
533

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Security System for Connected End-point Devices
 in a Smart Grid with Commodity Hardware

Hiroshi Isozaki1, 2, Jun Kanai1
1 Corporate R&D Center, Toshiba Corporation,

Kawasaki, Kanagawa, Japan
{hiroshi.isozaki, jun.kanai}@toshiba.co.jp

2 Graduate School of Media and Governance,
Keio University,

Fujisawa, Kanagawa, Japan

Shunsuke Sasaki, and Shintarou Sano
Center for Semiconductor Research & Development,

Toshiba Corporation,
Kawasaki, Kanagawa, Japan

{shunsuke.sasaki, shintarou.sano}@toshiba.co.jp

Abstract— Security has an important bearing on achieving
successful commercial deployment of smart grids. In particular,
availability is accorded the highest priority in smart grids. For
end-point devices, such as smart meters or concentrators, this
must be true since they must always be working. We present
LiSTEETM Recovery, an architecture for a fault-tolerant
system enabling end-point devices to monitor the status of the
operating system and to recover even if they stop working
owing to unexpected behavior or cyber-attacks, including zero-
day attacks. LiSTEETM Recovery provides further functions to
prevent illegitimate memory modification and to notify a head-
end system once a security incident occurs. We demonstrate a
full implementation of LiSTEETM Recovery on a TrustZone-
capable ARM-based processor. Our experiment shows that the
performance degradation is sufficiently small to be ignored.
Furthermore, we observed that the cost of production and
maintenance can be minimized.

Keywords-Smart Grid, Smart Meter, Concentrator, Security,
High Availability, TrustZone

I. INTRODUCTION
This paper presents a security system for connected end-

point devices in smart grids. It proposes an architecture for a
secure fault-tolerant system with commodity hardware and
presents a detailed perspective on earlier work by the same
authors [1]. In smart grids, requirements for the support of
various protocols and functions to network connected end-
point devices, such as smart meters or concentrators, make
their systems more complicated. Because a large quantity of
source code is generally necessary to implement a
complicated system, the risk of including vulnerability in the
system increases. Moreover, since the devices are connected
to home networks, the risk of devices being attacked is high
compared with legacy devices connected only to a managed
network. In fact, it is reported that smart meters from various
vendors were found to improperly handle malformed
requests that could be exploited to cause buffer overflow
vulnerability; allowing an attacker to cause a system to
become unstable or freeze [2]. To keep devices secure in this
situation, many security protocols and algorithms have been
proposed to securely distribute a shared key between devices
and head-end systems or to store privacy data in devices in a
secure manner [3][4]. However, confidentiality and integrity
are insufficient to solve the security problem in smart grids.

Keeping high availability of the devices is strongly desired
since they must always be working to provide demand-
response services or to use consumption data for payment
[5][6]. As a single vulnerability may cause the system to go
down, it is very difficult to keep high availability in a
complicated system. Furthermore, unlike in the case of
interactive devices, such as PCs or smartphones, it is
unreasonable to expect end users to reset and restart devices
once they freeze or hang since end users cannot recognize
the status of the devices and cannot determine whether the
device should be rebooted or not. Thus, how to keep the
availability of the devices in smart grids is a significant
challenge.

To address these problems, we propose LiSTEETM
Recovery, an architecture for fault-tolerant systems that
automatically recovers from error status. To achieve this goal,
LiSTEETM Recovery isolates a surveillance process
observing the state of the system and a recovery process that
reboots the system when it detects the system freezes. In
LiSTEETM Recovery, surveillance and recovery processes
run in an isolated secure environment whereas general-
purpose processes, including the operating system, such as
network or storage access, run in a non-secure environment
with hardware access control performed with respect to
memory. Hence, a memory area where surveillance and
recovery processes are arranged cannot be accessed by
general-purpose processes. As a result, even if the operating
system is attacked and crashes, it becomes possible to
prevent interference in the surveillance and recovery
processes.

The remainder of this paper is organized as follows. In
Section II, problems are defined. Section III presents
background information. Sections IV and V propose a
framework and implementation of LiSTEETM Recovery. The
evaluation of LiSTEETM Recovery is shown in Section VI,
related work is referred to in Section VII, and the paper
concludes with Section VIII, which is devoted to the
conclusion and future work.

