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Abstract—Tabular datasets are common in many domains, for 

example science and engineering. These are often not very well 

specified, and are therefore hard to understand and use.  

Semantic standards are available to express the meaning and 

context of the data. However, present standards have their 

limitations in expressing heterogeneous datasets with several 

types of measurements, missing data, and irregular structures. 

Such datasets are abundant in  everyday life. We propose the 

RDF (Resource Description Framework) Record Table 

vocabulary for semantically modelling tabular data, as a 

supplement to the existing RDF Data Cube standard. RDF 

Record Table has a nested structure of records that contain 

self-describing observations, and is able to cope with irregular, 

missing and unexpected data. This allows it to escape the 

constraints of RDF Data Cube and to model complex data, 

such as that occurring in science and engineering.  We 

demonstrate our Excel add-in for transforming data into the 

Record Table format.  We propose a general approach to 

integrating tabular data in RDF, and confirm this approach by 

implementing integration support in the add-in and evaluating 

this in industrial use cases. This semantic support for tables 

helps researchers and data analysts to get the most out of 

available quantitative data with a minimum of effort. 

 

Keywords - semantics; table; spreadsheet; e-science, 

integration. 

I.  INTRODUCTION  

 Tabular data are common in many domains, for instance 
science and engineering.  Tools to handle such data, such as 
spreadsheets, are extremely popular because of their 
flexibility and ease of use. However, this flexibility often 
leads to data being ambiguous or even incomprehensible, 
and their provenance being unknown [1][2][3]. The 
possibility to immediately proceed to the analysis and 
visualization of the data can have a negative effect on the 
quality of the actual data registration in terms of complete 
and systematic recording. Our work on introducing 
electronic lab notebooks in the multidisciplinary domain of 
food science has revealed many issues in data recording in 
the lab. Annotation of the data is often scarce and 
ambiguous due to the focus of researchers on the research 
itself rather than bookkeeping.  In addition, large amounts of 
data are produced by automated measurement equipment in 
the lab. These devices tend to produce more systematic 

metadata, but linking data from different sources is as yet 
difficult and labor intensive. This makes finding, 
understanding and reusing the data very difficult [4]. As the 
amount of available data is exploding, it is essential to be 
able to efficiently locate and reuse existing datasets. 

The traditional way to present tabular data is in tables on 
paper or on a screen. Rows and columns of cells make up 
their structure, and these cells are filled with simple data 
types such as numbers, strings or dates. In such a table, an 
individual recording shows up as a single value in one of the 
table cells. The associated header cell along the same 
column or row explains the meaning of this value, for 
example ‘m (kg)’ for mass measured in kilograms. In 
datasets found in practice, this header information is often 
ambiguous and incomplete.  In fact, much of the 
information about the actual observation is frequently left 
out. This may even be done on purpose, in order to clean the 
data for presentation or processing. Tables also become 
more compact if all records contain the same quantities, the 
same unit of measure and have the same interpretation.  In 
this way, the ‘bare’ numerical or string value in the table 
cells is separated from the metadata, and is directly visible 
for comparison and available for numerical computation. 
Researchers are trained in reading such tables and can 
usually interpret the meaning of the structure immediately. 
However, ambiguities in the structure can still arise, for 
example empty cells may be intended by the author to 
convey that the content of the previous cell should be 
repeated, but may cause confusion in a reader.   

While the structure is usually easy to interpret, the 
frequently ambiguous and incomplete content of the headers 
gives readers more trouble.  Abbreviations, ambiguous 
indications of quantities and units, language differences, 
jargon and typos all contribute to spreadsheets being 
frequently incomprehensible to all but the author.  After 
time has passed, even the author may have trouble. 

Interpreting such spreadsheets correctly is therefore hard 
enough for human beings, but next to impossible for a 
machine.  This cuts off an enormous source of potential 
support for users.   With all the computing power at their 
disposal, they are reduced to browsing through data files to 
find the one they need, and cutting and pasting data to 
combine it. 
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Fortunately, for the further exploitation of datasets, we 
are not bound to this traditional representation of a table. 
We can use richer representations to express more 
contextual information by using semantic technology. Many 
semantic methods have been developed over the last 
decades to express tabular datasets in a richer, more flexible 
manner.  The W3C RDF (Resource Description Framework) 
standard provides a general, graph-based language for 
describing datasets [5]. RDF Data Cube is a prominent 
example of an RDF-based standard for expressing tabular 
datasets [6].  

Representing datasets semantically has major 
advantages. Firstly, the meaning of the measurements is 
independent of the precise text in a spreadsheet, so that data 
can be found and understood regardless of typos, 
abbreviations, local terminology and even different 
languages. Secondly, the use of semantic concepts makes 
tables machine readable, meaning that they can be (semi-) 
automatically processed, from simple unit conversion up to 
complex computations. Finally, allowable numerical values 
and units can be defined, making it possible to check or 
clean the data. Moreover, semantic tables can be used as 
templates for future observations and experiments.  

Initially, we proposed spreadsheet templates to stimulate 
systematic annotation of research data, but experience has 
shown that this restricts the creative and essentially 
unstructured character of scientific research. Therefore, a 
standard is necessary that facilitates annotation in a way that 
is flexible enough to accommodate researchers’ needs. 

Which requirements should a semantic standard meet to 
facilitate and stimulate structured annotation of tabular data? 
Firstly, it should be able to annotate the individual data 
elements, the content. For example, it should be possible to 
state that ‘the mass of this sample is 2.95 grams’, ‘the city 
considered is Amsterdam’, or ‘this event occurred 5 minutes 
and 6.3 seconds later’. Good scientific recordings contain 
extensive information about each observation, for example 
on which object it has been measured, by which method and 
by whom. The annotation (metadata) of the individual data 
elements explains them and describes their provenance and 
relations. The keystone of semantics is the idea of an 
ontology, a sort of vocabulary that describes shared 
concepts and the relationships between them. A standard has 
to build on existing (domain) ontologies in order to facilitate 
shared understanding of the individual observations.  

Secondly, a semantic standard for tabular data should 
make explicit the structure – the grouping together of 
scientific observations that collectively form a ‘snapshot’ of 
the world. The observations may be combined because they 
are generated in one experiment, using the same 
experimental protocol or by a single apparatus, or for a 
multitude of other reasons.  A collection of snapshots, or 
records, is used to detect patterns, similarities or 
correlations.   

This grouping is essential for correct interpretation of 
the data. Within one experiment, the structure of the records 
is often quite similar. However, when comprehensive 
recording of all possibly relevant effects is required, datasets 
can be less homogeneous and well-formed. This holds for 

datasets that combine observations from different origins, in 
particular. Moreover, exact science typically deals with 
quantities having diverse scales, units and other 
specifications; values may be missing or occasionally 
additional measurements are available. Consider for 
example research that combines input from a number of labs 
around the world. Some of them have recorded the 
environmental temperature in degrees Fahrenheit and others 
in degrees Celsius. One lab has not measured temperature at 
all. Semantic standards should allow these variations and at 
the same time provide enough structure to preserve the 
meaning of the data.   

Thirdly, a semantic standard for tabular data must make 
it possible to link to provenance information, to indicate 
where the data came from.  Well-publicized cases of fraud 
in scientific research make the traceability of data a central 
concern to many research institutes.  Fig.1 shows the three 
components of a semantic standard for tabular data. 

Finally, the semantic standard must be flexible enough 
to accommodate the variations present in scientific data, and  
be implemented in tools already in use by researchers, in 
order to harmonize with their research work, rather than 
distracting from it. 

In this paper, we discuss RDF Record Table, a format 
that is sufficiently rich and flexible to handle complex 
datasets, such as those often found in science and 
engineering.  RDF Record Table was first introduced in [1]. 
In this paper, we will expand on the description of the 
model and discuss its benefits in more detail.  In Section II, 
we first briefly describe existing approaches and tools for 
modelling tabular data in RDF.  In Section III, we go into 
more detail on the RDF Data Cube vocabulary. This is a 
recommended W3C standard for multidimensional tables. 
To be able to handle more heterogeneous datasets, we 
propose RDF Record Table in Section IV, as a supplement 
to RDF Data Cube. RDF Record Table uses self-contained 
observations and recursive records. In Section V, we 
describe how we can reduce redundancy and include header 
information in the model by allowing cells to refer to other, 
similar cells. Section VI discusses the differences between 
RDF Data Cube and RDF Record Table, in particular with 
reference to specific challenges faced in scientific data.  
This is followed by a description of a first implementation 
for annotating and transforming spreadsheet data to RDF 
Record Table in Microsoft Excel in Section VII. We then 
discuss how RDF Record Table makes it easier to integrate 

Figure 1: The three components of a semantic 

standard for tabular data 
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data in Section VIII. We describe our approach to data 
integration, and explain how this approach is implemented 
in the Rosanne add-in.  The approach is validated in a 
number of use cases in Section IX.   Finally, we conclude in 
Section X, also listing a number of open issues. 

