are or were created for. 
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I.  INTRODUCTION 
Patterns have been used as a tool for capturing 

knowledge about proven solutions to reoccurring problems 
in a multitude of domains and disciplines. Most prominent 
among these are architecture, design, and software 
engineering [1][2][3][4][5]. Patterns allow documenting 
knowledge about methods and practices in a structured and 
systematic manner and can, therefore, serve as a valuable 
knowledge transfer tool within or even across disciplines. 
Another related benefit of patterns is that they can serve to 
“make implicit knowledge explicit” [6], i.e., they can be used 
to explicitly capture what is normally only acquired via 
experience after having worked in a certain field or domain 
for an extended period of time. They can thus go beyond and 
supplement the “raw” information contained in guidelines 
with a more solution- and practice-oriented dimension. The 
information contained in such patterns can then be provided 
to others (researchers or other interested parties) in a 
relatively quick and efficient manner, as it contains 
information about solutions that are already proven to work. 

Having access to a structured collection of information 
from implicit and explicit knowledge about research 
practices is useful for any domain in which research is 

conducted. So it would make sense to extend the pattern 
approach or even establish patterns as a general field of basic 
research, with extensions into particular domains and 
disciplines. This wider potential of patterns has been 
recognized and has been summarized by Borchers [7] in the 
following way: “There is no reason why experience, methods 
or values of any application domain cannot be described in 
pattern form as long as activity includes some form of 
design, creative or problem-solving work.” Despite this, 
there is little general (i.e., domain independent) literature 
available on patterns and pattern finding or creation. This is 
not a new idea [8] and there have been efforts to go deeper 
into the commonalities of various pattern approaches and 
patterns in general by, e.g., the work of Meszaros and Doble 
[9] and Winn and Calder [10]. 

Two of the main benefits of patterns are that they 
facilitate re-application of proven solutions and that they 
serve to make implicit knowledge explicit. These benefits are 
of particular importance to those, who do not already have 
this knowledge themselves, i.e., it is a way to draw from a 
vast pool of knowledge that would otherwise be gained via 
experience, over a long period of time. If working with 
patterns has extensive domain experience as a prerequisite, 
then those that would need that knowledge the most would 
arguably benefit the least from it.  

We argue for a general strand of research on patterns as a 
means to capture knowledge about research practices. With 
such a theoretical basis available, practitioners from any 
domain could have a pool of knowledge to draw from, which 
would help them create patterns suitable for their needs. This 
should not mean that a variety in pattern languages and 
approaches is not desirable. It makes sense to assume that 
different domain requirements need different pattern 
approaches. However, the basics of patterns should ideally 
be similar for everyone and easily accessible, like, e.g., with 
general mathematics. A statistician needs and employs 
different mathematical means than a fruit vendor. But both 
draw from the same pool of general mathematics as their 
basis. In our research, we try to look at patterns in a similar 
way. We want to promote their use as a universal tool to 
structure knowledge in all kinds of areas and disciplines. 

In this paper, we will take a look at pattern approaches in 
general and the commonalities between them. We will then 
integrate these into a formal pattern framework, with the aim 
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of providing a formally sound and flexible basis, which 
allows practitioners and researchers to create their own 
patterns and pattern collections within their respective 
domains. To this end, we pursue four main goals in 
developing our framework: 

• the framework should be a suitable basis for and, 
therefore, be compatible with most (if not all) 
existing pattern approaches and languages 

• it should contain basic functionalities that allow 
meaningful structuring and referencing of patterns 

• the framework must dictate the pattern content only 
in the most rudimentary way, so that it is not 
restricted to only one or very few disciplines 

• the framework must be formally sound but also 
easy to work with, so that it can be applied by large 
number of individuals 

The final goal of this research is to arrive at a structured 
but still easy to understand framework that captures the 
essence of patterns and makes them understandable as well 
as usable for practitioners and researchers in any domain. We 
do this via a basic set theoretic [11] analysis that allows 
describing patterns and pattern languages in a general 
manner. Such a general analysis of patterns allows us to treat 
them as separate phenomena, independent of the domains 
they are created and used in. Set theory is one of the most 
basic, but at the same time very powerful, mathematical tools 
available. By using set theory, we can ensure consistency of 
our framework, while still keeping things basic and relatively 
easy to understand. An additional benefit of our approach is 
that it permits the creation of pattern sets across different 
pattern languages that address a similar purpose. This can 
facilitate the consolidation of already existing knowledge 
within the various domains. 

This set theoretic framework serves as a domain 
independent basis for reflections on how patterns can or 
should be created and structured. It can be extended to fit the 
needs of a particular discipline or area, if that would become 
necessary, but is, at its core, a purely formal tool that is not 
restricted to any domains or disciplines. In this paper, we 
begin with an overview of existing general literature on 
patterns in Section II, followed by some explanations 
regarding the basics of set theory and why we deem it a 
suitable tool for the purpose of this paper. In Sections V and 
VI, we provide an outline of the proposed set theoretic 
pattern framework. In Section VII, we supplement the 
framework with general recommendations on how to find 
patterns for multidisciplinary applications of the framework. 
In Section VIII, we present an example application of the 
framework to structure an existing pattern collection. In 
Section IX, we discuss limitations and future work potentials 
of the framework, with a brief conclusion at the end in 
Section X. 

II. RELATED WORK 
Patterns have been employed in a multitude of 

application domains [1][4][12] and a good number of 
extensive pattern collections [7][13][14] have been created in 
the past. Literature on the pattern generation process itself, 

sometimes also referred as pattern mining [13], is still scarce 
[15]. Existing literature on pattern generation is mostly 
focused on specific domains [7][4][8][12]. The work of 
Gamma et al. [13] can be considered important elementary 
literature, but it is still centered on software design. Although 
covering a wide spectrum of software design problems, it is 
arguably of limited applicability outside of the software 
engineering domain. The same can be said for other 
specialized pattern generation guidance [8], which would 
require adaptation to be employed in other domains (e.g., 
biology or linguistics). Falkenthal et al. [16] introduced a 
promising approach for validating solution implementations 
of patterns in various domains, though provided only one 
nontraditional use case (Costumes in Films) for their 
approach. 

The advantages of patterns would be both desirable and 
feasible [7] for these other domains. Vlissides [17] provides 
a good summary of what patters can and cannot do. The 
perceived advantages of patterns might be summed up as 
follows:  

• they capture expertise and make it accessible to 
non-experts 

• their names collectively form a vocabulary that 
helps developers communicate better.  

• they help people understand a system more quickly 
when it is documented with the patterns it uses.  

• they facilitate restructuring a system whether or not 
it was designed with patterns in mind. 

Another interesting aspect of patterns is that one single 
pattern is usually not enough to deal with a certain issue. 
Alexander [2] himself already expressed this by stating the 
possibility of making buildings by “stringing together 
patterns.“ However, the pattern itself does not always include 
the information of which other pattern might be relevant in a 
particular case. This information is only available once the 
pattern is part of an actual pattern language of several related 
patterns. Borchers [7] introduced the notion of high level 
patterns, which reference lower level patterns to describe 
solutions to large scale design issues. This hierarchy is 
expressed via references in the patterns themselves. 
Borchers’ view of high and low level patterns is a good way 
of understanding and describing patterns as interconnected 
entities. A suitable framework for patterns and pattern 
languages should ideally be able to capture the – sometimes 
complex – relations between patterns and allow mapping of 
individual patterns to higher level or overarching problems 
or goals. 

One concept that is similar to the ideas pursued in this 
paper is that of ontologies. While term ‘ontology’ itself can 
have several meanings, the following short definition by 
Blomqvist and Sandkuhl [18] provides a good summary of 
how the term is usually understood in ontology engineering: 
“An ontology is a hierarchically structured set of concepts 
describing a specific domain of knowledge that can be used 
to create a knowledge base. An ontology contains concepts, a 
subsumption hierarchy, arbitrary relations between concepts, 
and axioms. It may also contain other constraints and 
functions.” Given this description, one might assume that 
ontologies would be an ideal tool to capture and transfer 
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domain knowledge universally. However, there are two 
limitations that make ontology engineering approaches run 
counter to the goals pursued in this paper. While ontologies 
can promote the application of good practices [20][21][22], 
reusability of ontologies is still considered a serious, and as 
of yet unsolved, challenge in ontology engineering 
[20][23][24]. Second, actually building an ontology is a very 
difficult tasks with many potential pitfalls, even for experts 
[20][21]. 

Both of these are serious limitations when considering 
suitability for users from a wide range of disciplines and/or 
skill levels as well as reusability of existing solutions. 
Patterns, thanks to their focus on reusability and the 
problems themselves instead of the abstract structure of a 
domain or field, seem more well-suited for the problems at 
hand. 