II. PROBLEM DEFINITION
In a legacy system, surveillance and recovery processes

and their execution environment are monolithically
configured. In other words, the reliability of surveillance and
recovery processes depends on the reliability of their
execution environment. In order to keep reliability high, a

534

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system needs to be implemented without vulnerability. In
order to detect and eliminate vulnerability in source code,
various testing methods have been proposed [7][8]. However,
since end-point devices will be deployed without
maintenance over a long period of time within smart grids
and new vulnerabilities are found day after day, there is a
large risk that such devices will continue operating without
vulnerabilities being fixed even if those devices had no
vulnerabilities at the time of shipping. For example, there is a
well-known attack against x86 processors called “Ret2Libc”
which enables an attacker to inject and execute code, and it
had been regarded as invalid against ARM processors [9].
However, once new attack which is similar with Ret2Libc
against ARM processors has been proposed, buffer over flow
on ARM processor has been regarded as real theat. Therefore,
attackers may exploit a vulnerability, such as buffer overflow
or malformed network input, in order to cause the device to
crash. To make matters worse, attackers are in a somewhat
advantageous position in launching a large attack since the
number of device vendors is limited and the software
installed in the devices is uniform. Furthermore, attackers
can reverse-engineer code without administrators noticing in
order to find a vulnerability since, unlike a server application,
devices are located at the user side. Therefore, when
attackers find one vulnerability in a single device, they can
exploit it on many devices. Considering the above situation,
the following problems are to be solved in order to keep high
availability under a legacy system.

A. Difficult to Keep a High Level of Surveillance
Continuity
End-point devices need to support various network

protocols and data formats depending on countries or use
cases in smart grids [10][11][12]. In order to minimize the
implementation cost of a complicated application program or
a minor network protocol on end-point devices, Linux will
be used as a software execution environment. In Linux, the
surveillance and recovery processes can be implemented as a
user task executed on the operating system or as an interrupt
handler in the operating system. When a surveillance target
process is implemented as a user task running on the
operating system then support functions in the operating
system, such as the “cron” service in Linux, can be used to
detect a failure of the user task and to automatically restart
the target process. When the surveillance process is
implemented as an interrupt handler in the operating system,
then more sophisticated implementation is necessary than for
an application program; it is automatically and periodically
called by a timer interrupt as long as the operating system
works. Another legacy approach is implementation of a
monitoring and detecting mechanism in the operating system.
For example, in order to find buffer overflow attacks, an
anomaly detection method is proposed where a protection
element monitors system call frequencies, and if the
frequencies are different from normal behavior, it determines
that an attack occurs [13]. However, the fundamental
problem of a legacy approach is that there is no way to
restart the process if the operating system itself crashes for
any reason. Furthermore, the protection mechanism itself

could be a target of the attack, and as a result the protection
mechanism could be invalidated. Thus, there is a large risk of
devices in a smart grid breaking down and the attack may be
able to cause an extensive blackout in the worst case. In
order to prevent devices breaking down, a robust method of
recovering the system from failure is required in order to
keep a high level of availability. Still, some existing
hardware devices support a watchdog timer function that
detects the status of the operating system and automatically
reboots the system [14]. Since not all devices support the
function and it is difficult to implement complicated
functions in the system as discussed below, a new approach
is desired. To clarify the conditions, only a software failure
including an attack is assumed in this paper. A physical fault,
such as a hardware failure or loss of power, or a hardware
attack, such as physically destroying devices or cutting
cables, are beyond the scope of this paper.

B. Difficult for an Administrator to Detect when an
Incident Occurs
End-point devices are connected with a head-end system

through the network to provide demand-response services.
When the devices detect an error status, such as a
surveillance target process being stopped for an unknown
reason, it is desirable for these devices to send a report to the
head-end system so that an administrator can realize the
situation and use the report to investigate the reason for the
failure. However, for the reason described above, there is no
way for devices to send a message to the head-end system if
the operating system crashes in a system where the network
connectivity function is implemented as a user task or it is
implemented within the operating system. Even in such a
case, it is desirable to provide a method enabling devices to
send a message to acknowledge the error situation to the
system administrator. In addition to the unexpected failure,
attacks on the network connectivity function need to be
considered. When an attacker gains full access to the system
under control, the attacker may try to disable the network
connectivity function in the operating system. Therefore, it is
desired not simply to provide a method of sending a message
but to keep the network connectivity function secure to
protect it against the attack even if the operating system is
modified or the control of the operating system is taken over.

Besides notification of the error situation to the system
administrator, a software update function is also desirable.
However, since many existing hardware devices already
support a secure firmware update function and its method is
highly dependent on each device, it is beyond the scope of
this paper.

In addition to the problem described above, the following
business problem needs to be considered when introducing a
new architecture to the market.