II. RELATED WORK 

Many methods take the relational database approach 
when they convert tables or databases into an RDF-based 
representation [7]-[9]. They assume that a table consists of a 
header row defining variables, and other rows that contain 
strings or numbers representing the value of the variable in 
the same column. In general, they do not support more 
complex structures. All columns are translated into RDF 
properties of a single object. At this point, no other metadata 
is available than which is given in the header and data cells, 
the information implied by the table structure is lost.  For 
simple data this may suffice, however, problems quickly 
arise with more complex data.  For example, repeated 
measurements of the same property will simply produce 
triples with two different values, without the context that 
would allow an understanding of why the measurements are 
different (different time, different apparatus, etc.).  The 
information contained in one column may also be necessary 
to correctly interpret the information in other columns.  For 
example, based on the price information of two types of 
cheese, you might conclude that the cheese with the lower 
price is cheaper.  However, the amount of cheese, recorded 
in a different column, could be completely different.  Tables 
also frequently contain information that is not a property of 
the same single object, for example, the temperature of the 
room in which the density of the sample was measured. 
Finally, removing all indication of table and cells by 
converting only the data to triples, removes the ability to 
convey provenance information about the data.  

A richer format is defined by the RDF Data Cube 
vocabulary [6], a recommended W3C standard. This 
vocabulary has been developed in the context of statistical 
data in social sciences and policy studies, but is also being 
applied in other areas [10]. Information about the meaning of 
the data is expressed by linking to concepts from other 
ontologies, most typically the SDMX vocabulary [11].  
These individual data observations are stored in a multi-
dimensional hypercube structure to preserve the relationship 
between the measured values and the dimensions along 
which they vary, such as time, location, gender, etc.  
Metadata can be linked to individual observations, parts of 
datasets, or whole datasets.   

There are various tools that have been developed for 
converting tabular data into RDF in general, or RDF Data 
Cube in particular.  The EU CODE project [12] developed 
the CODE platform, which extracts tabular data from PDFs, 
csv-based documents or existing RDF repositories and 
converts it to RDF Data Cubes.  These cubes can then be 
visualized.  The Tabels (sic) project [13] attempts to 
discover the data structures in tabular data and transform 
these to RDF Data Cube. TabLinker [14] and RightField 
[15] assist the user in annotating their numerical data, which 
is then converted to RDF Data Cube, in the case of 

TabLinker.  CSV2Data Cube [16] helps the user to 
configure dimensions and attributes from their CSV file.  It 
then transforms the data to RDF Data Cube. The OpenCube 
toolkit [17] [17]from the EU OpenCube project [18] allows 
relational data and csv/tsv files to be converted to RDF Data 
Cube.  These cubes can then be visualized and also 
submitted to statistical analysis.  Tools for visualization, 
slicing and validation of RDF Data Cube fall outside the 
scope of this work. 

The available tools are mostly directed at the domain of 
statistical data and, with the exception of RightField (which 
does not handle table structure), appear to be limited to 
simple table structures.  Statistical data is, as a rule, much 
more uniform and regular than scientific or engineering 
data, which can have quite complex table structures.   

All of these tools are separate to the tools that are usually 
used by researchers in the course of their work (with the 
exception of RightField, which generates templates that are 
used in Excel).  This requires researchers to interrupt their 
workflow in order to carry out data documentation.  This can 
be a barrier for researchers. 

We have found one incidence of related work on 
representing more complex, irregular data in RDF [19]  
investigated linked Data Cubes for clinical data.  Some of the 
difficulties they experienced could be solved by augmenting 
RDF Data Cube with constructs from other vocabularies, 
others remained unsolved.   

Whereas RDF Data Cube and other standards define the 
structure and context of tabular data, they are not intended 
for expressing provenance of data on the web. However, they 
do provide identifiers for the data, which can be linked to a 
description of the provenance of that data. For that purpose, 
additional vocabularies have been developed. The W3C-
standard PROV is becoming increasingly popular for this 
purpose [21]. It describes the origins of any type of data, 
helping the user to evaluate how appropriate and trustworthy 
the data is for a particular use. PROV basically says that a 
prov:Agent performs a prov:Activity, in which he 

uses or generates a prov:Entity. Tables, records, slices 
and individual measurements can all be seen as subclasses 
of prov:Entity. The previously defined Dublin Core 
Terms [13] vocabulary complements the PROV model with 
detailed concepts about publications and authorship.  

We wish to develop a standard for tabular data that can 
handle the sort of complex, irregular data that is found in 
many practical situations.  This standard will be able to be 
linked to the PROV standard and will be implemented in 
tools that researchers already use in their daily work. 

 

III. RDF DATA CUBE 

RDF Data Cube organizes observations as 
multidimensional datasets. Each observation is a point in n-
dimensional space, defined by the associated values of the 
dimensions.  Typical dimensions in RDF Data Cube are 
‘time’, ‘area’ and ‘gender’. Each observation contains one or 
more measures, for example ‘life expectancy = 83.5’.  
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Table I: Life expectancy data in different regions over time 

 

 2004-2006 2005-2007 2006-2008 

 
Male Female Male Female Male Female 

Newport 76.7 80.7 77.1 80.9 77.0 81.5 

Cardiff 78.7 83.3 78.6 83.7 78.7 83.4 

Monmouthshire 76.6 81.3 76.5 81.5 76.6 81.7 

Merthyr Tydfil 75.5 79.1 75.5 79.4 74.9 79.6 

 
Observations, measures and dimensions can have 

attributes that provide additional information about them, for 
example the unit of measure used.  A separate section of an 
RDF Data Cube defines its structure; this section can be used 
as a template for future observations. Another section gives 
information for external reference to the entire dataset.   

In its normalized form, each observation in a data cube 
contains all its dimensional values. One way to reduce 
redundancy is by moving shared attributes to the structure 
definition section.  Further reduction can be obtained by 
introducing ‘slices’. A slice is a lower-dimensional 
representation, which also serves as a proposed interpretation 
of the dataset. Moreover, one can refer to a slice as an 
independent entity.  This allows easy access to predefined 
views of the data. 

In order to group together observations that do not fulfil 
the requirements of a slice, the concept of ObservationGroup 
is defined in RDF Data Cube.  This allows any observations, 
even from different datasets, to be grouped together.  

Table I shows the example table that the RDF Data Cube 
definition uses to explain the vocabulary [6]. The full RDF 
Data Cube model of Table I is available for viewing at [6].  

The RDF Data Cube vocabulary is very well suited for 
modelling well-formed, complete datasets such as are 
produced by statistics offices.  Software tools are available 
to provide useful views of the data.  However, these 
advantages are the result of some restrictions on the data. 
RDF Data Cube is intended for describing ‘well-formed’ 
datasets.  As a result, several constraints are placed on the 
data, for example that each observation must have a value 
for every measure. For example, if for one measurement in 
the example it is not known whether this person is a man or 
a woman, then this data point cannot be included in the 
model.  Another assumption is that the multidimensional 
structure is a regular (hyper)cube, not permitting rows with 
varying length for a single dimension.  If we know the 
standard deviation of the life expectancy value for Cardiff 
and Newport, but not the other regions, we cannot add this 
to the above Table I.  

RDF Data Cube has two alternative ways to handle 
datasets with more than one measure, which cannot be used 
simultaneously. In the multiple measures approach one 
observation can contain more than one measured quantity. 
However, all quantities must have the same attributes, for 
example, the same type and unit of measure. This rules out 
this approach for many exact science applications. The 
second approach restricts observations to having a single 
measured value. It allows a dataset to carry multiple 

measures by adding an extra dimension, a measure 
dimension. This turns a measured value into a kind of semi-
dimension. 

Another characteristic of RDF Data Cube is that it 
makes extensive use of properties (rather than classes) as its 
main organizing mechanism. The design introduces many 
different types of properties. It is questionable whether these 
different properties are needed to express the meaning of the 
data. They make the design of a model rather complex.  

As datasets, slices, ObservationGroups and observations 
all have unique identifiers in RDF Data Cube, they can all 
be referred to by a provenance model, enabling the 
provenance of the data to be traced. 

RDF Data Cube is the only semantic standard currently 
available which explicitly and thoroughly models the 
structure of tabular data. 

 

IV. RDF RECORD TABLE 

Experience with researchers over the past ten years has 
confronted us with many different datasets. Many of them 
are contained in spreadsheets and data analysis tools such as 
Matlab [22], SPSS [23] and R[24].  Inspired by other 
initiatives to annotate datasets using RDF, we have devised 
an approach that can work in the tools commonly used by 
researchers and at the same time support rich annotation. 
This approach has at its heart a model for tabular data called 
RDF Record Table.   