Efforts to provide a general basis for patterns include the 
work of Meszaros and Doble [9], who developed a pattern 
language for pattern writing,	
   which serves to capture 
techniques and approaches that have been observed to be 
particularly effective at addressing certain reoccurring 
problems. Their patterns for patterns were divided into the 
following five sections: Context-Setting Patterns, Pattern 
Structuring Patterns, Pattern Naming and Referencing 
Patterns, Patterns for making Patterns Understandable, 
Pattern Language Structuring Patterns. Another interesting 
approach being quite similar in its aims to the one presented 
in this paper is the Pattern Language for Pattern Language 
Structure by Winn and Calder [10]. They identified a 
common trait among pattern languages (i.e., they are 
symmetry breaking) and built a rough, nonformal general 
framework for pattern languages in multiple domains. These 
ideas are similar in concept to what we pursue in our 
research. The difference is that we want to provide a purely 
formal framework without or minimal statements regarding 
its content (such as types or traits). We want to focus on the 
basics behind patterns and structure these so that they can be 
applied as widely as possible, although we draw from their 
work (and that of others) to supplement the framework with 
general recommendations for pattern finding later in Section 
VII. 

III. SET THEORY – A BRIEF INTORODUCTION 
Patterns, despite the term having a rather well established 

meaning, come in many shapes and forms and can be of 
varying complexity and verbosity. At the most basic level, 
they still have one thing in common – They consist of a 
number of statements, which are divided into several 
different categories of statements (e.g., pattern name, 
scenario, problem statement). A pattern is naturally much 
more than that, but this rather simple and elementary 
commonality is sufficient to begin building a framework 
from. A framework is a structure, an empty container that 
facilitates working with its contents (whatever these might 
be) in a consistent and organized way. In our case, this 
container should facilitate organizing and referencing 
patterns. Set theory is a mathematical method that allows 
organization of objects or data into so-called sets. Thus, if we 

understand patterns as collections statements in different 
categories, the connection to set theory becomes evident 
when we replace the word ‘categories’ with ‘sets’. In the 
following paragraphs, we will outline the basics of set theory 
and highlight some of its advantageous attributes that we will 
use to build the pattern framework. 

A set is an abstract, mathematical entity that contains 
other entities. These contents can either be sets themselves or 
singular, irreducible entities – so-called elements. Sets that 
are themselves contained in another set are called subsets of 
the set(s) they are part of (their supersets). Let us illustrate 
these considerations via the following example set S: 

 
 S = {a, {b, c}} (1) 
 

Sets are commonly denoted via curly brackets (‘{‘ and ‘}’) . 
In (1), we see two such sets: The set {b, c} and the set {a, {b, 
c}. The former is contained in and thus a subset of the latter. 
Therefore, we can say that {b, c} is a subset of S and that S is 
a superset of {b, c}. This can more briefly be expressed via 
the symbols ‘⊆’ and ‘⊇’ in the following way: {b, c}⊆S; S
⊇{b, c}. A subset is a proper subset if it is contained in 
another set, but there is at least one element that is part of the 
superset, but not the subset. In our example, a would be such 
an element, which is why we can furthermore state that {b, 
c} is a proper subset of S. We write this as: {b, c}⊂S. The 
fact that a is an element of S can be expressed via the symbol 
‘∈’ in a similar fashion as: a∈S. A set of non-empty 
subsets is called a partition, if each element of the superset 
lies in exactly one element of the set of subsets. The set 
{{a}, {b, c}, {d}} is a valid partition of the set {a, b, c, d}. 

Sets are defined by their contents and one set is identical 
to another if every element of the former is also an element 
of the latter. The order of these elements does not matter. 
Consider the following examples: 

 
 {b, c} = {c, b} (2) 
 {a ,{b, c}} ≠ {b, c} (3) 
 

The sets {b, c} and {c, b} both contain the same elements, so 
they are identical. The variable a is contained in {a, {b, c}} 
but not in {b, c}, so these two sets are not identical. Via 
rather simple operations we can distinguish sets from each 
other via their contents and make statements regarding these 
same contents. These operations can be used to distinguish 
patterns from each other and structure their contents via 
subsets. 

Two other very useful aspects of set theory, which we 
will employ later on, are ordered sets and the empty set. As 
mentioned before, the order of the elements in a set is usually 
irrelevant. Ordered sets can be used to arrange contents in a 
certain order. To distinguish them from regular sets, they are 
denoted by angle brackets (‘<’ and ‘>’). On a technical level, 
ordered sets are regular sets, where the order is determined 
by the number of subsets a certain element is part of. So the 
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ordered set <a, b, c> would really be the regular set {{a}, {a, 
b}, {a, b, c}}. a is contained in three subsets, b in two, and c 
only in one, which results in the order of a, b, c. Let us 
illustrate this further via the following examples: 

 
 <a, b> ≠ <b, a> (4) 
 {{a}, {a, b}} ≠ {{b}, {b, a}} (5) 
 {{c, a}, {b, a, c}, {c}} = <c, a, b> (6) 

 
The formula in (4) demonstrates that order is essential in 

ordered sets and (5) shows why that is the case, since the 
regular sets in (5) are simply the equivalents to the ordered 
sets in (4). (6) is meant to emphasize, that the order of the 
elements in the regular sets does not matter, only their 
frequency of occurrence does. The utility of being able to put 
things into sequence is very useful and we can use this to 
capture problems and the sequence they occur in. It can also 
be used to map the hierarchy of patterns as sequences from 
higher to lower level patterns. 

A set is an abstract entity. It is defined by its contents but 
not identical to its contents. It is more than the sum of its 
elements. Therefore, the following is true: 

 
 a ≠ {a} (7) 
 

While a is an element of the set that contains only a, it is not 
identical to that set. The set itself is a separate entity. An 
interesting consequence of this is that we can talk about sets, 
regardless of whether they actually contain anything. There 
is exactly one set, which does not contain any elements, and 
it is called the empty set (usually denoted by ‘∅’ or ‘{}’). The 
empty set is a very versatile tool and can be used to, e.g., 
handle blank fields in a pattern (e.g., an incomplete pattern 
without keywords) 

At this point, we should mention again that the pattern 
framework is intended for a wide range of individuals from 
all kinds of backgrounds. Depending on the reader’s 
background, this section might have seemed either a bit 
complicated, or rather elementary for what can be considered 
a substantial section of this paper. The most important things 
to keep in mind for now are: 

• regular sets to cluster and organize information 
• ordered sets to put information into sequence 
• the empty set to handle empty categories 

And with that, we have covered elementary set theory to a 
sufficient degree, so that we can now shift our focus onto the 
patterns themselves. 

IV. PATTERNS IN GENERAL  

A. Patterns and Pattern Sets 
Now that we have provided an overview of elementary 

set theory and the components that we intend to employ, we 
want to go more into detail regarding patterns, pattern 
languages, as well as some of the concepts behind them. 
Beginning with the basic term “pattern”, Alexander [2] 

characterized patterns in that “each pattern describes a 
problem that occurs over and over again in our environment, 
and then describes the core of the solution to that problem, in 
such a way that you can use this solution a million times 
over, without ever doing it the same way twice.” In order to 
fulfill this requirement, patterns are usually held to some 
minimum standards of what they and their structure should 
contain. Probably the most common one is the structure 
suggested by Borchers [7] and van Velie [5], who suggest six 
main pattern elements: name, forces, problem, context, 
solution, and examples. Existing pattern structures come in a 
variety of levels of complexity – from detailed ones with a 
large number of subcategories [4] to comparably simplistic 
ones [12] with a small number of subcategories. So on a 
basic level, patterns can be understood as a structured 
assortment of statements. The statements contained in each 
instance of such a structure form a whole that provides a 
solution to a specific problem, describing both in detail to 
facilitate reapplication of the solution. It is this structure that 
we build into a framework via set theory. 

A pattern language is a complete hierarchy of patterns, 
ordered by their scope [12]. Patterns can be divided into 
high- and low-level patterns [7], depending on the scale of 
the problem and its solution. High level patterns are more 
abstract and deal with larger scale problems. Low level 
patterns are more concrete and focus on smaller problems or 
parts of problems. In that sense, low level problems can be 
part of high level problems, which means that low level 
patterns can address or further specify problems from high 
level patterns. The distinction between high and low level 
patterns is not a strict one and depends on the respective 
individual’s or group’s perception of the degree of 
abstraction of a certain problem. In software engineering, the 
lowest level patterns are also referred to as idioms. Idioms 
contain very concrete solutions – mostly actual code snippets 
– that address very small scale coding problems. 

In addition to “regular” patterns, there are also other 
types of patterns. The most notable of these are anti-patterns, 
which differ from regular patterns in that they do not 
describe a proven working solution to a problem, but rather a 
solution that is proven not to work or not work well. They 
follow the same structures as regular patterns, but instead of 
best practices they describe bad practices that should not be 
replicated. Since they describe solutions to reoccurring 
problems just as regular patterns do (with the delineating 
factor that the described solution should be avoided instead 
of replicated), a framework suitable for regular patterns 
should also be suitable for anti-patterns. In the framework, it 
will be possible to represent all these different pattern types. 

