
40

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Introducing a General Multi-Purpose Pattern Framework: Towards a Universal
Pattern Approach

Alexander G. Mirnig and Manfred Tscheligi
Center for Human-Computer Interaction

Christian Doppler Laboratory for “Contextual Interfaces”
Department of Computer Sciences, University of Salzburg

Salzburg, Austria
Email: {firstname.lastname}@sbg.ac.at

Abstract— Patterns have been successfully employed for
capturing knowledge about proven solutions to reoccurring
problems in several domains. Despite that, there is still little
literature regarding pattern generation or common pattern
quality standards across the various domains available. This
paper is an extended version of a short paper presented at
PATTERNS 14 [1], in which we introduced an attempt for a
universal (i.e., domain independent) pattern framework. Via
basic set theory, it is possible to describe pattern sets that are
composed of several subsets regarding pattern types,
quantities, sequence, and other relevant factors. This further
enables us to describe patterns as sets of interrelated elements
instead of isolated entities, thus corresponding with the
scientific reality of complex problems with multiple relevant
factors. The framework can be used to describe existing
pattern languages and serve as a basis for new ones, regardless
of the domain they are or were created for.

Keywords-patterns; basics on patterns; pattern framework;
set theory; pattern modeling

I. INTRODUCTION
Patterns have been used as a tool for capturing

knowledge about proven solutions to reoccurring problems
in a multitude of domains and disciplines. Most prominent
among these are architecture, design, and software
engineering [1][2][3][4][5]. Patterns allow documenting
knowledge about methods and practices in a structured and
systematic manner and can, therefore, serve as a valuable
knowledge transfer tool within or even across disciplines.
Another related benefit of patterns is that they can serve to
“make implicit knowledge explicit” [6], i.e., they can be used
to explicitly capture what is normally only acquired via
experience after having worked in a certain field or domain
for an extended period of time. They can thus go beyond and
supplement the “raw” information contained in guidelines
with a more solution- and practice-oriented dimension. The
information contained in such patterns can then be provided
to others (researchers or other interested parties) in a
relatively quick and efficient manner, as it contains
information about solutions that are already proven to work.

Having access to a structured collection of information
from implicit and explicit knowledge about research
practices is useful for any domain in which research is

conducted. So it would make sense to extend the pattern
approach or even establish patterns as a general field of basic
research, with extensions into particular domains and
disciplines. This wider potential of patterns has been
recognized and has been summarized by Borchers [7] in the
following way: “There is no reason why experience, methods
or values of any application domain cannot be described in
pattern form as long as activity includes some form of
design, creative or problem-solving work.” Despite this,
there is little general (i.e., domain independent) literature
available on patterns and pattern finding or creation. This is
not a new idea [8] and there have been efforts to go deeper
into the commonalities of various pattern approaches and
patterns in general by, e.g., the work of Meszaros and Doble
[9] and Winn and Calder [10].

Two of the main benefits of patterns are that they
facilitate re-application of proven solutions and that they
serve to make implicit knowledge explicit. These benefits are
of particular importance to those, who do not already have
this knowledge themselves, i.e., it is a way to draw from a
vast pool of knowledge that would otherwise be gained via
experience, over a long period of time. If working with
patterns has extensive domain experience as a prerequisite,
then those that would need that knowledge the most would
arguably benefit the least from it.

We argue for a general strand of research on patterns as a
means to capture knowledge about research practices. With
such a theoretical basis available, practitioners from any
domain could have a pool of knowledge to draw from, which
would help them create patterns suitable for their needs. This
should not mean that a variety in pattern languages and
approaches is not desirable. It makes sense to assume that
different domain requirements need different pattern
approaches. However, the basics of patterns should ideally
be similar for everyone and easily accessible, like, e.g., with
general mathematics. A statistician needs and employs
different mathematical means than a fruit vendor. But both
draw from the same pool of general mathematics as their
basis. In our research, we try to look at patterns in a similar
way. We want to promote their use as a universal tool to
structure knowledge in all kinds of areas and disciplines.

In this paper, we will take a look at pattern approaches in
general and the commonalities between them. We will then
integrate these into a formal pattern framework, with the aim

41

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of providing a formally sound and flexible basis, which
allows practitioners and researchers to create their own
patterns and pattern collections within their respective
domains. To this end, we pursue four main goals in
developing our framework:

• the framework should be a suitable basis for and,
therefore, be compatible with most (if not all)
existing pattern approaches and languages

• it should contain basic functionalities that allow
meaningful structuring and referencing of patterns

• the framework must dictate the pattern content only
in the most rudimentary way, so that it is not
restricted to only one or very few disciplines

• the framework must be formally sound but also
easy to work with, so that it can be applied by large
number of individuals

The final goal of this research is to arrive at a structured
but still easy to understand framework that captures the
essence of patterns and makes them understandable as well
as usable for practitioners and researchers in any domain. We
do this via a basic set theoretic [11] analysis that allows
describing patterns and pattern languages in a general
manner. Such a general analysis of patterns allows us to treat
them as separate phenomena, independent of the domains
they are created and used in. Set theory is one of the most
basic, but at the same time very powerful, mathematical tools
available. By using set theory, we can ensure consistency of
our framework, while still keeping things basic and relatively
easy to understand. An additional benefit of our approach is
that it permits the creation of pattern sets across different
pattern languages that address a similar purpose. This can
facilitate the consolidation of already existing knowledge
within the various domains.

This set theoretic framework serves as a domain
independent basis for reflections on how patterns can or
should be created and structured. It can be extended to fit the
needs of a particular discipline or area, if that would become
necessary, but is, at its core, a purely formal tool that is not
restricted to any domains or disciplines. In this paper, we
begin with an overview of existing general literature on
patterns in Section II, followed by some explanations
regarding the basics of set theory and why we deem it a
suitable tool for the purpose of this paper. In Sections V and
VI, we provide an outline of the proposed set theoretic
pattern framework. In Section VII, we supplement the
framework with general recommendations on how to find
patterns for multidisciplinary applications of the framework.
In Section VIII, we present an example application of the
framework to structure an existing pattern collection. In
Section IX, we discuss limitations and future work potentials
of the framework, with a brief conclusion at the end in
Section X.

II. RELATED WORK
Patterns have been employed in a multitude of

application domains [1][4][12] and a good number of
extensive pattern collections [7][13][14] have been created in
the past. Literature on the pattern generation process itself,

sometimes also referred as pattern mining [13], is still scarce
[15]. Existing literature on pattern generation is mostly
focused on specific domains [7][4][8][12]. The work of
Gamma et al. [13] can be considered important elementary
literature, but it is still centered on software design. Although
covering a wide spectrum of software design problems, it is
arguably of limited applicability outside of the software
engineering domain. The same can be said for other
specialized pattern generation guidance [8], which would
require adaptation to be employed in other domains (e.g.,
biology or linguistics). Falkenthal et al. [16] introduced a
promising approach for validating solution implementations
of patterns in various domains, though provided only one
nontraditional use case (Costumes in Films) for their
approach.

The advantages of patterns would be both desirable and
feasible [7] for these other domains. Vlissides [17] provides
a good summary of what patters can and cannot do. The
perceived advantages of patterns might be summed up as
follows:

• they capture expertise and make it accessible to
non-experts

• their names collectively form a vocabulary that
helps developers communicate better.

• they help people understand a system more quickly
when it is documented with the patterns it uses.

• they facilitate restructuring a system whether or not
it was designed with patterns in mind.

Another interesting aspect of patterns is that one single
pattern is usually not enough to deal with a certain issue.
Alexander [2] himself already expressed this by stating the
possibility of making buildings by “stringing together
patterns.“ However, the pattern itself does not always include
the information of which other pattern might be relevant in a
particular case. This information is only available once the
pattern is part of an actual pattern language of several related
patterns. Borchers [7] introduced the notion of high level
patterns, which reference lower level patterns to describe
solutions to large scale design issues. This hierarchy is
expressed via references in the patterns themselves.
Borchers’ view of high and low level patterns is a good way
of understanding and describing patterns as interconnected
entities. A suitable framework for patterns and pattern
languages should ideally be able to capture the – sometimes
complex – relations between patterns and allow mapping of
individual patterns to higher level or overarching problems
or goals.

One concept that is similar to the ideas pursued in this
paper is that of ontologies. While term ‘ontology’ itself can
have several meanings, the following short definition by
Blomqvist and Sandkuhl [18] provides a good summary of
how the term is usually understood in ontology engineering:
“An ontology is a hierarchically structured set of concepts
describing a specific domain of knowledge that can be used
to create a knowledge base. An ontology contains concepts, a
subsumption hierarchy, arbitrary relations between concepts,
and axioms. It may also contain other constraints and
functions.” Given this description, one might assume that
ontologies would be an ideal tool to capture and transfer

42

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

domain knowledge universally. However, there are two
limitations that make ontology engineering approaches run
counter to the goals pursued in this paper. While ontologies
can promote the application of good practices [20][21][22],
reusability of ontologies is still considered a serious, and as
of yet unsolved, challenge in ontology engineering
[20][23][24]. Second, actually building an ontology is a very
difficult tasks with many potential pitfalls, even for experts
[20][21].

Both of these are serious limitations when considering
suitability for users from a wide range of disciplines and/or
skill levels as well as reusability of existing solutions.
Patterns, thanks to their focus on reusability and the
problems themselves instead of the abstract structure of a
domain or field, seem more well-suited for the problems at
hand.