The RDF Record Table vocabulary is intended for 
recording original and processed data across all domains, 
including science and engineering in particular. It is based 
on the observation that the common two-dimensional table 
in reports and spreadsheets is a restricted representation of a 
more general graph-based table model. A human reader of a 
table in a report or spreadsheet implicitly combines his or 
her interpretation of the text in individual table cells with 
the visual inspection of the table layout (topography, 
coloring, typesetting, etc.). This forces authors of tables to 
express two types of information in a two-dimensional 
format that it is not ideally suited for, viz., (i) nesting of 
records and (ii) describing metadata. In this section we show 
how the RDF Record Table model deals with these issues 
by supporting recursive nesting of records and by enriching 
data elements with metadata. In the next section, we will 
show how the model supports sharing of metadata between 
multiple data elements. RDF Record Table models the 
structure of tables in terms of cells and records (see Fig. 1, 
using rec: as a prefix for the RDF Record Table namespace). 
A cell contains a statement about an entity or the property of 
an entity, such as ‘the temperature of this object measured 
by a pt-sensor is 36.5C’ or ‘this milk sample is from batch 
20140612YTU’.  A record combines cells in a group, thus 
conveying the assumption that in some way the observations 
are related - in time, location, subject, conditions, or in 
another way. This assumption can be made when setting up 
a new experiment, but also when existing data are 
combined. It is similar to the ObservationGroup concept in 
RDF DataCube, but in RDF Record Table it is a core 
element rather than an optional extra. Scientific and 
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rec:RecordTable

rec:containsRecord
rec:containsContent

rec:Cellrec:containsAsData

owl:Thing

Figure 2: Basic RDF Record Table schema 

 
engineering data are grouped and regrouped continuously to 
investigate hypothesized correlations and causalities. We 
submit therefore that the structure of the data should be 
flexible and based around the groupings chosen by the 
researcher. To express composite structures, in RDF Record 
Table any record can recursively contain sub-records, which 
again are of the type rec:RecordTable. This means that 
we do not make a distinction between the concept table and 
the concept record.  After all, both are simply groupings of 
data. For example, an experiment may observe multiple 
samples at one fixed temperature. For each sample its 
viscosity, composition and mass are measured over time. 
This means that the entire dataset consists of a Record Table 
that at its highest level contains (i) the observed temperature 
and (ii) a sub-record for each sample. Each sub-record in 
turn contains the sample identifier and sub-records that 
describe viscosity, composition and mass for that sample 
measured at a point in time. In the most explicit form, all 
sub-records are expanded into non-nested records. In this 
example, the top level Record Table only contains sub-
records, each of them stating the observed temperature, time 
point, sample id and the other measured properties.  

RDF Record Table is shown in Fig. 2.  In Turtle format, 
it is defined as follows.  
 

rec:RecordTable  a   rdfs:Class ; 

        rdfs:subClassOf  prov:Entity . 

 

rec:Cell   a   rdfs:Class ; 

        rdfs:subClassOf  prov:Entity . 

 

rec:containsAsData  a   owl:ObjectProperty ; 

        rdfs:domain  rec:RecordTable ; 

        rdfs:range   rec:Cell . 

 

rec:containsContent  a  owl:ObjectProperty ; 

        rdfs:domain  rec:Cell ; 

        rdfs:range   owl:Thing . 

 

The next question is how the cells in the nested records 

can contain the actual observed values in such a way that 

they can be properly understood both by human users and 

machines. From the inspection of many tables used in 

practice, we see that two types of observations frequently 

occur: (i) identified entities and (ii) properties measured on 

a scale. Examples of identified entities are ‘sample 

XY876b’, ‘Newport’ and ‘Peter’. Quantities such as 

‘length’, ‘mass’, and ‘temperature’ are examples of 

prov:Entity

rec:RecordTable

rec:containsRecord
rec:containsContent

rec:Cellrec:containsAsData

owl:Thing

om:Quantity
identified entity: 

object, event, material...  
Figure 3: RDF Record Table expressing domain and provenance 

information 

properties measured on a scale. These two types are not 

formally part of the RDF Record Table model, which allows  

any ‘Thing’ to be in a cell. However, we propose this 

distinction as a best practice that works in many cases. Fig. 

3 shows how quantities and identified entities fit into the 

RDF Record Table model.  

In traditional tables, identified entities are typically 

represented by a human readable identifier, and an 

explanation of the entity type in the associated header cell.  

For example, ‘Peter’ is a unique name for an entity of type 

‘Author’. RDF Record Table uses externally available 

domain ontologies to express all that is needed to know 

about such an entity by pointing to the respective instance in  

an RDFS/OWL schema.  For modelling Table I we have 

chosen to view instances of ‘Area’ and ‘Period’, such as 

2004-2006, as identified entities since they are not supposed 

to be read as nominal or even numerical values.  
For the other type of observation, a property measured 

on a scale, RDF Record Table uses ontologies that define 
quantitative or qualitative values defined on a scale, 
possibly with units of measure. In Table I, ‘Sex’ and ‘Life 
Expectancy’ are typical measured properties, one on a 
nominal scale and the other on a rational scale with unit 
‘Year’. In our work we use OM (Ontology of units of 
Measure and related concepts) [25] for expressing 
quantitative measurements. OM contains a large number of 
quantities and units of measure suited to scientific and 
engineering datasets. It also provides the necessary 
properties for linking the quantities, domain concepts and 
units.  However, other ontologies such as QUDT [26] and 
SDMX [11] can be used equally well. The measured 
quantities can be properties of the observed entities in the 
table, but do not need to be related to anything specific. For 
example, in Table I, the life expectancy measured is that of 
people in the associated geographical region. On the other 
hand, ‘the time of day’ is usually not connected to a specific 
entity (except for example to a ‘time zone’ that relates to a 
geographical area).  

This division into identified entities and properties 

measured on a scale is highly useful, as it relates to the type 

of data handling that is typically applied to data from each 

category.  Measured properties are usually subject to 

numerical processing, and require units of measure.  

Identified entities on the other hand may be used as 

identifiers on which, for example, different tables can be 
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joined. While this distinction can assist processing, it does 

not limit it – for example, tables may also be joined on 

numerical values, if the user wishes.   

Finally, by making rec:RecordTable and rec:Cell 

subclasses of prov:Entity we ensure that all provenance 
information can be expressed for individual measurements, 
records and tables.  For example, the relation 
prov:wasDerivedFrom between two cells tells us that the 
quantity in one cell depends on the value of the quantity in 
the other cell.  

To illustrate the use of the RDF Record Table format, 
we show how the cells with values 76.7 and 83.3 in Table I 
are contained in the table. We see that the first level of 
nesting defines four records (:o1, :o2, :o3, :o4), one for each 
region. We use the ontology for geographic areas (as 
identified entities) that was also used in the RDF Data Cube 
example [6]. The next level specifies the three time periods, 
again using instances that were also used in the data cube 
example. At the third level of sub-records, we register two 
properties measured on a scale, viz., ‘sex’ and ‘life 
expectancy’. For indicating the variable ‘sex’, we use an 
sdmx-code, as in the data cube; to illustrate the use of OM 
[25], we use the concept om:Duration from that ontology 
to describe ‘life expectancy’. The value of a quantity in OM 
is of the type om:Measure, which is a combination of a 
numerical value and a unit (or scale).  
 
 

:dataset1  a  rec:RecordTable ; 

rec:containsRecord :o1 , :o2 , :o3 , :o4 . 

         

:o1  a   rec:RecordTable ; 

   rec:containsAsData :cell_newport ; 

   rec:containsRecord :o11 , :o12 , :o13 . 

 

 

:cell_newport  a     rec:Cell ; 

    rec:containsContent  ex-geo:newport_00pr . 

 

 

:o11  a   rec:RecordTable ; 

   rec:containsAsData :cell_period_2004_2006 ; 

   rec:containsRecord :o111 , :o112 . 

 

:o111  a  rec:RecordTable ; 

rec:containsAsData  :cell_sex-M ,  

:cell_lifeExpectancy_76_7YR . 

 

:cell_sex-M  a rec:Cell ; 

   rec:containsContent  sdmx-code:sex-M . 

 

:cell_lifeExpectancy_76_7YR  a rec:Cell ; 

   rec:containsContent :lifeExpectancy_76_7YR ; 

 
:lifeExpectancy_76_7YR a om:Duration ; 

   om:value :_76_7YR . 

 

:_76_7YR  a  om:Measure ;  

   om:numerical_value “76.7”^^xsd:string ; 

   om:unit_of_measure_or_measurement_scale om:year 

. 

 

... 

 

:o2  a   rec:RecordTable ; 

   rec:containsAsData :cell_cardiff  ; 

   rec:containsRecord :o21 , :o22 , :o23 . 

 

:cell_cardiff  a   rec:Cell ; 

   rec:containsContent  ex-geo:cardiff_00pt. 

 

 
:o21  a   rec:RecordTable ; 

   rec:containsAsData :cell_period_2004_2006 ; 

   rec:containsRecord :o211 , :o212 . 

 

... 

 
:o212  a  rec:RecordTable ; 

rec:containsAsData :cell_sex-F , 

:lifeExpectancy_83_3YR  . 

 

:cell_sex-F  a   :Cell ; 

    rec:containsContent  sdmx-code:sex-F . 

 

:cell_lifeExpectancy_83_3YR   a  rec:Cell ; 

rec:containsContent :lifeExpectancy_83_3YR . 

 

 

:lifeExpectancy_83_3YR a om:Duration ; 

   om:value :_83_3YR . 

 

:_83_3YR  a  om:Measure ;  

   om:numerical_value “83.3”^^xsd:string ; 

   om:unit_of_measure_or_measurement_scale om:year 

.  
 

To show the flexibility of the RDF Record Table model, 

we now show how a completely different type of 

measurement can be added to the above definitions, without 

changing anything in the previously modelled records and 

cells. In Table I, we add ‘the measured average weight of 

the inhabitants of this region’ to an existing record (:o341) 

using the OM quantity om:mass. In addition, we can switch 

to a value for ‘life expectancy’ measured in months rather 

than years for one single observation (74.9 years). The result 

is as follows: 

 
:o431   a   :RecordTable ; 

    rec:containsAsData  :cell_sex-M ,  

:cell_lifeExpectancy_898MONTH , 

:cell_mass_71kg . 

 

:cell_lifeExpectancy_898MONTH  a  rec:Cell ; 

    rec:containsContent :lifeExpectancy_898MONTH . 

 

:lifeExpectancy_898MONTH  a   m:Duration ; 

    om:value  :_898MONTH . 