V. THE BASIC FRAMEWORK 
We now translate these concepts into a basic set theoretic 

structure. We do so by employing mostly regular sets, 
ordered sets, and subsets. Note that the following analysis 
would work for any number of statements that is or can be 
structured in a similar way, which includes most, if not all, 
pattern structure (such as, e.g., the design patterns template 
laid out by Gamma et al. [4]). We chose to base our analysis 
on a concrete example, a Contextual User Experience (CUX) 
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pattern structure by Krischkowsky et al. [8] (see Table 1), in 
order to give a more current and less software engineering 
centered example. As noted previously, the following set 
theoretic analysis would apply to any other similarly 
structured assortment of statements (in this case most – if not 
all – imaginable pattern structures). 

TABLE I.  CUX PATTERN STRUCTURE [8] 

Instructions on Each Pattern Section 

# Section 
Name 

 

Instruction on Each Section 

1 Name 
The name of the pattern should shortly describe the 
suggestions for design by the pattern (2-3 words 
would be best). 

2 UX  
Factor 

List the UX factor(s) addressed within your chosen 
key finding (potential UX factors listed in this section 
can be e.g., workload, trust, fun/enjoyment, stress...). 
Please underpin your chosen UX factor(s) with a 
definition. 

3 Key 
Finding 

As short as possible - the best would be to describe 
your key finding (either from an empirical study or 
findings that are reported in literature) in one 
sentence. 

4 Forces Should be a detailed description and further 
explanation of the result. 

5 Context Describe the detailed context in which your chosen 
key finding is extracted/gathered from. 

6 
Sugges-
tions for 
Design 

1) Can range from rather general suggestions to very 
concrete suggestions for a specific application area. 
2) The design suggestions should be based on existing 
knowledge (e.g., state of the art solutions, empirical 
studies, guidelines, ...). 3) More than one suggestion 
are no problem but even better than only one. 
4) There can also be a very general suggestions and 
more specific “sub-suggestions”. 

7 Example 

Concrete examples underpinned by pictures, standard 
values etc. Examples should not provide suggestions 
(this is done in the suggestion part) but rather 
underpin and visualize the suggestion presented 
above. 

8 Key-
words 

Describe main topics addressed by the pattern in 
order to enable structured search. 

9 Sources Origin of the pattern (e.g., literature, other pattern, 
studies or results) 

 
The pattern structure shown in Table I consists of nine 

categories. This means that each pattern generated in this 
structure will consist of various statements in each of these 
nine categories. We now want to generate an actual pattern 
language set, let us call it CUX Language (and refer to it as 
CL for brevity’s sake), based on the structure outlined in 
Table 1. We can do so by introducing nine subsets (i.e., sets 
of the set CL) CL1 to CL9, each subset corresponding to one 
of the nine categories (from Name to Sources, respectively) 
described above. This is what the initial structure looks like: 

 
 CL: {CL1, CL2, …, CL9} (8) 

At this very basic level, a pattern structure is nothing 
more than a set consisting of a number of (as of yet empty) 
subsets. To distinguish the CL-subsets from each other, they 
can be filled with a sequence of numbers reflecting the 
number of categories or actual text strings of the category 
labels. For the CL from our example above, the simplest way 
to achieve this would be to fill them with the numbers 1-9. 
For now, the actual contents of the CL-subsets only matter 
inasmuch they are distinct from each other and allow 
reference later on. The number of subsets depends on the 
number of distinct categories each individual pattern of the 
structure is supposed to have. This structure can be adapted 
for other pattern structures, by adapting the number of 
subsets accordingly. 

After having defined the pattern structure, we now also 
need a set-theoretical representation of the individual 
patterns. Since we assumed patterns to be statements 
arranged in certain categories (sets), we now assign said 
statements to each of the nine subsets for CL. We start out by 
assuming a set that contains all these statements; we define it 
as follows: 
 

 S: {S1, S2, …, Sn} (9) 
 
We obtain a pattern by simply assigning certain elements of 
S to each subset of CL. For this purpose, we introduce a 
function p from a subset of the set of statements S into CL 
into a partition Sp of the sets of statements S: 
 
 Sp = {Sx1, …, Sxn} = S (10) 

 pi: CL à Sp (11) 

 Pi = ∑ pi(CLj) (12) 
 CLj⊂CL 
 
What happens here is that each subset of CL (CL1 to CL9) 
gets filled with actual content by having a certain number of 
statements (i.e., part of the partition of S) assigned to it. 
Partitioning S ensures that none of the categories remain 
empty, i.e., that the pattern is complete. Note, that we use the 
term ‘statement’ in the loosest sense, so it can refer not only 
to full sentences, but also to single words or sequences of 
words, which are not full sentences, or even images. 
Therefore, partitioning S into clusters of sensible information 
(= subsets) is a necessary step that should be reflected in the 
formal analysis. The relation pi determines the assignment of 
one subset of Sp to each subset of CL (CL1 to CL9 in our 
example). The actual pattern is the sum of all values of pi 
returned for all values CLi ⊂ CL, viz. all categories of the 
pattern structure (CL1 to CL9 in our example). The results is a 
set of i number ordered pairs, which, in our example, might 
look like the following: 
 
 P1 ={<CL1, Sx1>, …, <CL9, Sx9>} (13) 
 
Note that the P1 above is only one possible example out of 
many. The actual values assigned by pi are left undefined in 
this framework, since this depends on the context and 
proposed content of the individual patterns. The framework 
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should be flexible and widely applicable, so the actual 
pattern generation must be left to the domain experts. We 
can use the pattern relation to generate as many relations p1 
to pn as we need, and thus to generate n number of CL-
patterns Pn.  

We can apply this analysis to any other similarly 
structured pattern language PL and its subsets PLi, thus 
granting us a basic structure of patterns as collections of sets 
of statements. Of course, simply arranging patterns into sets 
and subsets does not in itself guarantee that any of these 
patterns are actually useful or reasonable. But that is also not 
the purpose of the framework at this stage. What this 
analysis can tell us is (a) the pattern language or structure PL 
(CL in our example) the patterns are generated in, (b) how 
many statement categories (viz., subsets of PL) a successful 
pattern generated in that language must contain, and (c) 
which statements can be found in which category, i.e., the 
patterns themselves (Pi). As we can see, this elementary 
analysis has already yielded a quite flexible starting 
framework, via which we can express a pattern structure, 
partition the information to be transformed into a pattern, and 
relate that information to the pattern structure. Most 
importantly, building the framework did not require us to 
reference the actual contents of S or its subsets, meaning that 
it is – at least so far – applicable independently of its 
contents or the context it will be used in. 

VI. DESCRIPTORS 
Even at this elementary level, we can do more than 

merely put statements into a certain structure and add them 
to a collection of similar statements. We can also lay the 
groundwork for the relations between individual patterns of a 
certain collection. A pattern collection is more than an 
unstructured assortment of statements and needs some kind 
of inner structure. At this point, there are three important 
aspects that an individual CL-pattern does not tell the reader 
at this stage, but which we can capture even at this basic 
formal level. These are (a) which other patterns might be 
useful or even necessary for a given purpose, (b) exactly at 
which point during a given task or activity and (c) in which 
order will they be needed. A design pattern for, e.g., menu 
depth might sensibly be followed by a pattern for 
hierarchical structures, and preceded by a pattern for menu 
types and their suitability. But with only one pattern at hand, 
one can only guess what else they might need upon being 
presented with only a single pattern or depend on prior 
experience. It would be undesirable and arguably defeat the 
purpose of patterns, if extensive meta-knowledge were 
necessary to be able to use them successfully. Patterns 
usually contain references to other patterns as a separate 
field, though the reliability of this depends on the respective 
pattern collection. To capture (a), (b), and (c) on a more 
general level, why we enrich the basic set theoretic 
framework with specialized descriptor sets, which serve to 
understand patterns in context with each other. These will 
allow us to add an additional layer of expressiveness and 
flexibility to the language. 

At its core, a descriptor is nothing more than an ordered 
set containing several subsets with patterns. By employing 

ordered sets, we can distinguish its subsets solely by virtue 
of which position they have within the ordered set. The 
general idea is to use this property of ordered sets to 
implicitly add auxiliary information to any given pattern 
collection, simply by arranging that collection in a certain 
order. That way, the general structure of a descriptor set 
needs to be defined only once and one can add additional 
information to a pattern collection by arranging them in a 
certain order according to the descriptor. Let us illustrate the 
basic idea via an example descriptor set. Remember that 
angle brackets (‘<’ and ‘>’) denote an ordered set, as 
opposed to regular sets, which are denoted by curly brackets 
(‘{’ and ‘}’). 