Efforts to provide a general basis for patterns include the
work of Meszaros and Doble [9], who developed a pattern
language for pattern writing,	
 which serves to capture
techniques and approaches that have been observed to be
particularly effective at addressing certain reoccurring
problems. Their patterns for patterns were divided into the
following five sections: Context-Setting Patterns, Pattern
Structuring Patterns, Pattern Naming and Referencing
Patterns, Patterns for making Patterns Understandable,
Pattern Language Structuring Patterns. Another interesting
approach being quite similar in its aims to the one presented
in this paper is the Pattern Language for Pattern Language
Structure by Winn and Calder [10]. They identified a
common trait among pattern languages (i.e., they are
symmetry breaking) and built a rough, nonformal general
framework for pattern languages in multiple domains. These
ideas are similar in concept to what we pursue in our
research. The difference is that we want to provide a purely
formal framework without or minimal statements regarding
its content (such as types or traits). We want to focus on the
basics behind patterns and structure these so that they can be
applied as widely as possible, although we draw from their
work (and that of others) to supplement the framework with
general recommendations for pattern finding later in Section
VII.

III. SET THEORY – A BRIEF INTORODUCTION
Patterns, despite the term having a rather well established

meaning, come in many shapes and forms and can be of
varying complexity and verbosity. At the most basic level,
they still have one thing in common – They consist of a
number of statements, which are divided into several
different categories of statements (e.g., pattern name,
scenario, problem statement). A pattern is naturally much
more than that, but this rather simple and elementary
commonality is sufficient to begin building a framework
from. A framework is a structure, an empty container that
facilitates working with its contents (whatever these might
be) in a consistent and organized way. In our case, this
container should facilitate organizing and referencing
patterns. Set theory is a mathematical method that allows
organization of objects or data into so-called sets. Thus, if we

understand patterns as collections statements in different
categories, the connection to set theory becomes evident
when we replace the word ‘categories’ with ‘sets’. In the
following paragraphs, we will outline the basics of set theory
and highlight some of its advantageous attributes that we will
use to build the pattern framework.

A set is an abstract, mathematical entity that contains
other entities. These contents can either be sets themselves or
singular, irreducible entities – so-called elements. Sets that
are themselves contained in another set are called subsets of
the set(s) they are part of (their supersets). Let us illustrate
these considerations via the following example set S:

 S = {a, {b, c}} (1)

Sets are commonly denoted via curly brackets (‘{‘ and ‘}’) .
In (1), we see two such sets: The set {b, c} and the set {a, {b,
c}. The former is contained in and thus a subset of the latter.
Therefore, we can say that {b, c} is a subset of S and that S is
a superset of {b, c}. This can more briefly be expressed via
the symbols ‘⊆’ and ‘⊇’ in the following way: {b, c}⊆S; S
⊇{b, c}. A subset is a proper subset if it is contained in
another set, but there is at least one element that is part of the
superset, but not the subset. In our example, a would be such
an element, which is why we can furthermore state that {b,
c} is a proper subset of S. We write this as: {b, c}⊂S. The
fact that a is an element of S can be expressed via the symbol
‘∈’ in a similar fashion as: a∈S. A set of non-empty
subsets is called a partition, if each element of the superset
lies in exactly one element of the set of subsets. The set
{{a}, {b, c}, {d}} is a valid partition of the set {a, b, c, d}.

Sets are defined by their contents and one set is identical
to another if every element of the former is also an element
of the latter. The order of these elements does not matter.
Consider the following examples:

 {b, c} = {c, b} (2)
 {a ,{b, c}} ≠ {b, c} (3)

The sets {b, c} and {c, b} both contain the same elements, so
they are identical. The variable a is contained in {a, {b, c}}
but not in {b, c}, so these two sets are not identical. Via
rather simple operations we can distinguish sets from each
other via their contents and make statements regarding these
same contents. These operations can be used to distinguish
patterns from each other and structure their contents via
subsets.

Two other very useful aspects of set theory, which we
will employ later on, are ordered sets and the empty set. As
mentioned before, the order of the elements in a set is usually
irrelevant. Ordered sets can be used to arrange contents in a
certain order. To distinguish them from regular sets, they are
denoted by angle brackets (‘<’ and ‘>’). On a technical level,
ordered sets are regular sets, where the order is determined
by the number of subsets a certain element is part of. So the

43

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ordered set <a, b, c> would really be the regular set {{a}, {a,
b}, {a, b, c}}. a is contained in three subsets, b in two, and c
only in one, which results in the order of a, b, c. Let us
illustrate this further via the following examples:

 <a, b> ≠ <b, a> (4)
 {{a}, {a, b}} ≠ {{b}, {b, a}} (5)
 {{c, a}, {b, a, c}, {c}} = <c, a, b> (6)

The formula in (4) demonstrates that order is essential in

ordered sets and (5) shows why that is the case, since the
regular sets in (5) are simply the equivalents to the ordered
sets in (4). (6) is meant to emphasize, that the order of the
elements in the regular sets does not matter, only their
frequency of occurrence does. The utility of being able to put
things into sequence is very useful and we can use this to
capture problems and the sequence they occur in. It can also
be used to map the hierarchy of patterns as sequences from
higher to lower level patterns.

A set is an abstract entity. It is defined by its contents but
not identical to its contents. It is more than the sum of its
elements. Therefore, the following is true:

 a ≠ {a} (7)

While a is an element of the set that contains only a, it is not
identical to that set. The set itself is a separate entity. An
interesting consequence of this is that we can talk about sets,
regardless of whether they actually contain anything. There
is exactly one set, which does not contain any elements, and
it is called the empty set (usually denoted by ‘∅’ or ‘{}’). The
empty set is a very versatile tool and can be used to, e.g.,
handle blank fields in a pattern (e.g., an incomplete pattern
without keywords)

At this point, we should mention again that the pattern
framework is intended for a wide range of individuals from
all kinds of backgrounds. Depending on the reader’s
background, this section might have seemed either a bit
complicated, or rather elementary for what can be considered
a substantial section of this paper. The most important things
to keep in mind for now are:

• regular sets to cluster and organize information
• ordered sets to put information into sequence
• the empty set to handle empty categories

And with that, we have covered elementary set theory to a
sufficient degree, so that we can now shift our focus onto the
patterns themselves.

IV. PATTERNS IN GENERAL

A. Patterns and Pattern Sets
Now that we have provided an overview of elementary

set theory and the components that we intend to employ, we
want to go more into detail regarding patterns, pattern
languages, as well as some of the concepts behind them.
Beginning with the basic term “pattern”, Alexander [2]

characterized patterns in that “each pattern describes a
problem that occurs over and over again in our environment,
and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times
over, without ever doing it the same way twice.” In order to
fulfill this requirement, patterns are usually held to some
minimum standards of what they and their structure should
contain. Probably the most common one is the structure
suggested by Borchers [7] and van Velie [5], who suggest six
main pattern elements: name, forces, problem, context,
solution, and examples. Existing pattern structures come in a
variety of levels of complexity – from detailed ones with a
large number of subcategories [4] to comparably simplistic
ones [12] with a small number of subcategories. So on a
basic level, patterns can be understood as a structured
assortment of statements. The statements contained in each
instance of such a structure form a whole that provides a
solution to a specific problem, describing both in detail to
facilitate reapplication of the solution. It is this structure that
we build into a framework via set theory.

A pattern language is a complete hierarchy of patterns,
ordered by their scope [12]. Patterns can be divided into
high- and low-level patterns [7], depending on the scale of
the problem and its solution. High level patterns are more
abstract and deal with larger scale problems. Low level
patterns are more concrete and focus on smaller problems or
parts of problems. In that sense, low level problems can be
part of high level problems, which means that low level
patterns can address or further specify problems from high
level patterns. The distinction between high and low level
patterns is not a strict one and depends on the respective
individual’s or group’s perception of the degree of
abstraction of a certain problem. In software engineering, the
lowest level patterns are also referred to as idioms. Idioms
contain very concrete solutions – mostly actual code snippets
– that address very small scale coding problems.

In addition to “regular” patterns, there are also other
types of patterns. The most notable of these are anti-patterns,
which differ from regular patterns in that they do not
describe a proven working solution to a problem, but rather a
solution that is proven not to work or not work well. They
follow the same structures as regular patterns, but instead of
best practices they describe bad practices that should not be
replicated. Since they describe solutions to reoccurring
problems just as regular patterns do (with the delineating
factor that the described solution should be avoided instead
of replicated), a framework suitable for regular patterns
should also be suitable for anti-patterns. In the framework, it
will be possible to represent all these different pattern types.

V. THE BASIC FRAMEWORK
We now translate these concepts into a basic set theoretic

structure. We do so by employing mostly regular sets,
ordered sets, and subsets. Note that the following analysis
would work for any number of statements that is or can be
structured in a similar way, which includes most, if not all,
pattern structure (such as, e.g., the design patterns template
laid out by Gamma et al. [4]). We chose to base our analysis
on a concrete example, a Contextual User Experience (CUX)

44

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pattern structure by Krischkowsky et al. [8] (see Table 1), in
order to give a more current and less software engineering
centered example. As noted previously, the following set
theoretic analysis would apply to any other similarly
structured assortment of statements (in this case most – if not
all – imaginable pattern structures).

TABLE I. CUX PATTERN STRUCTURE [8]

Instructions on Each Pattern Section

Section
Name

Instruction on Each Section

1 Name
The name of the pattern should shortly describe the
suggestions for design by the pattern (2-3 words
would be best).