 

:_898MONTH  a    om:Measure ; 

    om:numerical_value  "898"^^xsd:string ; 

    om:unit_of_measure_or_measurement_scale 

                om:Month . 

 

:cell_mass_71kg  a    rec:Cell ; 

    rec:containsContent  :mass_71_kg . 

 

:mass_71_kg  a  om:Mass ; om:value  :_71_kg . 

 

:_71_kg  a  om:Measure ; 

    om:numerical_value  "71"^^xsd:string ; 
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    om:unit_of_measure_or_measurement_scale 

                om:kilogram . 

 

Note that so far we assume that each cell is entirely self-

describing; it contains all the necessary information to know 

what kind of data it represents.  Where data cells are similar, 

it is possible to use one description for many cells. We will 

discuss this in the next section. 

 

V. HANDLING SIMILAR  DATA ELEMENTS IN RDF RECORD 

TABLE 

 

As stated before, traditional two-dimensional 

representations of tables express descriptive information 

about the data in the table headers. In their most basic form 

they form a single row at the top of a table, but much more 

complicated header structures occur commonly. Each 

header cell covers a range of data cells, typically shown in 

the column under the respective header.  

In practice the distinction between header items and data 

items is not always clear. For example, in Table II, it is 

possible to view the top three rows and the left column as 

headers.   In fact, only “Life Expectancy”, “Period”, “Area” 

and “Sex” are true headers, as they only supply descriptive 

information about the data.  The other ‘header’ cells, such as 

“Male”, and “2004-2006”, actually supply different data 

values for one data type.  This style of table, where the 

‘header’ contains data values, is often called a ‘pivoted 

table’, as it can be produced by pivoting a ‘flat table’, where 

the header only contains descriptions of the data.  Pivoted 

tables can give extra insight into data by grouping together 

data for which one field always has the same value, for 

example all data relating to “Cardiff”.  Any RDF Data Cube 

with more than one dimension is in the style of a pivoted 

table, the effect of choosing between a dimension and a 

measure is to select the measurements on which the data 

will be pivoted.  A pivoted table can be ‘unpivoted’ by 

adding the data elements from the header to each record. 

The RDF Record Table model defined in the previous 

section assumes that all data in the table cells are entirely 

self-descriptive. Each data element describes what kind of 

data it represents. For example, ‘tfinal = 42 sec’ expressed 

using OM concepts says that an activity has ended after 42 

seconds.  Traditional tables in reports and spreadsheets 

usually summarize this explaining information ‘tfinal (sec)’ in 

a table header, separately from the numerical ‘42’, to make 

the table readable for humans and fit for numerical analysis.  

In RDF Record Table, in principle, we can do without such 

headers, as all this information is available in the data cells; 

in the above example the data cell would be linked to the 

concepts ‘time’ and ‘seconds’.  In the case of a pivoted 

table, the ‘header’ information is simply another data value 

rec:RecordTable

rec:containsRecord

rec:hasLiteralValue

rec:explainsData

rec:containsContent

rec:Cell

rec:containsAsExplanation

rec:containsAsData

owl:Thing

 

Figure 4: RDF Record Table with ‘header’ cells. 

in the Record Table, with a nested Record Table containing 

the information that falls under the ‘header’.   

In practice, many data items in a single experiment are 

similar in some way – they refer to the same type of 

parameter, or play the same role in an experiment. We 

submit that the way that traditional tables express this, is 

inherently limited due their two-dimensional character. In 

RDF Record Table we look at table header cells in a 

generalized manner, independent of their usual two-

dimensional representations. We assume that a ‘header’ cell 

explains a set of similar data items. It provides metadata that 

is not expressed by the individual data items.  

There can be four reasons to put this information in 

header cells rather than in self-contained data cells. First, 

header cells can specify the type of measurement without 

giving actually observed values; they act as a prescriptive 

template for an experiment or for data analysis. Second, 

using header items for metadata is a way to remove 

redundancy and to achieve a significant reduction in the 

physical size of a dataset. For example, suppose that the 

temperature of an object has been measured over time. We 

can state in a header item that we have measured 

temperature, measured in kelvin, on a given object. In the 

corresponding data items we only have to state the 

numerical values. This takes much less space, but still 

allows us to regenerate the self-contained values for all data 

elements (if we know how to link the numbers to the 

reconstructed instances). Third, cells of different types may 

play the same role in a table. For example, a column 

containing numerical measurements may also include the 

entry ‘measurement failed’.  This cell clearly has a different 

type, but should still be grouped under the column – it plays 

the same role as the other measurements.  Finally, the 

header cell itself may contain additional, informal 

information.  For example, the header cell ‘Area’ may have 

contained the string ‘Area, as per 2001 boundaries”, or “Life 

Expectancy” may have been written using the Dutch word 

“Levensverwachting”.  While ideally this sort of 

information would also be modelled semantically, in 

practice this is not the case.  If the header cell is modelled 

separately to the data cells, then its text content can be 

preserved exactly as it was, keeping any informal 

information and also making the table representation more 

familiar to the user.   
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Table II: Example extended with headers 

 

Life Expectancy (years) 

Period 2004-2006 2005-2007 2006-2008 

Area  Sex  Male Female Male - Male Female 

Newport 76.7 80.7 77.1 80.9 77.0 81.5 

Cardiff 78.7 83.3 - 83.7 78.7 83.4 

Monmouthshire 76.6 81.3 76.5 - 76.6 81.7 

Merthyr Tydfil 75.5 79.1 75.5 79.4 74.9 79.6 

 

In RDF Record Table we do not define different types of 

cells for data and metadata since their internal structure is 

the same. Instead, we use the property rec:explainsData 

to have some cells act as metadata cells (see Fig. 4). Such an 

explaining cell contains an instance (or class) of a 

phenomenon or a quantity, acting as a template for other 

cells. The associated data cell in that case only needs to 

provide a numerical or string value (through 

rec:hasLiteralValue), all other information is derived 

from the explaining cell.  

For example, in Table II, one header field states that we 

have observed ‘Life Expectancy’ in ‘years’. We construct a 

cell in the RDF Record Table translation that contains an 

instance of om:Duration with unit ‘year’ but no numerical 

value assigned to it. The cell also preserves the string in the 

original table header by storing ‘Life Expectancy (years)’ as 

a literal value. The associated cells only have to provide a 

numerical value for each measurement and a reference to 

this header item.  Or in another case, the header item ‘Area’ 

states that we have observed entities of type 

admingeo:UnitaryAuthority, and the data items 

express specific areas such as ‘Monmouthshire’, only using 

a literal string. When unpacking this compacted version to a 

fully self-describing model, the software has to match the 

string ‘Monmouthshire’ with instances of 

admingeo:UnitaryAuthority to find the proper 

instance ex-geo:Monmouthshire. 

Suppose that no interpretation whatsoever is possible 

given a specific traditional table, except for its structure. In 

that case, we can translate this table directly into an RDF 

Record Table with only literal values, using only the 

property rec:hasLiteralValue for both header items 

and data items. If we can also map the rows and columns 

directly to records, data cells and explaining cells, this 

would be the least semantically rich representation possible. 

Once translated to RDF Record Table, we can process this 

information and possibly add more semantics to it. RDF 

Record Table allows each data cell to have its own 

specification, overruling the information in the header item. 

In the previous section we have shown an example in  

 

which a single cell measured ‘life expectancy’ in ‘months’, 

whereas all others were measured in ‘years’. In that case, we 

could have used an RDF Record Table model with an 

explaining cell that states that in principle all values are in 

years. The single cell that uses ‘months’ as a unit overrules 

this general statement for that specific cell.  

 Regenerating an RDF Record Table with semantically 

self-contained data items is possible if we know how to 

relate the information in partially specified data cells to the 

associated explaining items. When using for example the 

OM quantity om:Duration with unit om:year in a header 

cell, we know that a numerical value in an associated data 

cell specifies the ‘numerical value’ property of the Measure 

of this quantity. This is the type of interpretation that readers 

of tables on paper make all the time, but is not obvious for 

automatic processing. This knowledge has to be 

incorporated in the software that unpacks a model.  

Fig. 4 shows the extended schema for RDF Record 

Table, including header information using the property 

rec:explainsData. It shows that the class rec:Cell can 

play the role of either header cell or data cell. As a matter of 

fact, it is possible to use a data cell as a header item. This 

means that other data items use this particular item to 

provide their type and other information, while the data 

items simply provide a numerical or string value.  

In Fig. 4, we can see that records can directly indicate 

which cells play a role as header cells using the property 

rec:containsAsExplanation. For Table II such a 

listing of explanatory cells would be modelled as follows: 

 
:dataset1  a  rec:RecordTable ; 

rec:containsRecord :o1 , :o2 , :o3 , :o4 ;  

rec:containsAsExplanation  :cell_sex ,    

:cell_lifeExpectancy_YR , 

:cell_period_from_yr_to_yr 

:cell_geographicalArea . 

 

The cell explaining the Life Expectancy measurements then 

refers to the data cells containing those measurements: 
 

:cell_lifeExpectancy_YR  a  rec:Cell ; 

   rec:explainsData  

:cell_lifeExpectancy_83_3YR , 

:cell_lifeExpectancy_76_7YR , 

:cell_lifeExpectancy_898MONTH ; 

:hasLiteralValue  "Life expectancy 

(years)"^^xsd:string . 