 
 DE = <{P1, P2, P3, P4}, {P5, P6, P7}> (14) 

 
Assume that there is a pattern collection that consists of 

seven patterns. Of these, four are regular patterns and three 
of them antipatterns. We can now define a descriptor as an 
ordered pair consisting of exactly two subsets. The first of 
these subsets contains only patterns, the second contains only 
antipatterns. By applying this knowledge to DE, we learn that 
patterns P1 to P4 are regular patterns, and that P5 to P6 are 
antipatterns. We have thus provided an easy way to 
categorize patterns as regular patterns and antipatterns, that 
can be applied independent of context, and which is as 
simple as arranging the patterns in a certain order. 
Furthermore, we have added information to the pattern 
collection without having to edit the patterns themselves. 
(Please note that whether a pattern is a regular one or an 
antipattern is usually considered essential information and 
already part of the pattern itself. This is merely an illustrative 
example that employs two obviously distinctive pattern 
attributes). In the framework, we will use this structure to 
make a more general distinction of mandatory vs. optional 
patterns (see Section VI.B). 

Structuring the pattern collection in this way allows for 
added efficiency when generating new collections, and also 
facilitates sharing and consolidation of pattern collections. 
E.g., if one would program a pattern database in this 
framework, new pattern collections can be categorized by 
arranging the pattern labels in a certain order, mandated by 
the predefined descriptor sequence. Similarly, new patterns 
can be added and enriched with information by simply 
assigning them to an appropriate subset of a descriptor. One 
could even consolidate patterns from different sources and/or 
authors into one collection and categorize them by simply 
arranging them in a certain order. There are often many 
pattern collections dealing with similar topics yet the 
valuable knowledge in these patterns is often difficult to 
consolidate, simply because pattern approaches vary so 
much. 

Therefore, we view the added advantages gained by 
adding descriptors as an important quality of the framework 
and a necessary step towards a pattern framework that 
facilitates exchange both within and between disciplines. In 
the following subsections, we will build a standard descriptor 
set structure in a step-by-step manner. To begin, we postulate 
a descriptor as an ordered set, which consists of a number of 



46

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

subsets that contain either individual statements or sets of 
statements. 

A. Targets 
One single problem rarely occurs in isolation, but is 

instead often part of a higher-level problem or occurs while 
trying to achieve a certain overall goal. These are often 
nothing more than a single sentence or a few words, but they 
serve as a good overall indicator about where to find a 
solution to a particular problem one may have. E.g., a 
programming pattern might be part of the larger problem of 
trying to avoid pointer errors in C++. Another example 
would be Tidwell [12], who structured their design patterns 
as part of several categories, such as “Organizing the 
content” or “Showing complex data”. One individual pattern 
can conceivably be part of several such higher-level 
problems or be used in similar or different context to achieve 
different goals. This is different from the problem described 
in a pattern, since a given high-level pattern could very well 
reference a lower-level problem that addresses a different 
problem, while both serve the same general purpose. In the 
following, we will label these high-level problems or overall 
goals Targets (or T for short).  

Finding, iterating and validating patterns is a lengthy and 
multi-stage process. Whereas finding a new context a pattern 
can be used in might be as simple as trying to apply it and 
succeeding. This is were Targets as separate and 
standardized entities come in very handy. The Target(s) of a 
pattern should not be part of the pattern itself, since that 
would entail having to change and subsequently revalidate a 
pattern each time a new application possibility for it is 
discovered. Instead, Targets are separate from the actual 
patterns, which can be assigned or mapped to them. This 
allows reusing and reapplying patterns (one of their key 
aspects) in different contexts without having to modify the 
patterns themselves each time. Whenever a new application 
for a certain problem strategy is found, a new Target 
expressing that application area can be created and the 
pattern (or several) assigned to it. Due to their general nature 
and labeling function, Targets are the first entities that will 
be part of our standardized descriptor structure. This is also 
one of the reasons why we postulated descriptors as 
containing either statements or sets of statements. Each 
pattern in this framework is, per definition, a set of 
statements. But not everything, which might be a sensible 
addition to the descriptor, is necessarily a pattern (such as 
Targets). The first set of statements in a standardized 
descriptor set is thus always an expression of the Target of a 
pattern collection. At this point, the descriptor structure looks 
like: 

 
 D = <T> (15) 
 
‘T’ is a placeholder for a set containing one or several 

statements, so a descriptor at this stage could read, e.g., DE = 
<{S37}> or DE = <{S28, S29}>. Of course, a Target without 
any patterns is rather useless, so we need to add these to the 
descriptor as well. 

B. Mandatory and Optional Patterns 
The second subset in the descriptor will contain the 

actual patterns that are supposed to contribute to the Target 
expressed in the first set. However, there is one important 
distinction that we can make at this stage, which consists in 
separating the patterns into mandatory and optional patterns. 
Patterns can be part of solutions to higher-level problems and 
are ideally applicable in similar contexts. It is reasonable to 
assume that a high-level Target might cover a high-level 
context and thus a range of several low-level contexts. But 
not all of these low-level contexts might be similar enough to 
be interchangeable, thus excluding some patterns depending 
on which subcontext it is applied to. In addition, solving one 
problem via a pattern, might (and often will) pose a new 
problem, for which there are several possible solutions (and 
thus, several possible patterns). 

To illustrate the concept of mandatory and optional 
patterns via a brief example, assume that we design an 
interface and want to display items and their contents on 
screen at once. We decide to take a look at Tidwell’s pattern 
[12] collection and find a pattern titled “Two-Panel 
Selector”, which suits our needs. Following the pattern 
solution, we divide our interface into two parts; one showing 
the items, and the other their contents. We then find that our 
item structure is multi-layered and rather complicated, and 
that two panels are not sufficient to display it in an adequate 
fashion. Conveniently, we find a pattern section that contains 
solutions for displaying complex data. Among these, we find 
a pattern showing the use of cascading lists and another 
showing the use of tree-tables. Depending on other 
considerations (e.g., horizontal space, consistency with the 
rest of the interface), we will then decide for one of the two 
solutions, but very likely not both. They are two solutions for 
a similar (and in our case the same) problem and we are free 
to choose the one we deem more appropriate for our purpose.  

If, however, it is – for whatever reason – impossible or 
undesirable to separate the patterns into mandatory and 
optional ones, the set of optional patterns can also simply be 
left empty. Since the empty set is an abstract entity, these 
standardized descriptors will always remain compatible with 
each other. Even when one ore several of their subsets are 
empty, the number of these subsets never changes. Thus, the 
standard sequence and meaning of each subset is preserved, 
regardless of whether any of its preceding subsets is empty 
or not. Again, we further illustrate this via example 
descriptors: 

 
 DE

1 = <{S37}, {P1, P2}, {P3}> (16) 
 DE

2 = <{S38}, {P1, P2, P3}, {}> (17) 
 
Both of these example descriptors are of the same 

structure. They differ in that they have two different targets, 
and that P3 is an optional pattern in DE

1, and a mandatory 
pattern in DE

2. They both have the same number of subsets, 
so if we were to add another set to the descriptor set, we 
could so without worrying about potentially empty set, since 
the sequence is preserved. 
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C. References to other pattern collections or other sources 
Patterns are not the only things that can be considered 

optional when tackling a problem. Other sources and 
references are often needed as well. Patterns usually contain 
references to sources they draw from, aside from references 
to related patterns from the same pattern collection. But there 
is additional benefit when these references are added at the 
descriptor level. That benefit is flexibility. The descriptors 
are not part of the patterns themselves and can be generated 
at any time, once a pattern collection is available. Thus, any 
information that can be added by modifying the descriptor 
does not necessitate modifying the patterns contained in the 
descriptor. Thus, a seemingly outdated pattern collection can 
be updated ex post, by generating descriptors containing 
references to material that was not available at the time the 
patterns were originally generated. 

The same can be done with patterns from other pattern 
collections that handle similar issues. Patterns from other 
pattern collections can be added to the set of optional 
patterns. Since the descriptor allows inclusion of any set of 
statements, this could, in semantical terms, be the full pattern 
or merely a link to its website or bibliographical reference. 
Even if the CL-structure of both pattern collections were the 
same, the pattern relations pi would be different. This means 
that the “foreign” patterns would not be part of the set of 
patterns Pi and, thus, are merely sets of statements and easily 
distinguishable from one’s own patterns. The descriptor 
structure allows consolidation of knowledge from different 
sources and goes beyond the possibilities gained by 
referencing only within the patterns themselves. 

We show how such references might work via another 
brief example: Assume that we intend to design a car 
interface, for which we have our own car interface design 
pattern collection. While designing, we notice that the 
interface structure has become very deep and rather difficult 
to navigate. We now intend to solve this problem by either 
reducing the menu depth or presenting the information in a 
more effective way, but cannot find an appropriate pattern in 
our collection. However, we find such solutions in other, 
more generic interface design pattern collections. One of 
these turns out to be particularly to our liking and can be 
easily applied without any modifications. Both pattern 
collections were printed and published several years ago, so 
a revision would not be a trivial task and require substantial 
effort. 