2 UX
Factor

List the UX factor(s) addressed within your chosen
key finding (potential UX factors listed in this section
can be e.g., workload, trust, fun/enjoyment, stress...).
Please underpin your chosen UX factor(s) with a
definition.

3 Key
Finding

As short as possible - the best would be to describe
your key finding (either from an empirical study or
findings that are reported in literature) in one
sentence.

4 Forces Should be a detailed description and further
explanation of the result.

5 Context Describe the detailed context in which your chosen
key finding is extracted/gathered from.

6
Sugges-
tions for
Design

1) Can range from rather general suggestions to very
concrete suggestions for a specific application area.
2) The design suggestions should be based on existing
knowledge (e.g., state of the art solutions, empirical
studies, guidelines, ...). 3) More than one suggestion
are no problem but even better than only one.
4) There can also be a very general suggestions and
more specific “sub-suggestions”.

7 Example

Concrete examples underpinned by pictures, standard
values etc. Examples should not provide suggestions
(this is done in the suggestion part) but rather
underpin and visualize the suggestion presented
above.

8 Key-
words

Describe main topics addressed by the pattern in
order to enable structured search.

9 Sources Origin of the pattern (e.g., literature, other pattern,
studies or results)

The pattern structure shown in Table I consists of nine

categories. This means that each pattern generated in this
structure will consist of various statements in each of these
nine categories. We now want to generate an actual pattern
language set, let us call it CUX Language (and refer to it as
CL for brevity’s sake), based on the structure outlined in
Table 1. We can do so by introducing nine subsets (i.e., sets
of the set CL) CL1 to CL9, each subset corresponding to one
of the nine categories (from Name to Sources, respectively)
described above. This is what the initial structure looks like:

 CL: {CL1, CL2, …, CL9} (8)

At this very basic level, a pattern structure is nothing
more than a set consisting of a number of (as of yet empty)
subsets. To distinguish the CL-subsets from each other, they
can be filled with a sequence of numbers reflecting the
number of categories or actual text strings of the category
labels. For the CL from our example above, the simplest way
to achieve this would be to fill them with the numbers 1-9.
For now, the actual contents of the CL-subsets only matter
inasmuch they are distinct from each other and allow
reference later on. The number of subsets depends on the
number of distinct categories each individual pattern of the
structure is supposed to have. This structure can be adapted
for other pattern structures, by adapting the number of
subsets accordingly.

After having defined the pattern structure, we now also
need a set-theoretical representation of the individual
patterns. Since we assumed patterns to be statements
arranged in certain categories (sets), we now assign said
statements to each of the nine subsets for CL. We start out by
assuming a set that contains all these statements; we define it
as follows:

 S: {S1, S2, …, Sn} (9)

We obtain a pattern by simply assigning certain elements of
S to each subset of CL. For this purpose, we introduce a
function p from a subset of the set of statements S into CL
into a partition Sp of the sets of statements S:

 Sp = {Sx1, …, Sxn} = S (10)

 pi: CL à Sp (11)

 Pi = ∑ pi(CLj) (12)
 CLj⊂CL

What happens here is that each subset of CL (CL1 to CL9)
gets filled with actual content by having a certain number of
statements (i.e., part of the partition of S) assigned to it.
Partitioning S ensures that none of the categories remain
empty, i.e., that the pattern is complete. Note, that we use the
term ‘statement’ in the loosest sense, so it can refer not only
to full sentences, but also to single words or sequences of
words, which are not full sentences, or even images.
Therefore, partitioning S into clusters of sensible information
(= subsets) is a necessary step that should be reflected in the
formal analysis. The relation pi determines the assignment of
one subset of Sp to each subset of CL (CL1 to CL9 in our
example). The actual pattern is the sum of all values of pi
returned for all values CLi ⊂ CL, viz. all categories of the
pattern structure (CL1 to CL9 in our example). The results is a
set of i number ordered pairs, which, in our example, might
look like the following:

 P1 ={<CL1, Sx1>, …, <CL9, Sx9>} (13)

Note that the P1 above is only one possible example out of
many. The actual values assigned by pi are left undefined in
this framework, since this depends on the context and
proposed content of the individual patterns. The framework

45

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

should be flexible and widely applicable, so the actual
pattern generation must be left to the domain experts. We
can use the pattern relation to generate as many relations p1
to pn as we need, and thus to generate n number of CL-
patterns Pn.

We can apply this analysis to any other similarly
structured pattern language PL and its subsets PLi, thus
granting us a basic structure of patterns as collections of sets
of statements. Of course, simply arranging patterns into sets
and subsets does not in itself guarantee that any of these
patterns are actually useful or reasonable. But that is also not
the purpose of the framework at this stage. What this
analysis can tell us is (a) the pattern language or structure PL
(CL in our example) the patterns are generated in, (b) how
many statement categories (viz., subsets of PL) a successful
pattern generated in that language must contain, and (c)
which statements can be found in which category, i.e., the
patterns themselves (Pi). As we can see, this elementary
analysis has already yielded a quite flexible starting
framework, via which we can express a pattern structure,
partition the information to be transformed into a pattern, and
relate that information to the pattern structure. Most
importantly, building the framework did not require us to
reference the actual contents of S or its subsets, meaning that
it is – at least so far – applicable independently of its
contents or the context it will be used in.

VI. DESCRIPTORS
Even at this elementary level, we can do more than

merely put statements into a certain structure and add them
to a collection of similar statements. We can also lay the
groundwork for the relations between individual patterns of a
certain collection. A pattern collection is more than an
unstructured assortment of statements and needs some kind
of inner structure. At this point, there are three important
aspects that an individual CL-pattern does not tell the reader
at this stage, but which we can capture even at this basic
formal level. These are (a) which other patterns might be
useful or even necessary for a given purpose, (b) exactly at
which point during a given task or activity and (c) in which
order will they be needed. A design pattern for, e.g., menu
depth might sensibly be followed by a pattern for
hierarchical structures, and preceded by a pattern for menu
types and their suitability. But with only one pattern at hand,
one can only guess what else they might need upon being
presented with only a single pattern or depend on prior
experience. It would be undesirable and arguably defeat the
purpose of patterns, if extensive meta-knowledge were
necessary to be able to use them successfully. Patterns
usually contain references to other patterns as a separate
field, though the reliability of this depends on the respective
pattern collection. To capture (a), (b), and (c) on a more
general level, why we enrich the basic set theoretic
framework with specialized descriptor sets, which serve to
understand patterns in context with each other. These will
allow us to add an additional layer of expressiveness and
flexibility to the language.

At its core, a descriptor is nothing more than an ordered
set containing several subsets with patterns. By employing

ordered sets, we can distinguish its subsets solely by virtue
of which position they have within the ordered set. The
general idea is to use this property of ordered sets to
implicitly add auxiliary information to any given pattern
collection, simply by arranging that collection in a certain
order. That way, the general structure of a descriptor set
needs to be defined only once and one can add additional
information to a pattern collection by arranging them in a
certain order according to the descriptor. Let us illustrate the
basic idea via an example descriptor set. Remember that
angle brackets (‘<’ and ‘>’) denote an ordered set, as
opposed to regular sets, which are denoted by curly brackets
(‘{’ and ‘}’).

 DE = <{P1, P2, P3, P4}, {P5, P6, P7}> (14)

Assume that there is a pattern collection that consists of

seven patterns. Of these, four are regular patterns and three
of them antipatterns. We can now define a descriptor as an
ordered pair consisting of exactly two subsets. The first of
these subsets contains only patterns, the second contains only
antipatterns. By applying this knowledge to DE, we learn that
patterns P1 to P4 are regular patterns, and that P5 to P6 are
antipatterns. We have thus provided an easy way to
categorize patterns as regular patterns and antipatterns, that
can be applied independent of context, and which is as
simple as arranging the patterns in a certain order.
Furthermore, we have added information to the pattern
collection without having to edit the patterns themselves.
(Please note that whether a pattern is a regular one or an
antipattern is usually considered essential information and
already part of the pattern itself. This is merely an illustrative
example that employs two obviously distinctive pattern
attributes). In the framework, we will use this structure to
make a more general distinction of mandatory vs. optional
patterns (see Section VI.B).

Structuring the pattern collection in this way allows for
added efficiency when generating new collections, and also
facilitates sharing and consolidation of pattern collections.
E.g., if one would program a pattern database in this
framework, new pattern collections can be categorized by
arranging the pattern labels in a certain order, mandated by
the predefined descriptor sequence. Similarly, new patterns
can be added and enriched with information by simply
assigning them to an appropriate subset of a descriptor. One
could even consolidate patterns from different sources and/or
authors into one collection and categorize them by simply
arranging them in a certain order. There are often many
pattern collections dealing with similar topics yet the
valuable knowledge in these patterns is often difficult to
consolidate, simply because pattern approaches vary so
much.

Therefore, we view the added advantages gained by
adding descriptors as an important quality of the framework
and a necessary step towards a pattern framework that
facilitates exchange both within and between disciplines. In
the following subsections, we will build a standard descriptor
set structure in a step-by-step manner. To begin, we postulate
a descriptor as an ordered set, which consists of a number of

46

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

subsets that contain either individual statements or sets of
statements.