 

Although for reasons of clarity it is attractive to write the 

explaining cells as a ‘header’ at the first level of nesting, 

there is no formal need to do so. Such cells can be placed 

anywhere in an RDF Record Table model. This is useful 

when merging data from different sources, where the top 

level table is not known upfront.  

Finally, we note that the property 

rec:explainsAsData is redundant if the respective cells 

are already used to explain data cells through the property 

rec:explainsData. However, this property can be used 
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to express the structure of an otherwise empty table, which 

then can serve as a template for new observations or 

analyses.  

VI. DIFFERENCES BETWEEN RDF DATA CUBE AND RDF 

RECORD TABLE 

The most salient difference between RDF Data Cube 
and OQR Record Table is the fact that RDF Data Cube sees 
complex datasets as n-dimensional hypercubes, whereas 
RDF Record Tables are defined recursively via nesting.  
This use of n-dimensional hypercubes in RDF Data Cube 
has a profound impact on the type of data it can be used to 
model. RDF Data Cube expects a certain kind of dataset: 

 
“At the heart of a statistical dataset is a set of observed 

values organized along a group of dimensions, together 
with associated metadata” [6] 

 
RDF Data Cube also requires that cubes be well-formed, 

which requires, among other things, that there be no missing 
data, and that all measures and dimensions are required for 
all observations.  In short, Data Cube expects a uniformly 
formed and filled cube, with no extra granularity in some 
areas that is missing in others, and no extra observations.  
This is often not the case, particularly when data from 
different sources is integrated together.  In these situations, 
the integrity constraints can cause problems: 

 
“Some specialised data cubes do not satisfy the integrity 

constraints, specifying that every 
qb:DataStructureDefinition must include at least one 
declared measure (IC-3), that only attributes may be 
optional (IC-6) and that each individual qb:Observation 
must have a value for every declared measure (IC-14). 
These constraints are too restrictive for our Nutrition data 
cube where the presence or ab-sence of a value for a 
particular category of food varies according to the subject’s 
diet. This is a concern for survey questionnaires using 
previously entered values to determine if a field on a form 
should be mandatory filled.” [19] 
 

The authors of the above-mentioned paper specifically 
note the difference in their data from that commonly used in 
RDF Data Cube.   

 
“The LCDC (Linked Clinical Data Cubes) use of the 

RDF Data Cube vocabulary is different from the more 
common use cases [10] primarily because of the unreliable, 
disparate and longitudinal nature of clinical data” [19] 

 
RDF Record Table, on the other hand, has been 

specifically developed for researchers and their quantitative 
data, with extensive input from real-life research data.  This 

data, like the data used by [19], is often far more irregular 
than most statistical data. In RDF Record Table any record 
can contain an arbitrary set of measurements, with different 
types and sub-records. Missing values or varying units of 
measure or other attributes within a single dataset are no 
problem. We do not demand completeness or regularity of 
the data, in the sense that a record can contain any set of 
entities and properties. This better reflects the reality of 
datasets in science and engineering, in particular, when 
datasets from different sources are combined.  It can be 
argued that such datasets can be modelled in RDF Data 
Cube simply by violating the integrity constraints.  
However, this is a bad approach to using a standard, and can 
lead to interoperability problems between tools developed 
for the standard. 

The second major distinction between the two 
approaches is that RDF Data Cube distinguishes between 
dimensions and measures, whereas OQR Record Table does 
not make a priori assumptions about the roles of individual 
observations.  We consider making such decisions to be the 
task of the data analyst.    

We will now further discuss the differences between  
RDF Data Cube and RDF Record Table in the context of 
specific challenges that are faced in annotating and 
integrating real-life data. 

 

1) Missing data 
 

According to the integrity constraints for RDF Data 
Cube, all data must be present.  Naturally, even in the well-
planned world of statistics bureaus, data is sometimes 
missing.  There is no solution in the RDF Data Cube 
standard for this.  However, the ‘attribute’ concept, which 
allows metadata to be attached to an observation, is a natural 
way to indicate missing data.  In [10], a simple Boolean 
attribute is used to indicate when data is missing.  It is of 
course then necessary that tools using the data are aware of 
this solution and can process it correctly. 

When two tables are integrated together, there can be 
missing data even though both original tables were 
complete.  For example, if one file contains the mass 
measurements for all dairy products, and another file 
contains viscosity measurements for all liquid dairy 
products, then when the two files are integrated together, 
there will be missing data for the solid dairy products.  In 
order to cope with this in Data Cube, observations would 
have to be generated for these products, and then marked as 
‘missing data’. 

In Record Table, there is no constraint requiring data to 
be present. Therefore, in the event of missing data, the cell 
can simply be omitted from the record.  This fits better with 
the ethos of RDF.   
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Table III: Example of an irregularly nested table 

   Installed Capacity (in 10 MW) Operating Water Level (meter) 

Hydropower Stations 
Budget (in hundred 

millions of CNY) 
Completion Year 

Realisation level Realisation level 
2003 Plan Upon Completion 2003 Plan Upon Completion 

Twenty-Second 37.76  60 60 519 519 

Twenty-First   15 15.5 533 533 
Twentieth 79.37 2009 150 175 602 602 

 

 

2)     Unexpected data 

In a table, a column can often contain an unexpected 

value.  For example, a column of numerical measurements 

would be expected to contain values such as “1.34, 22452E- 

10”.  However, it is perfectly reasonable that a researcher 

may note down unexpected values: “<20, negligible, ~5”. 

These are results that a human reader will be perfectly 

capable of processing when they appear in a table, but that 

can confuse a software tool.   

  In RDF Data Cube the ranges of the dimensions and 

measures are set.  A column that expects to contain 

decimals, cannot therefore contain exceptions such as we 

name here. An option would be to store the value in an 

attribute, however, we regard the storing of data in a 

metadata field as highly inadvisable.   

In RDF Record Table, the role of a cell is separate to its 

type.  A cell containing content with type string, for 

example, ‘negligible’, can therefore be linked via the 

relationship rec:explainsData to a header containing 

content with type Mass.  This allows the information that 

the mass is negligible to be stored with the correct data type, 

so it can be excluded from numerical processing such as 

aggregation.  At the same time the role of the information is 

clear, which allows the value to be displayed along with the 

other mass measurements.  

3) “Irregular” nesting 
 
RDF Data Cube demands that every observation has a 

value for each dimension: 
 
“Every qb:Observation has a value for each 

dimension declared in its associated qb:DataStructure-
Definition.”[6]   

 
This means that RDF Data Cube cannot model any 

tables that do not fulfil this requirement.  Regularly nested 
tables, in which for each observation there is a value for 
each dimension, can be modelled without problems.  
However, tables are often partially or irregularly nested.  
The observations in these tables then do not have a value for 
each dimension.  These data values are not missing as such, 
the dimension is simply not applicable for part of the data. 
Table III is a real-life example of such a table. 

It is perfectly logical that this information about the 
constructed dams is stored in one table.  However, this table 
cannot be modelled as one Data Cube, as the Completion 
Year and Budget observations do not have values for each 
value of the Realisation Level dimension, because their 
value is not affected by the Realisation Level.  It would 
have to be split into two Data Cubes, one with Dam name as 
Dimension, and Completion Year and Budget as Measures 
(Table IV); and one with Dam name and Realisation Level 
as Dimensions, and Installed Capacity and Operating Water 
Level as Measures (Table V). Alternatively, the Budget and 
Completion Year data could be repeated for each 
Realisation Level, but this creates the misleading impression 
that there is a relationship between these data and the 
Realisation Level.  

Either approach requires either a fairly advanced level of 
understanding from the user, or quite intelligent processing 
from the data input tool.  Breaking up the table into two 
Data Cubes also loses the implicit relationship between the 
data, which must then be indicated in metadata or by 
grouping the Data Cubes in an ObservationGroup.  An 
alternative solution, namely using the void:subset 
relationship to indicate a link between Data Cubes, was used 
by [19]. This underlines the need for this sort of nesting in 
real-life data.   

In RDF Record Table, the concepts of Dimension and 
Measure do not exist.  The table can simply be annotated as 
it stands, and the nesting of Record Tables allows the extra 
information on Realisation Level to be added in to only the 
relevant portions of the table.  The data is kept together, and 
the original structure (with all its implicit information) is 
retained, without need for additional constructs such as 
ObservationGroup.  

 

4) Multiple measures 

In the above example, one table had two Measures – 

Installed Capacity and Operating Water Level.  As 

explained in the section on RDF Data Cube, in such a 

situation the user must choose between modelling these with 

multiple measures, or with a measure dimension.  For many 

situations the choice made may not matter in practice; 

however, the choice must always be made.  For novice users
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 Table IV: The first of the two tables into which Table III must be 

split when modelled in Data Cube 

Hydropower 

Stations 

Budget (in hundred 

millions of CNY) 
Completion Year 

Twenty-Second 37.76  

Twenty-First   

Twentieth 79.37 2009 

this can be confusing.  When integrating two tables, one of 

which uses multiple measures, and the other a measure 

dimension, a conversion will also have to take place before 

the integration, as the two types may not be mixed in the 

same dataset, according to the RDF Data Cube 

specification. 

RDF Record Table requires no choice for how to handle 

multiple measures, as no distinction is made between 

measures and dimensions.  Each record simply has a 

number of cells, each cell with a single value.   Where 

measured values belong together, such as in the case of a 

multi-spectral measurement, they can be grouped together in 

their own Record Table, which can be nested within the 

larger Record Table. 