Then, we decide to collect our car design patterns in a 
database and arrange them via descriptors. To keep the 
required effort at a minimum, we add the patterns simply as 
uniquely identifying labels for the original patterns. The 
resulting database allows us to search for design problems 
via their Target. We create on descriptor, which has 
“Designing car interfaces with high menu depth” as its 
Target and reference the foreign pattern we found in this 
descriptor. Thus, anybody who faces the same problem and 
uses the database will know that there is a different pattern 
collection that provides a solution to a certain subproblem. 
Such information is normally either included when a pattern 
is generated or not at all. With the descriptor structure, it is 

as simple as new descriptor. We can include newly created 
patterns by inputting them directly or referencing them, as 
well as draw from knowledge from related fields by 
referencing other patterns in this way.  

By adding the two additional subsets for mandatory and 
optional patterns and references to the initial descriptor 
structure, the updated descriptor structure is: 

 
 D = <T, M, O> (18) 
 

D. Pattern Sequence 
Finally, problems do not always occur at random, but can 

appear in a certain sequence. Thus, a solution to one problem 
might be followed by another solution, dictated by the 
underlying sequence of problem occurrence. This might be 
as simple by one problem followed by the other, or it could 
also reflect a hierarchical structure of high to low-level 
problem solutions, where depending on how a higher-level 
problem is solved, different lower-level problems occur. We 
can find such sequences, e.g., in Breitenbücher et al. [25], 
who propose a method to organize low-level solutions (so-
called idioms) in sequence, while taking into consideration 
the preceding idioms. 

To handle sequences at the descriptor-level, we add 
another subset to the descriptor. The purpose of this set is to 
put our patterns and other information into a sequence; 
therefore, we label this additional set S, which overlaps with 
the previously introduced sets M and O. Since S is supposed 
to handle only sequences, it would make little sense for 
something to be part of S but not of M or O. Therefore, we 
postulate that every element of S must also be element of 
either M or O. Unlike T, M, and O, S is not a regular set but 
an ordered one. Since the order of their contents does not 
matter for regular sets, but does matter for ordered sets, 
arranging the contents as an ordered set is a simple and 
efficient way to express a sequence. 

If we wanted to express that, e.g., P1 from DE
1 above 

would be needed after the solution described in P2, we could 
add the sequence set <P2, P1> to it and arrive at the 
following descriptor DE

3: 
 
 DE

3 = <{S37}, {P1, P2}, {P3}, <P2, P1>> (19) 
 
As we can see, the sequence set contains nothing that is 

not also in M or O, and merely puts some (but not all) of the 
parts of the pattern collection into sequence. We can use the 
sequence set to not only express linear sequences, but also 
hierarchical structures. Assume, that we have one high-level 
pattern P1 and a number of low-level patterns P2 to P7. P1 
proposes three possible solutions to the high-level problems. 
Depending on which solution is chosen, new low-level 
problems occur that are described in P2 to P4. Each of these 
solutions is then followed by another set of possible 
problems, described in P5 to P7. We can express this 
hierarchical structure via the following sequence set SE

1: 
 
 SE

1 =<{P1}, {P2, P3, P4}, {P5, P6, P7}> (20) 
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Figure 2.  The Descriptor structure 

D: <T, M, O, S> 
 
D: Descriptor – contains 4 subsets 

(contains 4 subsets, ordered set) 
T: Target 

 (contains a finite set of statements, regular 
subset of D, may not overlap with M or O) 

M: Set of mandatory patterns 
 (contains a finite set of CL-patterns, regular 
subset of D, may not overlap with T or O) 

O: Set of optional patterns and references 
 (contains a finite number of sets of statements, 
regular subset of D, may not overlap with T or 
M) 

S: Sequence set 
 (contains a finite number of sets of statements, 
ordered subset of D, every element of S must 
also be element of M or O) 

The contents of SE
1 represent a hierarchical structure 

from high to low. Since the contents of SE
1 are regular sets, 

the order within these sets does not matter and they can be 
considered as being of the same level. We can use the 
sequence set to specify such a hierarchy even further. If we 
know which low-level problem leads into which, we could 
also formulate the alternative descriptor SE

2: 
 
 SE

2 = <{P1}, {<P2, P5>, <P3, P7>, <P4, P6>}> (21) 
 
In SE

2, we find P1 is still the highest-level pattern and can 
see additionally the sequences between the individual 
patterns from the lower-level subsets. While it might not be 
immediately obvious, the three-level structure from SE

1 is 
also preserved in SE

2, since the first element of each ordered 
pair in SE

2 is also an element of the middle set in SE
1. 

E. Adding it up 
By combining all of the sets T to M, we arrive at the 

following, final descriptor structure: 
 
 D = <T, M, O, S> (22) 
 
Target, mandatory patterns, optional patterns and 

references, as well as the sequence set allow for a good 
amount of expressive possibilities. We will once again 
illustrate the potential use of the final descriptor structure via 
a simple example. Assume that we have four patterns, which 
would help us in conducting a user study in the car. P1, P2, 
and P3 are patterns to reduce user distraction and part of our 
own pattern collection. We have also access to another 
pattern about processing the data gained from the study. This 
pattern, we label it PF

1, was generated in a different pattern 
structure and is, therefore, not part of our patterns Pi. We can 
now specify which of these patterns we want or need and in 
which order by introducing a descriptor. To do that, we need 
to specify the contents of each of its subsets. We further want 
to express that we definitely need P1 and P2, as well as PF

1 
and that the DL-pattern will be needed after the CL-pattern. 
We thus arrive at the following example mandatory pattern 
set ME: 

 
 ME: {P1, P2} (23) 

  
We also know that P3 has proven useful in several similar 
cases in the past, but not in all of them, so we consider it as 
an optional pattern. Having one optional pattern (P3) and one 
foreign pattern (PF

1), gives us the following example set OE: 
 
 OE: {P3, PF

1} (24) 
 

We further know that P3, should it be needed, is always 
needed after P1. P2, on the other hand, has no fixed position 
in the sequence, but occurs after P3 in a few specific cases. 
PF

1 is always needed last. This results in the following two 
sequence sets: 
 

 SE
3: <P1, P3, PF

1> (25) 
 SE

4: <P1, P3, P2, PF
1> (26) 

But how do we now specify which of these sequences is 
the appropriate one for a given scenario? Since patterns are 
created for a certain purpose, we need to map each sequence 
to its most appropriate purpose  We can specify this via the 
Target, which contains the general purpose or overall 
problem of a collection of patterns. We can now introduce 
two targets, TE

1 and TE
2, with TE

1 outlining the general high-
level problem and TE

2 specifying the contexts in which P3 is 
followed by P2. These can be any statements; in our example 
we specify them as the sets {S1} (for TE

1) and {S1, S2} (for 
TE

2). As a result, we get the following two example 
descriptors DE

3 and DE
4: 

 
 DE

3= <{S1}, {P1, P2}, {P3, PF
1}, <P1, P3, PF

1>> (27) 
 DE

4= <{S1, S2}, {P1, P2}, {P3, PF
1}, <P1, P3, P2, PF

1>> (28) 
 
In addition to being able to specify the relations between 

patterns from a single pattern language, we are not confined 
to that single pattern language. Furthermore, we can describe 
hierarchical and sequential pattern structures from different 
domains and pattern languages in the same framework. 

Figure 1.  The Pattern Framework – a high-level overview 

 Target Descriptor 

Pattern Collection 
or Language 

Patterns 

specify 

assign 

create from 
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Furthermore, patterns can be clustered and applied for 
different purposes in an efficient manner by simply altering 
the structure of these pattern clusters, and without having to 
change the patterns directly. By adding one additional layer 
(targets and descriptors) to what was already available 
before, we have arrived at a highly modular and flexible 
pattern framework. Figure 1 provides an overview of the 
interrelation of pattern languages, patterns, descriptors, and 
targets. Figure 2 contains a summary of the standard 
Descriptor structure. 

Descriptors can be generated on an as-needed basis, 
which means that they can be used to categorize the initial 
pattern collection, as well as update it with additional 
information, to keep a pattern from becoming outdated 
quickly without being cumbersome to maintain. Most of the 
information is contained in the patterns themselves, but we 
tried to elevate information that might change or be in need 
of frequent updates to the descriptor-level. This makes 
expanding and updating pattern collections easier, since most 
of these changes will require either changing or generating 
descriptors, which are nothing more than strings in a 
predefined sequence. This approach has the additional 
advantage that descriptors can be used to consolidate 
knowledge from different sources, since the descriptor 
structure is based solely on the set theoretic framework and, 
therefore, not bound to any particular field or context. We 
have thus provided a framework that is formally sound, 
based on only elementary mathematical principles, flexible 
regarding its content, and with additional means of 
referencing and consolidation via the descriptor structure. In 
order to actually use the framework for structuring patterns, 
however, one still requires a means to collect and structure 
data regarding working solutions. We provide some general 
recommendations on how to do that in the following section. 