A. Targets
One single problem rarely occurs in isolation, but is

instead often part of a higher-level problem or occurs while
trying to achieve a certain overall goal. These are often
nothing more than a single sentence or a few words, but they
serve as a good overall indicator about where to find a
solution to a particular problem one may have. E.g., a
programming pattern might be part of the larger problem of
trying to avoid pointer errors in C++. Another example
would be Tidwell [12], who structured their design patterns
as part of several categories, such as “Organizing the
content” or “Showing complex data”. One individual pattern
can conceivably be part of several such higher-level
problems or be used in similar or different context to achieve
different goals. This is different from the problem described
in a pattern, since a given high-level pattern could very well
reference a lower-level problem that addresses a different
problem, while both serve the same general purpose. In the
following, we will label these high-level problems or overall
goals Targets (or T for short).

Finding, iterating and validating patterns is a lengthy and
multi-stage process. Whereas finding a new context a pattern
can be used in might be as simple as trying to apply it and
succeeding. This is were Targets as separate and
standardized entities come in very handy. The Target(s) of a
pattern should not be part of the pattern itself, since that
would entail having to change and subsequently revalidate a
pattern each time a new application possibility for it is
discovered. Instead, Targets are separate from the actual
patterns, which can be assigned or mapped to them. This
allows reusing and reapplying patterns (one of their key
aspects) in different contexts without having to modify the
patterns themselves each time. Whenever a new application
for a certain problem strategy is found, a new Target
expressing that application area can be created and the
pattern (or several) assigned to it. Due to their general nature
and labeling function, Targets are the first entities that will
be part of our standardized descriptor structure. This is also
one of the reasons why we postulated descriptors as
containing either statements or sets of statements. Each
pattern in this framework is, per definition, a set of
statements. But not everything, which might be a sensible
addition to the descriptor, is necessarily a pattern (such as
Targets). The first set of statements in a standardized
descriptor set is thus always an expression of the Target of a
pattern collection. At this point, the descriptor structure looks
like:

 D = <T> (15)

‘T’ is a placeholder for a set containing one or several

statements, so a descriptor at this stage could read, e.g., DE =
<{S37}> or DE = <{S28, S29}>. Of course, a Target without
any patterns is rather useless, so we need to add these to the
descriptor as well.

B. Mandatory and Optional Patterns
The second subset in the descriptor will contain the

actual patterns that are supposed to contribute to the Target
expressed in the first set. However, there is one important
distinction that we can make at this stage, which consists in
separating the patterns into mandatory and optional patterns.
Patterns can be part of solutions to higher-level problems and
are ideally applicable in similar contexts. It is reasonable to
assume that a high-level Target might cover a high-level
context and thus a range of several low-level contexts. But
not all of these low-level contexts might be similar enough to
be interchangeable, thus excluding some patterns depending
on which subcontext it is applied to. In addition, solving one
problem via a pattern, might (and often will) pose a new
problem, for which there are several possible solutions (and
thus, several possible patterns).

To illustrate the concept of mandatory and optional
patterns via a brief example, assume that we design an
interface and want to display items and their contents on
screen at once. We decide to take a look at Tidwell’s pattern
[12] collection and find a pattern titled “Two-Panel
Selector”, which suits our needs. Following the pattern
solution, we divide our interface into two parts; one showing
the items, and the other their contents. We then find that our
item structure is multi-layered and rather complicated, and
that two panels are not sufficient to display it in an adequate
fashion. Conveniently, we find a pattern section that contains
solutions for displaying complex data. Among these, we find
a pattern showing the use of cascading lists and another
showing the use of tree-tables. Depending on other
considerations (e.g., horizontal space, consistency with the
rest of the interface), we will then decide for one of the two
solutions, but very likely not both. They are two solutions for
a similar (and in our case the same) problem and we are free
to choose the one we deem more appropriate for our purpose.

If, however, it is – for whatever reason – impossible or
undesirable to separate the patterns into mandatory and
optional ones, the set of optional patterns can also simply be
left empty. Since the empty set is an abstract entity, these
standardized descriptors will always remain compatible with
each other. Even when one ore several of their subsets are
empty, the number of these subsets never changes. Thus, the
standard sequence and meaning of each subset is preserved,
regardless of whether any of its preceding subsets is empty
or not. Again, we further illustrate this via example
descriptors:

 DE

1 = <{S37}, {P1, P2}, {P3}> (16)
 DE

2 = <{S38}, {P1, P2, P3}, {}> (17)

Both of these example descriptors are of the same

structure. They differ in that they have two different targets,
and that P3 is an optional pattern in DE

1, and a mandatory
pattern in DE

2. They both have the same number of subsets,
so if we were to add another set to the descriptor set, we
could so without worrying about potentially empty set, since
the sequence is preserved.

47

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. References to other pattern collections or other sources
Patterns are not the only things that can be considered

optional when tackling a problem. Other sources and
references are often needed as well. Patterns usually contain
references to sources they draw from, aside from references
to related patterns from the same pattern collection. But there
is additional benefit when these references are added at the
descriptor level. That benefit is flexibility. The descriptors
are not part of the patterns themselves and can be generated
at any time, once a pattern collection is available. Thus, any
information that can be added by modifying the descriptor
does not necessitate modifying the patterns contained in the
descriptor. Thus, a seemingly outdated pattern collection can
be updated ex post, by generating descriptors containing
references to material that was not available at the time the
patterns were originally generated.

The same can be done with patterns from other pattern
collections that handle similar issues. Patterns from other
pattern collections can be added to the set of optional
patterns. Since the descriptor allows inclusion of any set of
statements, this could, in semantical terms, be the full pattern
or merely a link to its website or bibliographical reference.
Even if the CL-structure of both pattern collections were the
same, the pattern relations pi would be different. This means
that the “foreign” patterns would not be part of the set of
patterns Pi and, thus, are merely sets of statements and easily
distinguishable from one’s own patterns. The descriptor
structure allows consolidation of knowledge from different
sources and goes beyond the possibilities gained by
referencing only within the patterns themselves.

We show how such references might work via another
brief example: Assume that we intend to design a car
interface, for which we have our own car interface design
pattern collection. While designing, we notice that the
interface structure has become very deep and rather difficult
to navigate. We now intend to solve this problem by either
reducing the menu depth or presenting the information in a
more effective way, but cannot find an appropriate pattern in
our collection. However, we find such solutions in other,
more generic interface design pattern collections. One of
these turns out to be particularly to our liking and can be
easily applied without any modifications. Both pattern
collections were printed and published several years ago, so
a revision would not be a trivial task and require substantial
effort.

Then, we decide to collect our car design patterns in a
database and arrange them via descriptors. To keep the
required effort at a minimum, we add the patterns simply as
uniquely identifying labels for the original patterns. The
resulting database allows us to search for design problems
via their Target. We create on descriptor, which has
“Designing car interfaces with high menu depth” as its
Target and reference the foreign pattern we found in this
descriptor. Thus, anybody who faces the same problem and
uses the database will know that there is a different pattern
collection that provides a solution to a certain subproblem.
Such information is normally either included when a pattern
is generated or not at all. With the descriptor structure, it is

as simple as new descriptor. We can include newly created
patterns by inputting them directly or referencing them, as
well as draw from knowledge from related fields by
referencing other patterns in this way.

By adding the two additional subsets for mandatory and
optional patterns and references to the initial descriptor
structure, the updated descriptor structure is:

 D = <T, M, O> (18)

D. Pattern Sequence
Finally, problems do not always occur at random, but can

appear in a certain sequence. Thus, a solution to one problem
might be followed by another solution, dictated by the
underlying sequence of problem occurrence. This might be
as simple by one problem followed by the other, or it could
also reflect a hierarchical structure of high to low-level
problem solutions, where depending on how a higher-level
problem is solved, different lower-level problems occur. We
can find such sequences, e.g., in Breitenbücher et al. [25],
who propose a method to organize low-level solutions (so-
called idioms) in sequence, while taking into consideration
the preceding idioms.

To handle sequences at the descriptor-level, we add
another subset to the descriptor. The purpose of this set is to
put our patterns and other information into a sequence;
therefore, we label this additional set S, which overlaps with
the previously introduced sets M and O. Since S is supposed
to handle only sequences, it would make little sense for
something to be part of S but not of M or O. Therefore, we
postulate that every element of S must also be element of
either M or O. Unlike T, M, and O, S is not a regular set but
an ordered one. Since the order of their contents does not
matter for regular sets, but does matter for ordered sets,
arranging the contents as an ordered set is a simple and
efficient way to express a sequence.