5) Ease of annotation 

Setting up an RDF Data Cube requires a certain level of 

technical knowledge of the model.  While a data entry tool 

can of course hide away all the complexities of the RDF 

itself, the user must, at the very least, specify their 

Dimensions and Measures.  For nice, regular examples, such 

as those given on the RDF Data Cube website, learning how 

to do this is perhaps not so hard.  But for more complex 

examples, it is asking quite a lot of the user to be able to do 

this correctly.  It is of course possible to choose the 

approach of having an expert design a template for users to 

fill in (as in RightField [15]).  The users themselves are then 

not required to understand the model.  However, this limits 

the spontaneity and creativity of the users, they cannot make 

a simple change such as adding a new data column without 

needing to apply for a template change. 

For RDF Record Table, on the other hand, the user does 

not need to make the distinction between Measures and 

Dimensions.  All they need to do is to annotate headers with 

quantities, phenomena or units of measure.  As the 

difference between a quantity and a phenomenon is not 

dependent on their role in the table, it is quite easy to learn.  

In the Rosanne tool, which implements RDF Record Table, 

and which we will discuss in Section VII, even this 

knowledge is not necessary, as the user simply looks up the 

annotation they want to apply, based on the name of their 

item.   

6) Ease of integration 

 

In RDF Data Cube, ‘tables’ and ‘records’ don’t exist, the 

data is all merged into the hypercube.  To integrate data  

Table V: The second of the two tables into which Table III 

must be split when modelled in Data Cube 

Installed Capacity (in 10 MW) 
Operating Water 

Level (meter) 

Hydropower 

Stations 

Realisation level Realisation level 

2003 
Upon 

Completion 
2003 

Upon 

Completion 

Twenty-First 60 60 519 519 

Twenty-

Second 
15 15.5 533 533 

Twentieth 150 175 602 602 

from two different data cubes together on a given JOIN 

field, first the dimension to be used as the JOIN field must 

be chosen, optionally values of additional dimensions must 

be specified to select a section of the data, and finally the 

desired measures must be selected.  For example, for the life 

expectancy table, we could specify Region as the JOIN 

field, the dimension value 2004-2006 to select that time 

frame, and then for the measure the only option is Life 

Expectancy.  Given a table of average weight for the same 

time frame and region, we could then select the measure 

Average Weight, and so produce a table showing the 

average weight and life expectancy for all regions in the 

time period 2004-2006.  Inherent to the integrity constraints 

of Data Cube is that we could not have done this if the 

average weight was only available for half the regions, 

without an extra step to generate empty ‘missing data’ 

observations for the other regions.  Similarly, if the data we 

had available on average weight was not split into male and 

female, the integration could not occur, as the gender 

dimension would be missing in part of the integrated table.  

The available options are limited by the constraints placed 

on the data. 

RDF Record Table is built around tables and records.  

We integrate using SPARQL [27], a semantic web querying 

language. To carry out the same integration as above, we 

select all records containing Region from the desired tables, 

and select the Life Expectancy and Average Weight cells.  

To define the time period, we set the value of that entity to 

2004-2006 (remember, we have assumed that these time 

periods are identified entities).  Missing data can be 

accounted for using the SPARQL OPTIONAL keyword (see 

Section VIII), and we can still integrate average weight 

information even if it is not split into male and female (the 

weight information is organized per region and time period, 

with additional nested tables containing the life expectancy 

per gender group).  In addition to this, if desired we could 

join tables based on a numerical value, such as the value of 

the life expectancy, instead of an identifier, such as region.  

The distinction between Phenomenon and Quantity can 

guide in the selection of a join variable, but it is not required 

that the join variable be a Phenomenon.  A table may consist 

solely of numerical values, if desired, and for scientific 

analysis such as finding correlations between variables, such 

a table is perfectly reasonable.  RDF Data Cubes, on the 

other hand, must contain a dimension, and if the measured 
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value is turned into a dimension, then it may only take 

predefined values.  There is much more freedom in how to 

integrate the data when using RDF Record Table. 

 

7) Ease of searching and viewing 

 

RDF Data Cube includes a data structure definition.  

This immediately supplies information about the expected 

elements in the data and its structure, making search very 

easy.  The concept of slices allows for a particular view on 

the data to be quickly obtained, and the concept of 

dimensions makes the definition and selection of a 

particular slice very simple.  The regularity of the data also 

aids search, if all integrity constraints are fulfilled then the 

search does not need to handle missing or optional data.   

RDF Record Table does not require a data structure 

definition.  This increases flexibility, but means that the data 

must first be searched to discover what types of 

observations are available.  The use of 

rec:ContainsAsExplanation to indicate headers at 

the top level of the table can help make this search quicker.  

As there is no slice concept, pre-prepared views cannot be 

provided, and the absence of a Dimension concept means 

that selection of a given ‘slice’ is more complex, requiring 

constraints in the query.  As the data is not constrained to be 

regular, the search query must also handle missing data and 

nested Record Tables.  This adds to the complexity and 

probably reduces the speed of search.  

 

8) Flexibility of data analysis 

 

The requirement to choose a-priori between dimensions 

and measures is useful in fields such as standard statistics, 

where it is very clear what data is to be gathered.  Defining 

dimensions and measures makes it easier to gather the data, 

and easier to define particular views.  This requirement is, 

however, often problematic, particularly in research, where 

it is often not clear in advance what is going to be measured.  

Rather than having a specific measure that is influenced by 

certain dimensions (time, place, gender), it is often the task 

of a scientific study to determine what the relationship is 

between various measurements.  Depending on the purpose 

of the study, the same measurement may assume the role of 

a cause or a consequence.  Rather than assuming some 

causal order between quantities, therefore, it is more 

appropriate to simply state that they have been observed 

together. This is particularly the case for in-vivo studies, 

where it is much more common to observe various variables 

and try to discover their relationship, than to vary one 

particular variable to discover its effect, as it is often 

impossible to set the values of certain variables to fixed 

points (as is the requirement for dimensions).    

 

We conclude that RDF Record Table can be viewed as a 

generalized RDF Data Cube, making fewer assumptions 

about the regularity and completeness of the data. If a 

dataset that was originally drafted as an RDF Record Table 

meets certain requirements, it is in principle possible to 

automatically transform it into an RDF Data Cube. Any 

dataset expressed in RDF Data Cube, on the other hand, can 

be modeled as RDF Record Table.  This has the great 

advantage of allowing data in the Record Table format to 

still take advantage of all the tools available for Data Cube, 

where the data meets the Data Cube requirements.  It is 

quite conceivable that both models could be used in the 

course of the same study. RDF Record Table is appropriate 

during the research process when data can be incomplete, 

the researchers are still building their understanding of the 

data and the role of the different factors, and diverse 

datasets are being integrated together. RDF Record Table 

then gives the researchers maximum flexibility to carry out 

their work without worrying about constraints, dimensions 

and measures.  RDF Data Cube is appropriate when the data 

has been processed and cleaned up, and the roles of 

dimensions and measures are clear.  RDF Data Cube then 

allows the researchers to take advantage of the available 

Data Cube tools for visualization, and to define slices of 

their data to make consumption and publication easier.  
 

VII. ANNOTATION IMPLEMENTATION 

In the following sections, we discuss two tasks that 
benefit from the definition from a formal model of tables 
and RDF Record Table in particular.  In this section, we 
discuss how annotation of two-dimensional tables can be 
done in practice. This annotation is a necessary precursor 
for the transformation of the two-dimensional table to the 
RDF Record Table model. In the next section, we discuss 
practical support for the data integration task.  

A good model of tabular data is useless if the data 
cannot easily be input.  Given the popularity of the classic 
table format in tools such as spreadsheets, it should be 
possible to use these for data entry and then construct 
semantic datasets from there. In order to make this process 
as easy as possible, it should fit into existing work 
procedures and tools, and minimize additional effort by the 
user. Since Microsoft Excel is extremely popular, we have 
implemented the RDF Record Table model as an add-in for 
Excel, called Rosanne [25]. Rosanne supports engineers and 
scientists in creating semantic tables (as yet simple, non-
nested, non-pivoted tables, i.e., rectangular with one header 
row or column, with no data values in the header). Similar 
functionality for the RDF Data Cube has been implemented 
in TabLinker [14]; however, this is a standalone tool which 
cannot be accessed from within Excel. Rosanne allows users 
to enter their data in a simple table format. Rosanne then 
uses OM (Ontology of units of Measure and related 
concepts) [14] to assist users in adding relevant quantities 
and units of measure to the table. In addition, other domain-
specific ontologies are available for annotating identified 
entities in the table, such as samples, objects, locations, etc.  
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Support for table annotation takes two slightly different 
forms. In the first case, when creating and filling new, 
initially empty tables, the user must be assisted in selecting 
and assigning the right concepts and constructing the right 
layout. Rosanne supports this task of creating and 
semantically enriching tables from scratch. It does not 
confront the user with the Record Table model, nor does the 
user have to have any knowledge of ontologies. The user 
sets up a table by simply drawing areas in the spreadsheet. 
Next, the user selects the concepts they want from 
dropdown lists showing the user-friendly labels from the 
ontologies.  The URIs (Uniform Resource Identifiers) for 
the ontology concepts are then stored in the Record Table 
model.  

 The second form of annotation is when existing datasets 
have to be semantically enriched. Rosanne can 
automatically annotate existing data with units and 
quantities from OM, based on heuristics [28]. This does not 
always produce accurate results, but saves time for the user 
by creating an initial annotation that can be corrected where 
necessary.  