VII. ADDING THE CONTENT 
We mentioned in Section V that the pattern relation pi is 

left undefined in the framework and is only specified insofar 
as it is a relation from CL into Sp. Similarly, the specifics of 
the partitions in Sp are undefined since these vary depending 
on pattern structure and content. This ensures flexibility of 
the framework, but it also means that actually generating 
patterns cannot be done with only the framework itself. The 
framework ensures consistency and easier means of 
referencing and consolidation across domains, disciplines, 
and pattern languages. The pattern framework is intended for 
a wide audience, which includes those who are not yet 
familiar with pattern approaches but would want to apply 
them in their field. Therefore, we use this section to provide 
a consolidated overview of some of the literature regarding 
pattern generation, to supplement the formal framework. 
This is not meant to be a comprehensive summary, but a 
general aid to generate meaningful patterns in this particular 
framework. In the following sections, we mainly draw from 
Meszaros and Doble’s [9] pattern language for pattern 
writing, Winn and Calder’s [10] pattern language for pattern 
language structure, and some of Borchers’ [7] considerations 
regarding pattern generation. 

A. Defining the structure 
One of the primary steps when beginning to build a 

pattern language – and elementary to partitioning the 
statements that will later constitute the individual patterns – 
is to define the pattern structure. By that, we do not mean the 
relations or hierarchy between patterns, but rather the 
number of sub-categories or fields of each pattern. Pattern 
structures exist in a wide variety of granularity. Tidwell’s 
[12] pattern structure is minimalistic but effective, with only 
six subcategories (what, use when, why, how, examples, in 
other libraries), whereas the structure introduced by Gamma 
et al. [4] propose 13 subcategories for each of their patterns. 
The exact number of subcategories should be decided on 
individual needs, preferences, and also available resources 
(more subcategories = more complicated and longer pattern 
mining process). However, there are a few basic 
subcategories, which each pattern structure should contain. 
We present these, together with the reasons why we consider 
them to be essential, in the following. 

Name: Patterns should be uniquely identifiable, so that 
they can be referred to and structured with regard to other 
patterns. Therefore, each pattern should have a unique name 
that clearly distinguishes it from other patterns. It is 
furthermore helpful if that name is not obtuse or even 
presents an image of the suggested solution in the reader’s 
mind (Meszaros and Doble refer to this as an “evocative 
pattern name” [9]). 

Problem: One of the major distinguishing features of 
patterns is their problem-centric nature. If the pattern does 
not present a solution to a (reoccurring) problem, then it only 
provides general guidance and serves the same purpose as a 
guideline, but without the comprehensive character a 
guideline usually provides. Therefore, a separate description 
of the problem is considered essential for a successful 
pattern. 

Context and/or Forces: Patterns contain proven, 
working solutions, which means that these solutions solved 
the problems in particular cases. Therefore, understanding 
and documenting this context is elementary for being able to 
decide whether a particular solution is suitable for a different 
(even when similar) context. Forces are the aspects of the 
context that the solution is supposed to optimize. They are 
important, but not always considered as separate pattern 
subcategories (e.g., [1], [12]). Therefore, we only consider 
one of them as essential – unlike Borchers [7] and van Velie 
[5]. The bottom line is that each pattern should, at the very 
minimum, contain some kind of description of its context as 
a separate entry – whether it be context or forces (or both). 

Solution: A seemingly obvious point that is never the 
less worth pointing out. Each pattern should contain a 
description of the actual solution as a separate entry. This is 
not the same as a simple screenshot of a working example, 
but rather a detailed textual description of the steps taken to 
solve the problem in its particular context. 

Examples: Since the solution described by the pattern is 
supposed to be a proven one, concrete examples (preferably 
more than one) should be provided to show the end result of 
the implemented solution. These examples are closely 
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related to, but not the same as, the solution. They help to put 
the general solution into more practical terms and link the 
solution to its context. In the case of several implementation 
examples being available, they can also aid the designer in 
identifying essential commonalities between application 
contexts. This can be an additional aid, when a designer is 
not sure whether a pattern would be suitable for their 
particular context. 

A successful pattern structure can have as many pattern 
subcategories as needed, though the ones listed above should 
be considered a reasonable minimum for any pattern 
structure. The minimum requirements we presented here are 
very similar to those given by Gamma et al. [4] (pattern 
name, problem, solution, consequences), but with slight 
extensions and modifications for wider applicability. We 
also decided to not include an implementation’s 
consequences as a necessary component, since that might be 
a confusing concept for patterns outside of areas in which 
consequences can be traced more easily (such as in software 
code, where changes and the parts they affect can be more or 
less fully described). 

B. Mining and Iteration 
In order to generate meaningful patterns, the solutions 

contained therein need to be discovered first. Pattern 
generation is a difficult and lengthy process, which usually 
occurs in several phases. Köhne [25] describes the pattern 
generation process as consisting of the following 8 stages: 
pattern mining – pattern writing – shepherding – writer’s 
workshop – review by pattern author – collection of pattern 
in repository – peer review – pattern book publication. While 
this is a good overall summary of how pattern generation or 
finding occurs, Pattern creation does not always follow these 
exact steps in reality. There is no single accepted method or 
process for pattern generation, but there are several useful 
recommendations for generating successful patterns by 
Borchers [7], Martin [15], Vlissides [17], and others. In the 
following, we present what we consider the bare minimum 
of what a pattern generation process should entail. 

The first step in generating a pattern is recognizing the 
problem and its reoccurring nature. There is no standard 
procedure for this and Appleton [18] even notes that the best 
way to learn how to recognize patterns is to learn from others 
who were able to do so successfully. This is why pattern 
generation should happen in several stages. Anyone, who has 
worked in a certain field for some time, should be able to 
eventually spot problems that have manifested themselves 
over and over in the past. They might also be able to 
recognize certain regularities in the solutions that were 
employed to solve the problem in all its past occurrences. To 
go from this initial pattern assessment to a complete pattern, 
examination and iteration should happen in several steps and 
by several people, so that the essence of the solution can be 
extracted and adequately described. Furthermore, 
reexamination and iteration should be done by several 
individuals. These pattern iterators will then rework the 
patterns to suit their readability requirements, i.e., the 
resulting pattern will automatically be written and formatted 
for easier readability for a wider audience. Even if the 

pattern started out as a simple assumption about a potential 
solution, at the end, the pattern contains the know-how of all 
its iterators and a quantitative component that complements 
the pattern content. After all, if multiple experts came to 
similar conclusions about a problem and its solution, then 
this lends support to the assumption that the solution is 
indeed a working one and the problem a reoccurring one. 
Thus, it can be possible even for people who are 
inexperienced in pattern generation to come up with 
successful patterns. 

Therefore, the most important steps any successful 
pattern generation process should contain are (a) problem 
identification to define the elementary parts, context, and 
eventually the solution; (b) structuration to guarantee a 
uniform format, good readability, and completeness of 
patterns with the same structure; and (c) reflection and 
feedback to examine whether the solution is a working one 
and ensure sufficient detail of its explanation to allow easy 
application. 

C. Piecemeal Growth 
This point is based on Winn and Calder’s [10] suggestion 

by the same name. They suggest, “if new structure needs to 
be added to the system, then add it gradually, piece by piece, 
evaluating the effect of the change on the whole.” In their 
work, Winn and Calder have applied this to systems 
(software, architectural, biological), as well as pattern 
languages. In this paper, we adapt their ideas only for the 
generation of pattern languages. 

Building a full pattern language is a lengthy process, 
which begins with a few patterns. As more solutions are 
discovered, more patterns can be created, which culminates 
in a full pattern language, once a certain number and level of 
comprehensiveness of patterns is reached. This means that 
new solutions and, therefore, new patterns must be 
considered in light of already existing solutions. It is possible 
that a new solution is incompatible with an already 
established solution, where both problems usually occur 
together. In such a case, parameters must be provided that 
allow deciding when one or the other solution should be 
applied. Similarly, a newly introduced solution might be 
superior to a previous solution, rendering its respective 
pattern obsolete. This must be reflected in the pattern 
language, as they would otherwise seem like equally 
effective solutions to the same problem. Therefore, changes 
and additions to any existing patterns should occur in small 
steps, while re-evaluating the existing patterns in light of 
these new additions. 

In terms of the pattern framework, this means that newly 
generated patterns should ideally entail review and potential 
modification of descriptors. Since descriptors allow mapping 
patterns to overall goals, modifications to the existing 
patterns themselves should seldom be necessary. An initial 
pattern collection might only have a single descriptor, since 
the patterns are likely to be generated with one overall goal 
or problem in mind. However, it is very possible that a new 
pattern presents a solution that often, but not always, occurs 
with other problems for which patterns are available. In such 
cases it is recommended to create to separate descriptors that 
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cover both cases – those, in which both problems occur and 
those, in which they do not. The same is true for conflicting 
patterns. These can be put into different descriptors, thus 
making these conflicts visible without a need for 
modification of any of the patterns themselves. In the case of 
outdated patterns, these can simply be left as they are, but 
not made part of any descriptor. Therefore, they are still 
available for reference purposes, but not part of any 
recommended set of solutions. 