If we wanted to express that, e.g., P1 from DE
1 above

would be needed after the solution described in P2, we could
add the sequence set <P2, P1> to it and arrive at the
following descriptor DE

3:

 DE

3 = <{S37}, {P1, P2}, {P3}, <P2, P1>> (19)

As we can see, the sequence set contains nothing that is

not also in M or O, and merely puts some (but not all) of the
parts of the pattern collection into sequence. We can use the
sequence set to not only express linear sequences, but also
hierarchical structures. Assume, that we have one high-level
pattern P1 and a number of low-level patterns P2 to P7. P1
proposes three possible solutions to the high-level problems.
Depending on which solution is chosen, new low-level
problems occur that are described in P2 to P4. Each of these
solutions is then followed by another set of possible
problems, described in P5 to P7. We can express this
hierarchical structure via the following sequence set SE

1:

 SE

1 =<{P1}, {P2, P3, P4}, {P5, P6, P7}> (20)

48

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. The Descriptor structure

D: <T, M, O, S>

D: Descriptor – contains 4 subsets

(contains 4 subsets, ordered set)
T: Target

 (contains a finite set of statements, regular
subset of D, may not overlap with M or O)

M: Set of mandatory patterns
 (contains a finite set of CL-patterns, regular
subset of D, may not overlap with T or O)

O: Set of optional patterns and references
 (contains a finite number of sets of statements,
regular subset of D, may not overlap with T or
M)

S: Sequence set
 (contains a finite number of sets of statements,
ordered subset of D, every element of S must
also be element of M or O)

The contents of SE
1 represent a hierarchical structure

from high to low. Since the contents of SE
1 are regular sets,

the order within these sets does not matter and they can be
considered as being of the same level. We can use the
sequence set to specify such a hierarchy even further. If we
know which low-level problem leads into which, we could
also formulate the alternative descriptor SE

2:

 SE

2 = <{P1}, {<P2, P5>, <P3, P7>, <P4, P6>}> (21)

In SE

2, we find P1 is still the highest-level pattern and can
see additionally the sequences between the individual
patterns from the lower-level subsets. While it might not be
immediately obvious, the three-level structure from SE

1 is
also preserved in SE

2, since the first element of each ordered
pair in SE

2 is also an element of the middle set in SE
1.

E. Adding it up
By combining all of the sets T to M, we arrive at the

following, final descriptor structure:

 D = <T, M, O, S> (22)

Target, mandatory patterns, optional patterns and

references, as well as the sequence set allow for a good
amount of expressive possibilities. We will once again
illustrate the potential use of the final descriptor structure via
a simple example. Assume that we have four patterns, which
would help us in conducting a user study in the car. P1, P2,
and P3 are patterns to reduce user distraction and part of our
own pattern collection. We have also access to another
pattern about processing the data gained from the study. This
pattern, we label it PF

1, was generated in a different pattern
structure and is, therefore, not part of our patterns Pi. We can
now specify which of these patterns we want or need and in
which order by introducing a descriptor. To do that, we need
to specify the contents of each of its subsets. We further want
to express that we definitely need P1 and P2, as well as PF

1
and that the DL-pattern will be needed after the CL-pattern.
We thus arrive at the following example mandatory pattern
set ME:

 ME: {P1, P2} (23)

We also know that P3 has proven useful in several similar
cases in the past, but not in all of them, so we consider it as
an optional pattern. Having one optional pattern (P3) and one
foreign pattern (PF

1), gives us the following example set OE:

 OE: {P3, PF

1} (24)

We further know that P3, should it be needed, is always
needed after P1. P2, on the other hand, has no fixed position
in the sequence, but occurs after P3 in a few specific cases.
PF

1 is always needed last. This results in the following two
sequence sets:

 SE
3: <P1, P3, PF

1> (25)
 SE

4: <P1, P3, P2, PF
1> (26)

But how do we now specify which of these sequences is
the appropriate one for a given scenario? Since patterns are
created for a certain purpose, we need to map each sequence
to its most appropriate purpose We can specify this via the
Target, which contains the general purpose or overall
problem of a collection of patterns. We can now introduce
two targets, TE

1 and TE
2, with TE

1 outlining the general high-
level problem and TE

2 specifying the contexts in which P3 is
followed by P2. These can be any statements; in our example
we specify them as the sets {S1} (for TE

1) and {S1, S2} (for
TE

2). As a result, we get the following two example
descriptors DE

3 and DE
4:

 DE

3= <{S1}, {P1, P2}, {P3, PF
1}, <P1, P3, PF

1>> (27)
 DE

4= <{S1, S2}, {P1, P2}, {P3, PF
1}, <P1, P3, P2, PF

1>> (28)

In addition to being able to specify the relations between

patterns from a single pattern language, we are not confined
to that single pattern language. Furthermore, we can describe
hierarchical and sequential pattern structures from different
domains and pattern languages in the same framework.

Figure 1. The Pattern Framework – a high-level overview

 Target Descriptor

Pattern Collection
or Language

Patterns

specify

assign

create from

49

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Furthermore, patterns can be clustered and applied for
different purposes in an efficient manner by simply altering
the structure of these pattern clusters, and without having to
change the patterns directly. By adding one additional layer
(targets and descriptors) to what was already available
before, we have arrived at a highly modular and flexible
pattern framework. Figure 1 provides an overview of the
interrelation of pattern languages, patterns, descriptors, and
targets. Figure 2 contains a summary of the standard
Descriptor structure.

Descriptors can be generated on an as-needed basis,
which means that they can be used to categorize the initial
pattern collection, as well as update it with additional
information, to keep a pattern from becoming outdated
quickly without being cumbersome to maintain. Most of the
information is contained in the patterns themselves, but we
tried to elevate information that might change or be in need
of frequent updates to the descriptor-level. This makes
expanding and updating pattern collections easier, since most
of these changes will require either changing or generating
descriptors, which are nothing more than strings in a
predefined sequence. This approach has the additional
advantage that descriptors can be used to consolidate
knowledge from different sources, since the descriptor
structure is based solely on the set theoretic framework and,
therefore, not bound to any particular field or context. We
have thus provided a framework that is formally sound,
based on only elementary mathematical principles, flexible
regarding its content, and with additional means of
referencing and consolidation via the descriptor structure. In
order to actually use the framework for structuring patterns,
however, one still requires a means to collect and structure
data regarding working solutions. We provide some general
recommendations on how to do that in the following section.

VII. ADDING THE CONTENT
We mentioned in Section V that the pattern relation pi is

left undefined in the framework and is only specified insofar
as it is a relation from CL into Sp. Similarly, the specifics of
the partitions in Sp are undefined since these vary depending
on pattern structure and content. This ensures flexibility of
the framework, but it also means that actually generating
patterns cannot be done with only the framework itself. The
framework ensures consistency and easier means of
referencing and consolidation across domains, disciplines,
and pattern languages. The pattern framework is intended for
a wide audience, which includes those who are not yet
familiar with pattern approaches but would want to apply
them in their field. Therefore, we use this section to provide
a consolidated overview of some of the literature regarding
pattern generation, to supplement the formal framework.
This is not meant to be a comprehensive summary, but a
general aid to generate meaningful patterns in this particular
framework. In the following sections, we mainly draw from
Meszaros and Doble’s [9] pattern language for pattern
writing, Winn and Calder’s [10] pattern language for pattern
language structure, and some of Borchers’ [7] considerations
regarding pattern generation.

A. Defining the structure
One of the primary steps when beginning to build a

pattern language – and elementary to partitioning the
statements that will later constitute the individual patterns –
is to define the pattern structure. By that, we do not mean the
relations or hierarchy between patterns, but rather the
number of sub-categories or fields of each pattern. Pattern
structures exist in a wide variety of granularity. Tidwell’s
[12] pattern structure is minimalistic but effective, with only
six subcategories (what, use when, why, how, examples, in
other libraries), whereas the structure introduced by Gamma
et al. [4] propose 13 subcategories for each of their patterns.
The exact number of subcategories should be decided on
individual needs, preferences, and also available resources
(more subcategories = more complicated and longer pattern
mining process). However, there are a few basic
subcategories, which each pattern structure should contain.
We present these, together with the reasons why we consider
them to be essential, in the following.

Name: Patterns should be uniquely identifiable, so that
they can be referred to and structured with regard to other
patterns. Therefore, each pattern should have a unique name
that clearly distinguishes it from other patterns. It is
furthermore helpful if that name is not obtuse or even
presents an image of the suggested solution in the reader’s
mind (Meszaros and Doble refer to this as an “evocative
pattern name” [9]).

Problem: One of the major distinguishing features of
patterns is their problem-centric nature. If the pattern does
not present a solution to a (reoccurring) problem, then it only
provides general guidance and serves the same purpose as a
guideline, but without the comprehensive character a
guideline usually provides. Therefore, a separate description
of the problem is considered essential for a successful
pattern.

Context and/or Forces: Patterns contain proven,
working solutions, which means that these solutions solved
the problems in particular cases. Therefore, understanding
and documenting this context is elementary for being able to
decide whether a particular solution is suitable for a different
(even when similar) context. Forces are the aspects of the
context that the solution is supposed to optimize. They are
important, but not always considered as separate pattern
subcategories (e.g., [1], [12]). Therefore, we only consider
one of them as essential – unlike Borchers [7] and van Velie
[5]. The bottom line is that each pattern should, at the very
minimum, contain some kind of description of its context as
a separate entry – whether it be context or forces (or both).

Solution: A seemingly obvious point that is never the
less worth pointing out. Each pattern should contain a
description of the actual solution as a separate entry. This is
not the same as a simple screenshot of a working example,
but rather a detailed textual description of the steps taken to
solve the problem in its particular context.

Examples: Since the solution described by the pattern is
supposed to be a proven one, concrete examples (preferably
more than one) should be provided to show the end result of
the implemented solution. These examples are closely

50

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

related to, but not the same as, the solution. They help to put
the general solution into more practical terms and link the
solution to its context. In the case of several implementation
examples being available, they can also aid the designer in
identifying essential commonalities between application
contexts. This can be an additional aid, when a designer is
not sure whether a pattern would be suitable for their
particular context.

A successful pattern structure can have as many pattern
subcategories as needed, though the ones listed above should
be considered a reasonable minimum for any pattern
structure. The minimum requirements we presented here are
very similar to those given by Gamma et al. [4] (pattern
name, problem, solution, consequences), but with slight
extensions and modifications for wider applicability. We
also decided to not include an implementation’s
consequences as a necessary component, since that might be
a confusing concept for patterns outside of areas in which
consequences can be traced more easily (such as in software
code, where changes and the parts they affect can be more or
less fully described).