   In addition to annotating the content of the cells in 

tables, a tool that handles spreadsheet tables also has to 

make an interpretation of the structure of a table. It needs to 

translate the two-dimensional form into the graph-based 

RDF Record Table model. Human readers can usually 

quickly combine layout and text in tables to make the proper 

interpretation.   However, this is not a trivial task to 

automate since it depends on implicit knowledge. For the 

current, simple form which we support in Rosanne, an 

indication of the table and header areas by the user, 

combined with some basic assumptions in the software, 

suffice for the majority of tables.  However, for more 

complex structures, more advanced processing is required. 

We now discuss some heuristics that could potentially be 

applied to make this translation. 

   Automatic interpretation of two dimensional tables 

could be facilitated by making a number of choices and 

assumptions on the interpretation of the table layout [29]. 

An important assumption, for example, is that two 

dimensional tables consist of rectangular blocks with cells 

that belong to the same semantic category, for example, they 

are of the same type or they can all be related to a single 

concept. The measured values of observations, i.e., usually 

numerical values of type 'float', are often grouped together 

in one or more blocks. In the example table on hydropower, 

this is the block in the lower right corner. The blocks 

adjacent to these float blocks, are usually of type 'string' and 

provide contextual information on the cells in the float 

blocks. In the example table, these are the two upper rows, 

and the column on the left side. These string blocks either 

represent the quantity that is measured, or the 

phenomenon of which that quantitative property is 

measured.  

Another assumption is that every observation in a table 

can be related to a quantity and a phenomenon in the nearest 

string block. The string cells describing quantities can 

usually be recognized by the associated units of measure. 

Automatic recognition of quantities and units of measure 

can be supported by using an ontology like OM [25], and 

heuristics such as those used in [28], for example that units 

are often placed between brackets ‘Mass (kg)’. The string 

cells describing phenomena are usually located across from 

the quantity cells.  

In the example table, the measure '37.76' can be related 

to the quantity 'Budget' and to the phenomenon 'Twenty-

Second in the Lancang River Cascade'. If an observation can 

be associated to multiple quantities or phenomena, this 

could indicate that the corresponding table has a nested 

structure. In the example table, the measure '60' can be 

related to the quantity 'Installed Capacity' and to the 

phenomenon 'Twenty-Second in the Lancang 

River Cascade', but also to the phenomenon 'Realisation 

level', indicating nesting. 

  The string blocks in two dimensional tables are often 

called table headers, based on their position in the table. 

However, in RDF Record Table header cells are defined 

based on their role as descriptive item. Translation from a 

header cell in a two dimensional table to a header cell in 

RDF Record Table is therefore not straightforward. 

Headers in two dimensional tables often contain a series 

of instances of phenomena or quantities. These are in fact 

data values (see section V) and the corresponding cells 

should therefore be modeled as data items in RDF Record 

Table. The actual header, i.e., descriptive, item in RDF 

Record Table is the parent class of these 

instances.  Automatic recognition of these parent classes can 

be supported by using selected ontologies, for example OM 

for quantities and a domain vocabulary for phenomena.  

The abovementioned assumptions can be used as 

indication of the composition of records, and properties and 

roles of observations when translating a two dimensional 

table into an RDF Record Table. However, science and 

engineering tables can have complex structures that are 

difficult to interpret in a fully automated way. A possible 

solution would be to develop an interactive tool. With such 

a tool, the majority of the interpretation would still be 

performed automatically, but user input is required for 

checking and refining the results. 

  

VIII. INTEGRATION OF ANNOTATED DATA 

Having discussed the annotation task in some detail, we 
now move to another important task for data handling, 
namely integration of data. Scientific research regularly 
requires data to be combined from different sources.  This 
may be as simple as merging two different tables from the 
same experiment, or as complex as integrating multiple 
tables, each from a different research group at a different 
time.  Integrating these data allows researchers to discover 
new relationships and to increase their knowledge.   

Annotated data is easier to integrate than unannotated 
data.  It is far easier to select the correct data through the 
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concepts they describe and context information, than 
selecting them using obscure cell coordinates and strings, 
which are often ambiguous and incomplete.  To demonstrate 
the use of the RDF Record Table model for data integration, 
we have implemented support for this task as part of the 
Rosanne add-in for MS Excel.  

In Rosanne, the user indicates which field is used to 
match records together (usually called the ‘JOIN field’ or 
sometimes the ‘key’) and which measurements they wish to 
select.  Once this is done, the relevant records can be found 
automatically based on the annotated cells, and combined 
automatically using the information about the table structure.     

The main challenge in integrating the annotated data is to 
combine the data stored in the different RDF Record Tables.  
SPARQL was the natural choice to perform this combination 
as it has the necessary functionality for searching, filtering 
and combining data expressed in RDFS/OWL.  

In SQL, the relational equivalent to SPARQL, there is a 
standard functionality – the JOIN concept – which allows 
tables to be quickly combined.  SPARQL does not have an 
equivalent concept, as SPARQL is based around the concept 
of triples, not of n-ary relations.  It is standard in SPARQL to 
retrieve triples that share a subject, predicate or object, and in 
this way to combine the triples.  However, integration of two 
records requires the integration not of two triples, but of two 
collections of triples.  Most of these triples do not contain the 
common identifier, the JOIN field, on the basis of which the 
records are to be combined.  The integration of tables is 
therefore more complex than the combination of isolated 
triples.   

It was necessary for us to implement the JOIN 
functionality ourselves using building blocks from SPARQL, 
which was not a simple task.  This is an important exercise 
for the Semantic Web, as it is becoming more and more 
common that tabular data is stored in RDF.  We have 
developed a generic approach that is independent of the 
specific details of the tabular model, and therefore,  which 
can work for both RDF Record Table and RDF Data Cube.   

When integrating, there can be multiple records that have 
the same value for the JOIN field.  For example, repeated 
measurements on the same sample.  These multiple records 
must then be grouped together.  For example, if we are 
joining records on the basis of the name “Jan”, then the 
records “Jan, Wageningen, Tuesday” and “Jan, China, 
Tuesday” would be grouped together.  To turn these records 
into one record, all fields except the JOIN field (which is by 
definition the same) must be aggregated.   

Our approach follows these simple steps: 
 
1. Select all relevant records (records containing the 

JOIN field)  

2. Retrieve the desired information from the records 

3. Group the records based on the JOIN values 

4. Aggregate the other values 

5. Structure all retrieved information into an 

integrated table 

6. Retrieve the results 
 

Steps 1 to 5 can be carried out within a single SPARQL 
integration query.  This is a CONSTRUCT query, which 
creates a new RDF graph.  The CONSTRUCT query nests 
three SELECT subqueries, which retrieve sets of variables 
from the existing RDF data.  The innermost subquery selects 
the relevant records by looking for records containing an 
annotation that references the JOIN field (step 1).  
Optionally, the data to be included can be filtered in this step 
by using the SPARQL FILTER function, for example, we 
may only wish to integrate samples with a mass greater than 
10g.  

The second subquery selects the desired fields from the 
original records by looking for annotations with these fields 
(step 2) in the selected records, and groups the information 
based on the JOIN field (step 3).  The outer subquery 
aggregates the data (step 4).  Finally, the CONSTRUCT 
query forms the new records and creates the integrated table 
(step 5). 

At this point, the integration is complete.  However, the 
table is still in RDF, and is stored in the repository.  To 
retrieve the results for recreating the two-dimensional table 
we use a second SPARQL SELECT query (step 6).   

Note that, if wished, we could build the integrated table 
by simply collecting the data without aggregating them.  The 
aggregation method, needed to construct a simplified, two-
dimensional view, could then be specified when retrieving 
results, allowing different users to choose different views on 
the data.  Either approach can be used depending on the 
situation. 

It is possible that we may wish to join on more than one 
field.  In the example above, we may not want the records 
about “Jan” to be merged if “Jan” is in different places.  In 
that case, we need to identify the entities to join  using both 
name and location.  

The queries we have designed work with any number of 
tables.  Naturally, there can be performance issues with 
large amounts of data.  

As previously mentioned, a common challenge in 
scientific data is that of handling missing data.  When 
collecting records from different tables, we expect to find all 
available records in the result, even when data (in RDF 
Record Table values of rec:containsContent) is 
missing.  By default, however, SPARQL expects all 
requested information asked for in the query to be present, 
otherwise no result will be returned.  We solved this by use 
of OPTIONAL clauses in SPARQL.  OPTIONAL allows a 
section of the requested data to be missing without 
preventing other results from being returned.  A 
disadvantage of OPTIONAL is that it is slower, a known 
performance problem of this construct [30]. 

A specific case of missing data is when the JOIN field 
mentioned in a query is missing in the data.  This is more 
likely to occur when there are multiple join fields – in our 
example the name “Jan” may always be filled in, but not 
always the location (“Wageningen” or “China”).  In this 
situation, the way one merges different records depends on 
how he or she wishes to interpret the data.  One option is that 
the user only wants to integrate records with the same name 
if the location is also the same, or if the location is missing in 
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both.  Alternatively, the user may wish to interpret the 
absence of location information as meaning ‘any location’, 
so that records with the same name will be integrated if both 
locations are the same, or if one or both locations are 
missing.  Either choice can be catered for in the query.  Our 
default is that records will only be matched if locations are 
identical. In addition, we implement the ‘any location’ 
interpretation by combining records with empty fields with 
all possible values of those fields, thus allowing integration 
with any value of that field. This is done within the 
integration query by means of an additional subquery.   