Cases, such as the ones described above, which 
necessitate a restructuring of both new and existing patterns, 
can happen at any stage in the pattern language development 
process. However, the additional pattern does not necessarily 
entail a new descriptor. It could simply be added to an 
existing one or prompt the creation of several new ones, all 
depending on the individual case. Therefore, the growth of a 
pattern language’s complexity cannot be considered linear in 
regard to the number of patterns it contains. 

The development of a pattern language can be seen as an 
organic process, where changes and additions can have wide-
ranging consequences. Therefore, such changes and 
additions should happen in small steps, followed by a 
reexamination of the pattern collection. In the framework, 
this reexamination should almost always happen at the 
descriptor-level. 

D. Cross Linkage 
This point ties in with the previous one and is, once 

again, strongly grounded in Winn and Calder’s [10] 
suggestion by the same name. They state, “if the system 
structure is complex, then overlap and use cross linkages to 
capture complexity.” The general idea is that linear or linear-
hierarchical structures cannot be a catch-all for complex 
structures. A pattern structure should allow cross-linking and 
overlaps between its elements, so that it can support complex 
structures. 

In the previous section, we explained that even a single 
new pattern could potentially entail fundamental changes to 
the overall pattern collection. In the framework, this can 
manifest itself as the creation several new descriptors or the 
vanishing of older, outdated descriptors. In order for this 
flexibility to be possible, overlaps and links between the 
descriptors must be possible, which is the case for the 
framework due to its basis in set theory. 

Different descriptors can largely have the same contents, 
with only minor differences, to satisfy different Targets. For 
example, two descriptors might differ in one only containing 
one more pattern than the other, thus dealing with a special 
case of the other’s, more general, Target. They might even 
be identical regarding their elements, but with different 
sequence sets. One of these descriptors could then serve as a 
solution to a hierarchical occurrence of the problem, the 
other to a differently structured overall problem. Patterns are 
supposed to be reused in similar contexts; the descriptors, 
therefore, support that reuse and allow multiple occurrences 
of the same pattern and overlaps between descriptor 
contents. To adequately support the nonlinear growth in 
pattern language complexity when new patterns are added, it 
is important to generate as many new descriptors as 

necessary once new links between patterns or Target 
hierarchies are discovered. 

It is not uncommon that a pattern language would start 
out as a neatly organized string of patterns that all serve one 
universal goal. As the language’s complexity grows, so 
should its level of detail. A neatly organized descriptor 
variety helps structuring and reapplication of patterns for 
different contexts. It is also an invaluable aid for efficient 
and quick searching and finding of solutions to particular 
problems. A designer or practitioner will likely not need the 
whole pattern language for any given task, but also not know 
which individual patterns they do need, unless they read 
through the whole pattern catalogue. By employing the 
proposed method, only the individual descriptors need to be 
read to identify, whether a patter cluster that provides a 
solution to a certain goal or not. Once one is found, the 
reader is led through all relevant patterns, their links, and in 
the proper sequence via the descriptor’s structure. 

VIII. THE FRAMEWORK APPLIED – CAR USER EXPERIENCE 
PATTERNS 

An actual pattern collection usually takes either the form 
of a (often online) pattern database or a printed volume. The 
framework was constructed mainly with databases in mind, 
since the added flexibility by using descriptors is easier to 
realize when existing input can be added to (which is 
difficult to do with published paper collections). In addition, 
the sets of statements that make up each pattern category are 
directly translatable into data fields and the descriptors can 
then point to these data. While the framework loses some of 
these advantages when applied to a paper-based pattern 
collection instead of a database, it is still feasible to use it 
for that purpose. In this section, we present an example of a 
paper-based User Experience design pattern collection, 
which was structured using the universal pattern framework. 

The pattern collection consisted of 16 individual 
patterns. All of them were about design problems in the car 
with the aim to reduce mental workload while interacting 
with the interface. The actual pattern finding process is 
described in detail in [26]. The resulting patterns all 
followed the same structure, which consisted of nine 
categories of statements (Name, Intent, Topics, Problem, 
Scenario, Solution, Examples, Keywords, Sources). Since 
the descriptor still enables structuring towards overall goal 
and regarding pattern sequence and status (mandatory vs. 
optional), we created one descriptor to serve as an index for 
the whole pattern collection. 

The overall goal of every pattern was to provide design 
solutions that reduce mental workload, so the appropriate 
Target became UX Factor: Reduction of mental workload 
caused by distraction in the car. ‘UX Factor’ was added 
since this is one of several factors that are postulated to 
influence UX and to distinguish these from later patterns 
that address different influences on UX. The patterns were 
findings from scientific works, supplemented with 
implementation examples, and iterated in collaboration with 
industry stakeholders. Due to this somewhat nonstandard 



52

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Car User Experience Pattern Descriptor and Pattern Example 

 
 L1: Name 
 . 
 . 
 . 

 L3: Problem Statement 
 . 
 . 
 . 

 L6: Solution 
 . 
 . 
 . 

 L9: Sources 
 
 
 
 
 
 
D1: <T1, {P1, …, P11}, {P12, …, P16},<P5, P6>> 
 
L: Car User Experience Pattern Language Structure 
L1-L9: Subcategories of L 
P1-P16: Car User Experience Design Patterns 
D1: Descriptor mapping all patterns to Target T1 
T1: UX Factor: Reduction of mental workload caused by distraction in the car 
P1-P11: Mandatory patterns (full implementations exist) 
P12-P16: Optional patterns (only partial implementations currently exist) 
P5, P6: Sequence indicating solution in P6 depends on solution in P5. 

approach, there were some patterns that had more 
implementation examples and more straightforward 
instructions on how to put their respective solutions into 
practice. However, others provided less such examples and 
were perceived to be more suited for more experienced 
designers. Therefore, this second type of patterns was 
considered optional and only for those who have the 
necessary skills to put the proposed solutions into practice. 

Thus, we described these two sets of patterns via the 
descriptor’s sets for mandatory and optional patterns and 
references. Finally, there was one pattern that relied on 
another pattern from the same collection. Using the solution 
in the first pattern could sometimes create an additional 
problem, which the second pattern would help to solve. But 
it would have been misleading to imply a necessary 
connection and write one single pattern for both problems, 
since they occur together only sometimes, but not always. In 
order to adequately represent this relation, the two patterns 

were put into the sequence set to indicate that reading the 
first should always entail reading the second one afterwards. 
In the text, we indicated this with one sentence between the 
patterns explaining the possible link. With all this taken into 
account, the resulting descriptor looked as follows: 

 
D1: <T1, {P1, …, P11},{P12, …, P16},<P5, P6>> (29) 
 
This was then transformed into an index. The Target 

served as the overall headline, patterns 1 to 11 and 12 to 16 
were put into separate subsections, and patterns 5 and 6 
were put into sequence and linked explicitly with additional 
text between the two patterns. By using the framework 
approach, we were able to easily structure the pattern 
collection in a meaningful way, even though the framework 
contains no information that would be specific to the car or 
UX-domains. Moreover, the thusly-structured pattern 
collection can still be put into a database, without a need for 

Optimal Display Position 
… 
Information sources are spread 
throughout the cockpits of cars 
(instrument cluster, center console, … 
… 
The display position for visual 
information is effective when located 
within a 20° transit angle (see Fig. 1 
and … 
… 
JAMA Guidelines for in-vehicle 
display systems … 

L 

P3 
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any substantial restructuring work, since the set- and 
descriptor structures are consistent among all pattern 
collections that are based on the framework. 

This collection of 16 patterns is part of a prospected 
larger collection spanning two more UX factors in addition 
to the first one. At the writing of this paper, the pattern 
finding process for these additional two UX factors had not 
yet been completed. Nevertheless, the end result will be a 
collection of several patterns, which are mapped to the three 
different UX factors and structured internally via the 
framework’s proposed descriptor structure. Figure 3 
provides an additional overview of the descriptor structure, 
along with an example for how an individual pattern relates 
to the pattern structure in the framework. To reiterate, an 
individual pattern is a set, which contains several subsets of 
statements. A pattern collection or language consists of 
several such sets. Descriptors are separate sets, which are 
used to map individual patterns to an overall goal, and can 
thus be used to structure the pattern set as well as map 
lower- to higher-level patterns. There is no a priori limit to 
the amount of descriptors that can be created for any given 
pattern collection. The number of descriptors depends on the 
amount of goals, which are identified and/or deemed 
necessary for any given purpose. 

IX. DISCUSSION 
Next, we discuss the proposed framework, address 

benefits, possible shortcomings, and future work potentials. 

A. Benefits of using the framework 
The framework provides a flexible basis purely by virtue 

of its formal features. The basic and uniform structure 
enables any adequately structured set of statements to be 
considered a potential pattern, so as long as an area or 
discipline can satisfy this minimal requirement, it can use the 
framework to structure its patterns. This general applicability 
also means that the framework cannot serve as a suitable 
means to verify a pattern’s (or structure’s) validity or 
soundness on its own. What the framework offers is a 
consistent basis, which the individual disciplines can build 
upon. Pattern languages can be described as partitioned sets 
of statements within the framework. As long as the structure 
of a certain pattern collection is known, its individual 
patterns and sub-parts of patterns can be referenced within 
the framework by referencing the appropriate set or sub-set. 