B. Mining and Iteration
In order to generate meaningful patterns, the solutions

contained therein need to be discovered first. Pattern
generation is a difficult and lengthy process, which usually
occurs in several phases. Köhne [25] describes the pattern
generation process as consisting of the following 8 stages:
pattern mining – pattern writing – shepherding – writer’s
workshop – review by pattern author – collection of pattern
in repository – peer review – pattern book publication. While
this is a good overall summary of how pattern generation or
finding occurs, Pattern creation does not always follow these
exact steps in reality. There is no single accepted method or
process for pattern generation, but there are several useful
recommendations for generating successful patterns by
Borchers [7], Martin [15], Vlissides [17], and others. In the
following, we present what we consider the bare minimum
of what a pattern generation process should entail.

The first step in generating a pattern is recognizing the
problem and its reoccurring nature. There is no standard
procedure for this and Appleton [18] even notes that the best
way to learn how to recognize patterns is to learn from others
who were able to do so successfully. This is why pattern
generation should happen in several stages. Anyone, who has
worked in a certain field for some time, should be able to
eventually spot problems that have manifested themselves
over and over in the past. They might also be able to
recognize certain regularities in the solutions that were
employed to solve the problem in all its past occurrences. To
go from this initial pattern assessment to a complete pattern,
examination and iteration should happen in several steps and
by several people, so that the essence of the solution can be
extracted and adequately described. Furthermore,
reexamination and iteration should be done by several
individuals. These pattern iterators will then rework the
patterns to suit their readability requirements, i.e., the
resulting pattern will automatically be written and formatted
for easier readability for a wider audience. Even if the

pattern started out as a simple assumption about a potential
solution, at the end, the pattern contains the know-how of all
its iterators and a quantitative component that complements
the pattern content. After all, if multiple experts came to
similar conclusions about a problem and its solution, then
this lends support to the assumption that the solution is
indeed a working one and the problem a reoccurring one.
Thus, it can be possible even for people who are
inexperienced in pattern generation to come up with
successful patterns.

Therefore, the most important steps any successful
pattern generation process should contain are (a) problem
identification to define the elementary parts, context, and
eventually the solution; (b) structuration to guarantee a
uniform format, good readability, and completeness of
patterns with the same structure; and (c) reflection and
feedback to examine whether the solution is a working one
and ensure sufficient detail of its explanation to allow easy
application.

C. Piecemeal Growth
This point is based on Winn and Calder’s [10] suggestion

by the same name. They suggest, “if new structure needs to
be added to the system, then add it gradually, piece by piece,
evaluating the effect of the change on the whole.” In their
work, Winn and Calder have applied this to systems
(software, architectural, biological), as well as pattern
languages. In this paper, we adapt their ideas only for the
generation of pattern languages.

Building a full pattern language is a lengthy process,
which begins with a few patterns. As more solutions are
discovered, more patterns can be created, which culminates
in a full pattern language, once a certain number and level of
comprehensiveness of patterns is reached. This means that
new solutions and, therefore, new patterns must be
considered in light of already existing solutions. It is possible
that a new solution is incompatible with an already
established solution, where both problems usually occur
together. In such a case, parameters must be provided that
allow deciding when one or the other solution should be
applied. Similarly, a newly introduced solution might be
superior to a previous solution, rendering its respective
pattern obsolete. This must be reflected in the pattern
language, as they would otherwise seem like equally
effective solutions to the same problem. Therefore, changes
and additions to any existing patterns should occur in small
steps, while re-evaluating the existing patterns in light of
these new additions.

In terms of the pattern framework, this means that newly
generated patterns should ideally entail review and potential
modification of descriptors. Since descriptors allow mapping
patterns to overall goals, modifications to the existing
patterns themselves should seldom be necessary. An initial
pattern collection might only have a single descriptor, since
the patterns are likely to be generated with one overall goal
or problem in mind. However, it is very possible that a new
pattern presents a solution that often, but not always, occurs
with other problems for which patterns are available. In such
cases it is recommended to create to separate descriptors that

51

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cover both cases – those, in which both problems occur and
those, in which they do not. The same is true for conflicting
patterns. These can be put into different descriptors, thus
making these conflicts visible without a need for
modification of any of the patterns themselves. In the case of
outdated patterns, these can simply be left as they are, but
not made part of any descriptor. Therefore, they are still
available for reference purposes, but not part of any
recommended set of solutions.

Cases, such as the ones described above, which
necessitate a restructuring of both new and existing patterns,
can happen at any stage in the pattern language development
process. However, the additional pattern does not necessarily
entail a new descriptor. It could simply be added to an
existing one or prompt the creation of several new ones, all
depending on the individual case. Therefore, the growth of a
pattern language’s complexity cannot be considered linear in
regard to the number of patterns it contains.

The development of a pattern language can be seen as an
organic process, where changes and additions can have wide-
ranging consequences. Therefore, such changes and
additions should happen in small steps, followed by a
reexamination of the pattern collection. In the framework,
this reexamination should almost always happen at the
descriptor-level.

D. Cross Linkage
This point ties in with the previous one and is, once

again, strongly grounded in Winn and Calder’s [10]
suggestion by the same name. They state, “if the system
structure is complex, then overlap and use cross linkages to
capture complexity.” The general idea is that linear or linear-
hierarchical structures cannot be a catch-all for complex
structures. A pattern structure should allow cross-linking and
overlaps between its elements, so that it can support complex
structures.

In the previous section, we explained that even a single
new pattern could potentially entail fundamental changes to
the overall pattern collection. In the framework, this can
manifest itself as the creation several new descriptors or the
vanishing of older, outdated descriptors. In order for this
flexibility to be possible, overlaps and links between the
descriptors must be possible, which is the case for the
framework due to its basis in set theory.

Different descriptors can largely have the same contents,
with only minor differences, to satisfy different Targets. For
example, two descriptors might differ in one only containing
one more pattern than the other, thus dealing with a special
case of the other’s, more general, Target. They might even
be identical regarding their elements, but with different
sequence sets. One of these descriptors could then serve as a
solution to a hierarchical occurrence of the problem, the
other to a differently structured overall problem. Patterns are
supposed to be reused in similar contexts; the descriptors,
therefore, support that reuse and allow multiple occurrences
of the same pattern and overlaps between descriptor
contents. To adequately support the nonlinear growth in
pattern language complexity when new patterns are added, it
is important to generate as many new descriptors as

necessary once new links between patterns or Target
hierarchies are discovered.

It is not uncommon that a pattern language would start
out as a neatly organized string of patterns that all serve one
universal goal. As the language’s complexity grows, so
should its level of detail. A neatly organized descriptor
variety helps structuring and reapplication of patterns for
different contexts. It is also an invaluable aid for efficient
and quick searching and finding of solutions to particular
problems. A designer or practitioner will likely not need the
whole pattern language for any given task, but also not know
which individual patterns they do need, unless they read
through the whole pattern catalogue. By employing the
proposed method, only the individual descriptors need to be
read to identify, whether a patter cluster that provides a
solution to a certain goal or not. Once one is found, the
reader is led through all relevant patterns, their links, and in
the proper sequence via the descriptor’s structure.

VIII. THE FRAMEWORK APPLIED – CAR USER EXPERIENCE
PATTERNS

An actual pattern collection usually takes either the form
of a (often online) pattern database or a printed volume. The
framework was constructed mainly with databases in mind,
since the added flexibility by using descriptors is easier to
realize when existing input can be added to (which is
difficult to do with published paper collections). In addition,
the sets of statements that make up each pattern category are
directly translatable into data fields and the descriptors can
then point to these data. While the framework loses some of
these advantages when applied to a paper-based pattern
collection instead of a database, it is still feasible to use it
for that purpose. In this section, we present an example of a
paper-based User Experience design pattern collection,
which was structured using the universal pattern framework.

The pattern collection consisted of 16 individual
patterns. All of them were about design problems in the car
with the aim to reduce mental workload while interacting
with the interface. The actual pattern finding process is
described in detail in [26]. The resulting patterns all
followed the same structure, which consisted of nine
categories of statements (Name, Intent, Topics, Problem,
Scenario, Solution, Examples, Keywords, Sources). Since
the descriptor still enables structuring towards overall goal
and regarding pattern sequence and status (mandatory vs.
optional), we created one descriptor to serve as an index for
the whole pattern collection.

The overall goal of every pattern was to provide design
solutions that reduce mental workload, so the appropriate
Target became UX Factor: Reduction of mental workload
caused by distraction in the car. ‘UX Factor’ was added
since this is one of several factors that are postulated to
influence UX and to distinguish these from later patterns
that address different influences on UX. The patterns were
findings from scientific works, supplemented with
implementation examples, and iterated in collaboration with
industry stakeholders. Due to this somewhat nonstandard

52

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Car User Experience Pattern Descriptor and Pattern Example

 L1: Name
 .
 .
 .

 L3: Problem Statement
 .
 .
 .

 L6: Solution
 .
 .
 .