We are currently investigating how we can support more 
complex queries, meeting the requirements that some users 
have specified for their practical cases. For example, in one 
situation, a scientist needs to  ‘integrate a measurement on a 
sample with the first record in time for that same sample, 
after the temperature of the sample has first exceeded 90 
degrees Celsius’. For this purpose, we use the subquery 
facility in SPARQL to add further layers of nesting to the 
query.   We have implemented such queries in a separate 
experimental tool and are now working on improving their 
performance and incorporating them into our main 
integration query.  Supporting this type of queries will 
provide a significant benefit to researchers, as currently these 
integrations require a great deal of work and often 
specialized software or databases. How to provide a clear, 
intuitive user interface for such complex queries is an 
important issue.   

All above-mentioned queries are independent of the 
precise tabular format.  We have tested our basic integration 
approach developed for RDF Record Table on data in the 
RDF Data Cube format.  The steps and the structure of the 
queries remain the same.  The selection of the data fields is 
simply changed to use Data Cube syntax instead of RDF 
Record Table. The queries then work as designed. 

For practical application of semantic integration 
functionality to be widely accepted, it has to be part of   
familiar, existing tools. Therefore we have incorporated it 
into our Excel add-in, Rosanne, extending the annotation 
functions presented before. Fig. 5 shows an example from 
food science. In this experiment, the researcher wishes to 
combine rheological measurements on protein samples with 
sample composition data. Without semantic support, this 
task would require her to find the relevant files somehow, 
then to copy and paste different data by hand, with plenty of 
scope for error. With semantically annotated tables, the 
necessary information is available to allow her to find the 
files via a search function (implemented in a demonstration 
tool but not yet incorporated into Rosanne). The tables have  
been annotated using OM and a domain ontology. The 
Integration Pane  provides a list of all the concepts available 
in the files.  The researcher selects ‘Protein’ as the 
identifier, and ‘Storage Modulus’ and ‘Composition’ as the 
variables of interest. Rosanne writes the RDF Record Table 
representations of the tables to a Sesame [31] repository, 
creates a SPARQL [27] CONSTRUCT query to find the 
relevant data, and generates the integrated table in the RDF 
Record Table format.   A SPARQL SELECT query retrieves 
the data from the integrated table and writes it into a new  

Figure 5: Rosanne using RDF Record Table. 

 
Excel spreadsheet. The integrated table contains all the 
original annotations, and can itself again be integrated with 
other tables. 

The process for the user is quite simple. She defines the 
integration they want with a series of simple dropdowns, and 
does not need to be aware of RDF Record Table, Sesame or 
SPARQL.  

 
 

IX. EVALUATION OF ANNOTATION AND INTEGRATION ON 

INDUSTRIAL USE CASES 

 
We tested annotation and integration via Rosanne on ten 

real-life use cases collected from four different academic 
research institutes, and the R&D departments of three 
commercial firms.  These cases did not involve nested tables, 
but did include integration of more than two files, missing 
data and missing JOIN fields.   

Regarding annotation, our key finding was that the 
provided data required some manual cleaning prior to 
annotation in Rosanne.  Issues included JOIN variables being 
indirectly specified, for example, in the spreadsheet name, 
rather than being included in the table, tables being split over 
multiple locations in the spreadsheet, empty cells that were 
intended to be interpreted as including repetitions of previous 
cells, etc. Such issues can be addressed by adding data 
cleaning facilities to Rosanne, but are also related to 
compliance to good data notation by users. If information is 
completely missing or obscured, no tool will be able to 
recover it.    

The integration function offered by Rosanne worked as 
desired for the majority of use cases once the data had been 
cleaned and annotated.  The need for the more advanced 
integration queries as discussed in the previous section was 
confirmed by some of the other cases.  These cases show 
how complex integration functionality, which would 
normally require researchers to turn to specialist solutions 
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such as databases, can in future be offered in Excel in a 
simple, user-friendly manner.   

One case involved a pivoted table, a table where the 
header contains data elements.  As Rosanne does not yet 
support annotating the data elements within the header of a 
pivoted table, this table had to be unpivoted before it could 
be annotated. For the integration step itself, a wider range of 
data aggregation would be welcome.  Some use cases, 
however, required advanced statistical analysis methods, 
such as regression, which fall outside the scope of 
aggregation. We are looking at a possible combination of 
Rosanne and a statistical package like R, rather than 
attempting to support this sort of analysis in SPARQL 
queries.   

We conclude from these tests that RDF Record Table and 
our SPARQL approach for integration were successful in 
carrying out integrations on real-life data.  While additional 
functionality is necessary to achieve the full results desired 
in some use cases, the core integration functionality was 
shown to be sound for a variety of data.  

Due to the manual cleaning required, it was not possible 
to fully validate the performance and practicality of Rosanne 
in these use cases.  Once the issues discovered in these use 
cases have been addressed, we will conduct a full validation 
of our approach. 
 

X. CONCLUSION AND FUTURE WORK 

We have proposed RDF Record Table as a way to model 
heterogeneous tabular data semantically. The model 
complements the RDF Data Cube vocabulary. RDF Data 
Cube offers the benefits of semantic modelling to domains 
such as statistics, with regular, standardized datasets, and 
provides good support for data visualization.  RDF Record 
Table offers more flexibility in storing heterogeneous or 
incomplete data, and therefore extends the benefits of 
semantic modelling to the more complex situations for 
which RDF Data Cube is too restrictive. RDF Record Table 
addresses all four aspects identified in Section I as being 
essential for a good tabular model; the content can be 
annotated, the table structure is modelled, there is a link to 
the PROV model for provenance data, and it is flexible, 
allowing complex structures. 

A first implementation of the RDF Record Table model 
as an extension of Microsoft Excel, called Rosanne, 
demonstrates that the format is capable of accurately 
representing tabular data, and can be applied by offering 
users simple choices from drop-downs, without the users 
needing to be aware of the RDF Record Table itself.   

Rosanne also provides semi-automatic integration of 
datasets. SPARQL queries are used to integrate data from 
different RDF Record Tables. This integration approach is 
defined in a generic way, making it applicable to other RDF 
tabular models, such as RDF Data Cube.  The user can 
specify their integration using simple drop-downs, and again 
does not need to be aware of the complexity of the model or 
the queries.  This integration functionality has been 
evaluated in use cases from a number of research institutes 
and R&D organizations of multinationals in food 

production, cooperating in TI Food and Nutrition [32].  
While a number of issues were identified that must be 
addressed to make Rosanne a practical tool for industry,  the 
core integration principles were shown to be sound.    

In Section I, we discussed the various problems that 
arise from how spreadsheet data is currently handled.  RDF 
Record Table and its implementation in Excel provide a 
means to effectively tackle these problems.  Ambiguity and 
incomprehensibility are addressed by linking data to defined 
concepts in shared vocabularies.  The link between RDF 
Record Table and the PROV model allows the provenance 
of the data to be recorded.  The annotations can be searched, 
making it easier to locate relevant data.  The integration 
facility of Rosanne, built on top of the RDF Record Table 
model, enables data from different spreadsheets to be linked 
and combined together, assisting reuse.  Finally, this support 
is available in the commonly used Excel tool, allowing 
researchers to incorporate good data bookkeeping into their 
research workflow, thus enabling good data documentation 
with minimal effort.   

For full implementation of the RDF Record Table 
model, several issues must still be solved. While the model 
itself supports nesting, the Rosanne add-in does not.  This 
support must be added, preferably by offering heuristics that 
assist the user.  To handle the overhead of explicit 
annotations, RDF Record Table allows repeated information 
to be presented in cells that provide metadata for similar 
cells. However, methods for automatic (local) expansion 
and compression of datasets should be considered as well.  
In order to realize the benefits of both RDF Record Table 
and RDF Data Cube on the same data at different stages in 
the scientific or engineering process, mapping between the 
two formats is required. This necessitates support for 
implementing the constraints of Data Cube when converting 
Record Table to Data Cube.  

As discussed, the integration functionality of the 
Rosanne add-in can be improved by allowing more complex 
queries, handling nested tables and offering a link to a 
statistical package for advanced data analysis.  

Rosanne has not yet been optimized for performance on 
large datasets.  This optimization will be a necessary step in 
producing an add-in that can be used in industry. 

In addition to these issues on the annotation and 
processing of new data, the recovery of legacy data needs 
attention. There is a wealth of data stored in existing 
spreadsheets, which have, in general, an informal structure 
and no annotations.  Current results for fully automatic 
annotation are still of insufficient quality [28], so more 
research is needed to find how to unlock this legacy data.  

Semantic tables also offer the potential to support 
cleaning of the data, for example by defining allowed units 
and ranges for measurements so that errors can be detected 
and possibly (semi-)automatically corrected.  This is an 
aspect that we will look at in the future. 

A format for tabular data is of little use if it is not 
adopted by the community.  We plan to submit RDF Record 
Table to the CSV on the Web Working Group [33] for 
consideration and inspiration in their work to provide better 
interoperability for tabular data. 
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Describing the content and structure of tabular data 
semantically makes it possible to easily find data even in 
disparate sources, to understand and clean the data and to 
combine it semi-automatically. This way, much richer 
datasets will be published in the future, so that others can 
fully understand them and build further on them.   
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