Thanks to the descriptor structure, linkage between 
patterns and pattern languages within the framework is 
possible, even between patterns from different disciplines.  
In such a case, the differences in pattern structure must be 
known and appropriately modeled in the framework, since it 
is very likely that their structures do not consist of the same 
sub-categories. Mapping patterns to overall Targets can 
reduce redundancy and allows mapping of lower-level 
patterns to higher-level goals. The standard structure of 
Descriptors allows structuring patterns with regard to priority 
(mandatory vs. optional) as well as sequences of problems or 
their solutions. Finally, all these features are available on the 
very basic framework-level, and are thus not dependent on 

any particularities of the actual pattern content or the 
discipline they belong to. Thus, the initial goal of the 
framework not being bound to any individual discipline or 
domain is achieved. 

B. The set-theoretic basis and its multi-domain suitability 
As initially stated, the framework is intended as a basis 

for patterns as a general knowledge transfer tool, suitable for 
a multitude of disciplines and domains. However, employing 
mathematical methods  might seem to limit the framework to 
only those disciplines already familiar with such methods, 
which is why we briefly discuss the need for this 
mathematical basis and its consequences for applications of 
the framework. The framework was developed with 
databases, as well as paper-based pattern collections in mind. 
Therefore, a suitable framework should fulfill the minimum 
requirements of consistency and division of information into 
separate categories or data fields. This ensures that any 
pattern from such a framework can be used as input for a 
database, by treating the pattern subcategories as datafields 
in the database. By keeping that structure the same for both 
database and paper-based pattern collections, compatibility 
and consistency between the two is ensured. This also 
permits any paper-based collection built in this framework to 
be incorporated into a database of the same format. 

The formulae in Sections V and VI are accompanied by 
explanations, so that the purpose of the theoretical basis can 
be understood without necessarily having to understand the 
methods themselves. Thus, the framework does not require 
knowledge of mathematics or formal methods to be applied, 
as long as the separation of patterns into statement categories 
and the meaning of the descriptor contents are understood by 
the reader. Such an application of the framework would 
likely result in a well-structured paper pattern collection, like 
the one shown in our example in Section VIII. However, as 
example also showed, a paper-based collection loses some of 
the framework’s advantages. This issue is inherent to the 
medium, as it is generally difficult to update or crosslink 
published volumes (short of releasing updated reprints). We 
do not think that there is any framework that could solve this 
fundamental issue, so the minimum requirement of handling 
databases must be fulfilled by anyone who intends to apply 
the framework to its full extent. 

The set theory employed in this framework is elementary 
and based on conventional (Boolean) logic. The reason for 
this is, once again, the desire to keep the framework as easy 
to understand and handle as possible. But furthermore, we 
believe that for achieving the goals outlined in Section I, 
conventional elementary set theory is absolutely sufficient, 
as we merely arrange statements in sets and a statement is 
then either present in a given set or it is not. There are no 
degrees involved here that would warrant employing fuzzy 
operations or sets. The same goes for other extensions to 
conventional logic and set theory: unless they are needed, 
they would only complicate matters without adding any 
tangible benefit (and since they are often supersets of 
conventional set theory, the framework could still be 
extended on an as-needed-basis in special cases). A more 
complicated underbelly would probably not matter for the 
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average reader with an IT-background and who is already 
familiar with logic to some degree. But for those with 
different backgrounds, it might create an additional hurdle 
that we would rather avoid. The framework is rather simple 
on a formal level but it achieves what it was meant to do just 
as well. In this regard, we see the framework to strike the 
best possible balance between necessary skill level of the 
user and application possibilities. 

C. Finding patterns and descriptors – it’s not that easy 
Putting patterns into a meaningful structure is only one 

step in any pattern finding process, although a rather 
important one. The purpose of this paper was to provide a 
basis for patterns as a universal tool, and not a complete 
guide for discipline-independent pattern finding. 
Nevertheless, if we want the framework to be successful, 
then it should ultimately be applied in areas, in which there 
have been no (or few) pattern approaches in the past. In 
such areas, simply providing a framework without any 
guidance on how to actually find patterns would arguably be 
of little use. Therefore, we included a number of 
recommendations based on existing pattern approaches in 
Section VI. We consider these recommendations elementary 
enough to be sensible for any pattern collection and, 
therefore, a suitable supplement to the framework. On the 
other hand, the elementary and general nature of these 
recommendations also means that they are, at best, 
necessary (but not sufficient) conditions for successful 
pattern finding. We acknowledge that the recommendations 
given in Section VI constitute a sensible starting point but 
not a complete pattern finding guideline, and that more 
work on pattern finding (both within and across disciplines) 
is needed. 

D. Tool support 
The framework is, in its current state, not supported by a 

tool or any other automated means that could aid the user in 
finding patterns or creating a pattern language. The 
framework provides a basis that is consistent among 
disciplines but most of the necessary legwork still has to be 
done by the individuals themselves. This is not something 
that cannot be fully eliminated, but a completely unassisted 
framework is a lot less accessible than it could be, 
esspecially considering our aim of domain-independent 
applicability. 

There are specialized tools that can aid solution finding 
in certain contexts; the EXPLAINER tool by Redmiles et al. 
[27][28] is one such tool. Tools like this one might be 
reusable in other disciplines as well, but it can be expected 
that full tool support from pattern finding to arrangement in 
a language, can probably not be handled on a universal level 
by one single tool. However, since the basic framework is 
essentially a means to structure statements and set them in 
relation to each other, there is no reason why it shouldn’t be 
possible to simply provide a database input mask that assists 
with the most common operations (defining number of 
category-subsets, labels, adding the statements, defining 

descriptors with predefined subsets, etc.). This is something 
that would greatly aid users in applying the framework and 
we hope to be able to provide such an aid further down the 
line. 

E. Wider application 
In Section VIII, we provided an example of an actual 

application of the framework in practice. The example was 
for a paper-based pattern collection, which illustrated how 
the descriptor structure can be used for meaningful 
categorization within a pattern collection with relatively 
little effort. Overall, the example might seem rather 
unspectacular, especially since it only resulted in the 
creation of one single descriptor. What we did not show was 
an actual pattern database that makes full use of all of the 
framework’s advantages (most importantly, multiple 
descriptors for overlapping pattern sets and reference to 
sources or patterns from outside). We intend to use the 
framework for many more future pattern collections 
(including databases), so that more application examples 
will eventually become available. At this point, the 
framework is still very new and we do not have a complete 
database that would be suitable for demonstration purposes. 
However, we do think that the framework is outlined in 
sufficient detail in this paper to allow successful application 
at this stage and we encourage the community to use (and 
criticize) the framework, as only actual use can really show 
it suitability (or lack thereof). 

X. CONCLUSION 
In this paper, we have provided a formal framework that 

supports finding and structuring patterns independent of their 
domain, field or discipline, supplemented with information 
on how to generate actual content (i.e., finding patterns) and 
gave an example of an application of the framework in 
practice. 

In our framework, patterns are separate from descriptors, 
which are themselves separate from their targets. This 
means, that patterns can be generated as usual and assigned 
on an as-needed basis. For the pattern user, this means that 
they do not have to scour vast databases of patterns for those 
they might need. All they need is to have a look at the 
descriptor(s) that is/are assigned to the target they have in 
mind. For the pattern provider, there is also the added 
advantage existing pattern databases can be expanded with 
descriptors, which help make them more usable and reduce 
the amount of domain experience and previous knowledge 
required in order to employ patterns successfully. The 
example we provided in Section VIII is one such case. The 
paper version can be made into a database using the same 
structure and format. Additional descriptors and/or patterns 
can then be added and the collection expanded as needed. 

Descriptors can function similarly to references 
contained in the patterns themselves (as suggested by 
Borchers [7]), but enable additional or alternative references 
to other patterns at any time, since they are not actual parts 
of a pattern. This means that descriptors can be used to 
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describe virtually any pattern set, regardless of which 
domain(s) its patterns came from or when the pattern was 
created. Not only it is possible to capture the hierarchical 
order of existing pattern languages via descriptors, but also 
reference patterns from other languages that might fit a 
certain purpose. This means that the framework is not tied to 
a single pattern language or even a single domain and 
permits references to patterns from multiple pattern 
languages. The framework still needs to be adopted and used 
on a wider scale, in order to prove its suitability in practice. 
Nevertheless, due to its general basis and viability for both 
pattern databases and paper-based pattern collections, we 
consider it an appropriate basis for patterns as a domain 
independent knowledge transfer tool. We will use the 
framework as a basis for our future pattern collections 
(including a pattern database implementation) and further 
iterate the framework, as new insights from such use cases 
are gained. 
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