 L9: Sources

D1: <T1, {P1, …, P11}, {P12, …, P16},<P5, P6>>

L: Car User Experience Pattern Language Structure
L1-L9: Subcategories of L
P1-P16: Car User Experience Design Patterns
D1: Descriptor mapping all patterns to Target T1
T1: UX Factor: Reduction of mental workload caused by distraction in the car
P1-P11: Mandatory patterns (full implementations exist)
P12-P16: Optional patterns (only partial implementations currently exist)
P5, P6: Sequence indicating solution in P6 depends on solution in P5.

approach, there were some patterns that had more
implementation examples and more straightforward
instructions on how to put their respective solutions into
practice. However, others provided less such examples and
were perceived to be more suited for more experienced
designers. Therefore, this second type of patterns was
considered optional and only for those who have the
necessary skills to put the proposed solutions into practice.

Thus, we described these two sets of patterns via the
descriptor’s sets for mandatory and optional patterns and
references. Finally, there was one pattern that relied on
another pattern from the same collection. Using the solution
in the first pattern could sometimes create an additional
problem, which the second pattern would help to solve. But
it would have been misleading to imply a necessary
connection and write one single pattern for both problems,
since they occur together only sometimes, but not always. In
order to adequately represent this relation, the two patterns

were put into the sequence set to indicate that reading the
first should always entail reading the second one afterwards.
In the text, we indicated this with one sentence between the
patterns explaining the possible link. With all this taken into
account, the resulting descriptor looked as follows:

D1: <T1, {P1, …, P11},{P12, …, P16},<P5, P6>> (29)

This was then transformed into an index. The Target

served as the overall headline, patterns 1 to 11 and 12 to 16
were put into separate subsections, and patterns 5 and 6
were put into sequence and linked explicitly with additional
text between the two patterns. By using the framework
approach, we were able to easily structure the pattern
collection in a meaningful way, even though the framework
contains no information that would be specific to the car or
UX-domains. Moreover, the thusly-structured pattern
collection can still be put into a database, without a need for

Optimal Display Position
…
Information sources are spread
throughout the cockpits of cars
(instrument cluster, center console, …
…
The display position for visual
information is effective when located
within a 20° transit angle (see Fig. 1
and …
…
JAMA Guidelines for in-vehicle
display systems …

L

P3

53

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

any substantial restructuring work, since the set- and
descriptor structures are consistent among all pattern
collections that are based on the framework.

This collection of 16 patterns is part of a prospected
larger collection spanning two more UX factors in addition
to the first one. At the writing of this paper, the pattern
finding process for these additional two UX factors had not
yet been completed. Nevertheless, the end result will be a
collection of several patterns, which are mapped to the three
different UX factors and structured internally via the
framework’s proposed descriptor structure. Figure 3
provides an additional overview of the descriptor structure,
along with an example for how an individual pattern relates
to the pattern structure in the framework. To reiterate, an
individual pattern is a set, which contains several subsets of
statements. A pattern collection or language consists of
several such sets. Descriptors are separate sets, which are
used to map individual patterns to an overall goal, and can
thus be used to structure the pattern set as well as map
lower- to higher-level patterns. There is no a priori limit to
the amount of descriptors that can be created for any given
pattern collection. The number of descriptors depends on the
amount of goals, which are identified and/or deemed
necessary for any given purpose.

IX. DISCUSSION
Next, we discuss the proposed framework, address

benefits, possible shortcomings, and future work potentials.

A. Benefits of using the framework
The framework provides a flexible basis purely by virtue

of its formal features. The basic and uniform structure
enables any adequately structured set of statements to be
considered a potential pattern, so as long as an area or
discipline can satisfy this minimal requirement, it can use the
framework to structure its patterns. This general applicability
also means that the framework cannot serve as a suitable
means to verify a pattern’s (or structure’s) validity or
soundness on its own. What the framework offers is a
consistent basis, which the individual disciplines can build
upon. Pattern languages can be described as partitioned sets
of statements within the framework. As long as the structure
of a certain pattern collection is known, its individual
patterns and sub-parts of patterns can be referenced within
the framework by referencing the appropriate set or sub-set.

Thanks to the descriptor structure, linkage between
patterns and pattern languages within the framework is
possible, even between patterns from different disciplines.
In such a case, the differences in pattern structure must be
known and appropriately modeled in the framework, since it
is very likely that their structures do not consist of the same
sub-categories. Mapping patterns to overall Targets can
reduce redundancy and allows mapping of lower-level
patterns to higher-level goals. The standard structure of
Descriptors allows structuring patterns with regard to priority
(mandatory vs. optional) as well as sequences of problems or
their solutions. Finally, all these features are available on the
very basic framework-level, and are thus not dependent on

any particularities of the actual pattern content or the
discipline they belong to. Thus, the initial goal of the
framework not being bound to any individual discipline or
domain is achieved.

B. The set-theoretic basis and its multi-domain suitability
As initially stated, the framework is intended as a basis

for patterns as a general knowledge transfer tool, suitable for
a multitude of disciplines and domains. However, employing
mathematical methods might seem to limit the framework to
only those disciplines already familiar with such methods,
which is why we briefly discuss the need for this
mathematical basis and its consequences for applications of
the framework. The framework was developed with
databases, as well as paper-based pattern collections in mind.
Therefore, a suitable framework should fulfill the minimum
requirements of consistency and division of information into
separate categories or data fields. This ensures that any
pattern from such a framework can be used as input for a
database, by treating the pattern subcategories as datafields
in the database. By keeping that structure the same for both
database and paper-based pattern collections, compatibility
and consistency between the two is ensured. This also
permits any paper-based collection built in this framework to
be incorporated into a database of the same format.

The formulae in Sections V and VI are accompanied by
explanations, so that the purpose of the theoretical basis can
be understood without necessarily having to understand the
methods themselves. Thus, the framework does not require
knowledge of mathematics or formal methods to be applied,
as long as the separation of patterns into statement categories
and the meaning of the descriptor contents are understood by
the reader. Such an application of the framework would
likely result in a well-structured paper pattern collection, like
the one shown in our example in Section VIII. However, as
example also showed, a paper-based collection loses some of
the framework’s advantages. This issue is inherent to the
medium, as it is generally difficult to update or crosslink
published volumes (short of releasing updated reprints). We
do not think that there is any framework that could solve this
fundamental issue, so the minimum requirement of handling
databases must be fulfilled by anyone who intends to apply
the framework to its full extent.

The set theory employed in this framework is elementary
and based on conventional (Boolean) logic. The reason for
this is, once again, the desire to keep the framework as easy
to understand and handle as possible. But furthermore, we
believe that for achieving the goals outlined in Section I,
conventional elementary set theory is absolutely sufficient,
as we merely arrange statements in sets and a statement is
then either present in a given set or it is not. There are no
degrees involved here that would warrant employing fuzzy
operations or sets. The same goes for other extensions to
conventional logic and set theory: unless they are needed,
they would only complicate matters without adding any
tangible benefit (and since they are often supersets of
conventional set theory, the framework could still be
extended on an as-needed-basis in special cases). A more
complicated underbelly would probably not matter for the

54

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

average reader with an IT-background and who is already
familiar with logic to some degree. But for those with
different backgrounds, it might create an additional hurdle
that we would rather avoid. The framework is rather simple
on a formal level but it achieves what it was meant to do just
as well. In this regard, we see the framework to strike the
best possible balance between necessary skill level of the
user and application possibilities.

C. Finding patterns and descriptors – it’s not that easy
Putting patterns into a meaningful structure is only one

step in any pattern finding process, although a rather
important one. The purpose of this paper was to provide a
basis for patterns as a universal tool, and not a complete
guide for discipline-independent pattern finding.
Nevertheless, if we want the framework to be successful,
then it should ultimately be applied in areas, in which there
have been no (or few) pattern approaches in the past. In
such areas, simply providing a framework without any
guidance on how to actually find patterns would arguably be
of little use. Therefore, we included a number of
recommendations based on existing pattern approaches in
Section VI. We consider these recommendations elementary
enough to be sensible for any pattern collection and,
therefore, a suitable supplement to the framework. On the
other hand, the elementary and general nature of these
recommendations also means that they are, at best,
necessary (but not sufficient) conditions for successful
pattern finding. We acknowledge that the recommendations
given in Section VI constitute a sensible starting point but
not a complete pattern finding guideline, and that more
work on pattern finding (both within and across disciplines)
is needed.

D. Tool support
The framework is, in its current state, not supported by a

tool or any other automated means that could aid the user in
finding patterns or creating a pattern language. The
framework provides a basis that is consistent among
disciplines but most of the necessary legwork still has to be
done by the individuals themselves. This is not something
that cannot be fully eliminated, but a completely unassisted
framework is a lot less accessible than it could be,
esspecially considering our aim of domain-independent
applicability.

There are specialized tools that can aid solution finding
in certain contexts; the EXPLAINER tool by Redmiles et al.
[27][28] is one such tool. Tools like this one might be
reusable in other disciplines as well, but it can be expected
that full tool support from pattern finding to arrangement in
a language, can probably not be handled on a universal level
by one single tool. However, since the basic framework is
essentially a means to structure statements and set them in
relation to each other, there is no reason why it shouldn’t be
possible to simply provide a database input mask that assists
with the most common operations (defining number of
category-subsets, labels, adding the statements, defining

descriptors with predefined subsets, etc.). This is something
that would greatly aid users in applying the framework and
we hope to be able to provide such an aid further down the
line.

E. Wider application
In Section VIII, we provided an example of an actual

application of the framework in practice. The example was
for a paper-based pattern collection, which illustrated how
the descriptor structure can be used for meaningful
categorization within a pattern collection with relatively
little effort. Overall, the example might seem rather
unspectacular, especially since it only resulted in the
creation of one single descriptor. What we did not show was
an actual pattern database that makes full use of all of the
framework’s advantages (most importantly, multiple
descriptors for overlapping pattern sets and reference to
sources or patterns from outside). We intend to use the
framework for many more future pattern collections
(including databases), so that more application examples
will eventually become available. At this point, the
framework is still very new and we do not have a complete
database that would be suitable for demonstration purposes.
However, we do think that the framework is outlined in
sufficient detail in this paper to allow successful application
at this stage and we encourage the community to use (and
criticize) the framework, as only actual use can really show
it suitability (or lack thereof).

X. CONCLUSION
In this paper, we have provided a formal framework that

supports finding and structuring patterns independent of their
domain, field or discipline, supplemented with information
on how to generate actual content (i.e., finding patterns) and
gave an example of an application of the framework in
practice.

In our framework, patterns are separate from descriptors,
which are themselves separate from their targets. This
means, that patterns can be generated as usual and assigned
on an as-needed basis. For the pattern user, this means that
they do not have to scour vast databases of patterns for those
they might need. All they need is to have a look at the
descriptor(s) that is/are assigned to the target they have in
mind. For the pattern provider, there is also the added
advantage existing pattern databases can be expanded with
descriptors, which help make them more usable and reduce
the amount of domain experience and previous knowledge
required in order to employ patterns successfully. The
example we provided in Section VIII is one such case. The
paper version can be made into a database using the same
structure and format. Additional descriptors and/or patterns
can then be added and the collection expanded as needed.

Descriptors can function similarly to references
contained in the patterns themselves (as suggested by
Borchers [7]), but enable additional or alternative references
to other patterns at any time, since they are not actual parts
of a pattern. This means that descriptors can be used to

55

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

describe virtually any pattern set, regardless of which
domain(s) its patterns came from or when the pattern was
created. Not only it is possible to capture the hierarchical
order of existing pattern languages via descriptors, but also
reference patterns from other languages that might fit a
certain purpose. This means that the framework is not tied to
a single pattern language or even a single domain and
permits references to patterns from multiple pattern
languages. The framework still needs to be adopted and used
on a wider scale, in order to prove its suitability in practice.
Nevertheless, due to its general basis and viability for both
pattern databases and paper-based pattern collections, we
consider it an appropriate basis for patterns as a domain
independent knowledge transfer tool. We will use the
framework as a basis for our future pattern collections
(including a pattern database implementation) and further
iterate the framework, as new insights from such use cases
are gained.

ACKNOWLEDGMENT
We gratefully acknowledge the financial support by the

Austrian Federal Ministry of Economy, Family and Youth
and the National Foundation for Research, Technology and
Development (Christian Doppler Laboratory for „Contextual
Interfaces").

REFERENCES
[1] A. Mirnig and M. Tscheligi, “Building a General Pattern

Framework via Set Theory: Towards a Universal Pattern
Approach,” The Sixth International Conference on Pervasive
Patterns and Applications (PATTERNS 2014) IARIA,
Venice, Italy, May 2014, pp. 8-11.

[2] C. Alexander, The Timeless Way of Building, New York:
Oxford University Press, 1979.

[3] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.
Fiksdahl-King, and S. Angel, A Pattern Language: Towns,
Buildings, Construction, Oxford: University Press, 1979.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns: elements of reusable object-oriented software,
Boston: Addison-Wesley Professional, 1995.

[5] M. van Velie and G. C. van der Veer “Pattern Languages in
Interaction Design: Structure and Organisation,” Proc. Ninth
Int. Conf. on Human-Computer Interaction, IOS Press, IFIP,
Zürich, 2003, pp. 527-534.

[6] D. May and P. Taylor, “Knowledge management with
patterns,” Commun. ACM 46, 7, July 2003, pp. 94-99,
DOI=10.1145/792704.792705, retrieved: May 2015.

[7] J. Borchers, A pattern approach to interaction design, New
York: John Wiley & Sons, 2001.

[8] A. Krischkowsky, D. Wurhofer, N. Perterer, and M.
Tscheligi, “Developing Patterns Step-by-Step: A Pattern
Generation Guidance for HCI Researchers,” Proc.
PATTERNS 2013, The Fifth International Conferences on
Pervasive Patterns and Applications, ThinkMind Digital
Library, Valencia, Spain, May 2013, pp. 66–72.

[9] G. Meszaros and J. Doble, “A pattern language for pattern
writing,” Pattern languages of program design 3, Robert C.
Martin, Dirk Riehle, and Frank Buschmann (Eds.). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
November 1997, pp. 529-574.

[10] T. Winn and P. Calder, “A pattern language for pattern
language structure,” Proc. 2002 Conf. on Pattern Languages
of Programs - Volume 13 (CRPIT '02), James Noble (Ed.),

Volume 13. Australian Computer Society, Inc., Darlinghurst,
Australia, June 2003, pp. 45-58.

[11] K. Devlin, The Joy of Sets: fundamentals of contemporary set
theory, 2nd ed., Springer, 1993.

[12] J. Tidwell, “Designing Interfaces : Patterns for Effective
Interaction Design,” O’Reilly Media, Inc., 2005.

[13] A. Dearden and J. Finlay, “Pattern Languages in HCI: A
Critical Review,” HCI, Volume 21, January 2006, pp. 49-102.

[14] S. Günther and T. Cleenewerck, “Design principles for
internal domain-specific languages: a pattern catalog
illustrated by Ruby,” Proc. 17th Conf. on Pattern Languages of
Programs (PLOP '10). ACM, New York, NY, USA, Article 3,
pp. 1-35, DOI=10.1145/2493288.2493291, retrieved: April,
2014.

[15] D. Martin, T. Rodden, M. Rouncefield, I.Sommerville, and S.
Viller, “Finding Patterns in the Fieldwork,” Proc. Seventh
European Conf. on Computer-Supported Cooperative Work,
Bonn, Germany, September 2001, pp. 39-58.

[16] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and F.
Leymann, “Efficient Pattern Application: Validating the
Concept of Solution Implementations in Different Domains”,
International Journal on Advances in Software, issn 1942-
2628, vol. 7, no. 3 & 4, 2014, pp. 710-726,
http://www.iariajournals.org/software/, retrieved: May 2015.

[17] J. Vlissides, Pattern Hatching: Design Patterns Applied
(Software Patterns Series), Addisoin-Wesley, 1998.

[18] B. Appleton, Patterns and Software: Essential Concepts and
Terminology, February 2000 http://www.bradapp.com/docs/
patterns-intro.html, retrieved February 2015.

[19] E. Blomqvist, K. Sandkuhl, “Patterns in Ontology
Engineering: Classification of Ontology Patterns,” Proc.
Seventh Int. Conf. on Enterprise Information Systems (ICEIS
2005), Miami, USA, May 2005, pp. 413-416, retrieved: May
2015.

[20] R. A. Falbo, G. Guizzardi, A. Gangemi, V. Presutti,
“Ontology Patterns: Clarifying Concepts and Terminology,”
Proc. 4th Workshop on Ontology and Semantic Web Patterns
(WOP 2013), CEUR-WS, Sydney, Australia, 2013, retrieved:
May 2015.

[21] M. Poveda-Villalón, M.C. Suárez-Figueroa, A. Gómez-Pérez,
“Reusing Ontology Design Patterns in a Context Ontology
Network,” Proc. Second Workshop on Ontology Patterns
(WOP 2010), CEUR-WS, Shanghai, China, 2010, pp. 35-49,
retrieved: May 2015.

[22] O. Noppens and T. Liebig, “Ontology Patterns and Beyond –
Towards a Universal Pattern Language, “ Proc. Workshop on
Ontology Patterns (WOP 2009), CEUR-WS, Washington
D.C., USA, 2009, pp. 179-186, retrieved: May 2015.

[23] A. Gangemi and V. Presutti, “Ontology Design Patterns,”
Handbook on Ontologies, Second ed., S. Staab, R. Studer
(Eds.), Springer, 2009, pp. 221-243.

[24] E. Blomqvist, A. Gangemi, V. Presutti, “Experiments on
Pattern-based Ontology Design,” Proc. 5th Int. Conf. on
Knowledge Capture (K-CAP 2009), September 2009,
Redondo Beach, California, USA, pp.41-48, retrieved: May
2015.

[25] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann,
“Automating cloud application management using
management idioms,” Proceedings of the Sixth International
Conference on Pervasive Patterns and Applications
(PATTERNS), pp. 60–69, May 2014.

[26] A. Mirnig, A. Meschtscherjakov, N. Perterer, A.
Krischkowsky, D. Wurhofer, E. Beck, A. Laminger, and M.
Tscheligi, “Finding User Experience Patterns Combining
Scientific and Industry Knowledge: An Inclusive Pattern
Approach,” The Seventh International Conference on

56

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Pervasive Patterns and Applications (PATTERNS 2015)
IARIA, Nice, France, March 2015.

[27] D. F. Redmiles, “Reducing the Variability of Programmers’
Performance Through Explained Examples,” Proc.
INTERCHI ’93 Conf. on Human Factors in Computing
Systems, IOS Press Amsterdam,Amsterdam, The
Netherlands, 1993, pp. 67-73.

[28] C. Rathke, D. F. Redmiles, “Improving the Explanatory
Power of Examples by a Multiple Perspectives
Representation,” Proc. 1994 East-West Conf. on Computer
Technologies in Education (EW-ED ’94), Crimea, Ukraine,
September 1994, pp. 195-200.