C. Development and Production Cost
Cost is an important aspect in evaluating the proposed

security architecture. Generally, there are two types of cost:
development cost, consisting primarily of personnel
expenses, and production cost, which is charged per device.

535

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When implementing an end-point device, if the new security
architecture requires a complete software rebuild, the
architecture will never be commercialized. Thus, it is
desirable to reuse existing software assets, such as libraries,
middleware and applications, as much as possible in order to
minimize the development cost, including the verification
cost. In the case of smart grids, the verification cost is large
since reliability is strongly required. Besides the
development cost, we need to consider the cost per device.
One approach to solve the problems described above is to
utilize a dedicated hardware security chip. However, since
such chips tend to be very expensive, their use may raise
production cost per device. Therefore, the use of widely
available existing commodity hardware is desirable in order
to minimize production cost.

III. BACKGROUND (TRUSTZONE)
In this section, we provide background information on

the hardware technologies leveraged by LiSTEETM Recovery.

A. ARMv7 Architecture
ARM processors support different processor modes

depending on the architecture version. The ARMv7
architecture on which LiSTEETM Recovery is implemented
supports the seven processor modes shown in Table I.

TABLE I. ARM PROCESSOR MODE AND BANK REGISTER

Mode level description Bank
register

of bank
registers

USR unprivileged User mode r8-r14 7

SVC privileged Supervisor
mode

r13-r14,
spsr 3

IRQ privileged IRQ mode r13-r14,
spsr 3

FIQ privileged FIQ mode r8-r14,
spsr 8

ABT privileged Abort
mode

r13-r14,
spsr 3

UND privileged Undefined
mode

r13-r14,
spsr 3

MON privileged Monitor
mode

r13-r14,
spsr 3

The processor is executed by selectively switching the

modes depending on the process. The processor mode is
changed either when a program, such as an operating system,
calls a dedicated instruction or when software or hardware
exception occurs. The seven modes are categorized as either
non-privileged mode or privileged mode by privilege level.
In a general system, an operating system is executed in
privileged mode and application programs are executed in
unprivileged mode. In privileged mode, execution of all
instructions and access to all memory regions are allowed,
whereas in unprivileged mode availability of instructions and
accessibility of memory regions are restricted.

The ARMv7 processor has 40 registers, consisting of 33
general registers and 7 status registers. These registers are
arranged in partially overlapping banks. For example, r13,

which is a bank register and usually used for stack pointer,
refers to different physical registers in User mode and
Supervisor mode. For non-banked registers, which refer to
the same physical register in different modes, an operating
system needs to save and restore in working memory when
switching from one mode to another mode so that execution
can be subsequently resumed from the same point. On the
contrary, the operating system does not need to save the
context of banked registers. For example, the operating
system does not need to save the context of r13 when
switching from User mode to Supervisor mode. Therefore,
rapid context switching is enabled.

B. TrustZone
TrustZone is a hardware security function supported by a

part of the ARM processor [15][16]. In addition to
unprivileged mode and privileged mode, a TrustZone-
enabled ARM processor supports two worlds that are
independent of the modes. One is the secure world for the
security process and the other is the non-secure world for
everything else. Each processor mode shown in Table I is
available in both the secure world and the non-secure world.
Fig. 1 shows the relationship between worlds and modes
conceptually. The world in which the processor is executing
is indicated by the NS-bit in the Secure Configuration
Register (SCR) except when the processor is in monitor
mode. When the processor is in monitor mode, it is in the
secure world regardless of the value of the NS-bit of SCR.
The processor is executed by selectively switching the
worlds if necessary. For example, it is assumed that the key
calculation process is executed in the secure world and all
other general processes, such as storage access or network
accesses are executed in the non-secure world.

The software that manages switching between the secure
world and the non-secure world is called the monitor. The
monitor is executed in monitor mode. TrustZone provides a
dedicated instruction, the Secure Monitor Call (SMC)
instruction, to transit between the worlds. As soon as the
SMC instruction is called, the processor switches to monitor
mode. Monitor saves a context of the program running in the
current world on the memory and restores a context of the
program running in the previous world, then changes the
world to set the NS-bit of SCR, and finally executes the
program running in the previous world. Besides the SMC

Figure 1. Mode and world in ARM.

536

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

instruction, hardware exceptions can be configured to cause
the processor to switch to monitor mode.

Note that general registers and Saved Program Status
Register (spsr) are not banked between worlds. For example,
when r13 in User mode of the secure world is referred and
the monitor switches from the secure world to the non-secure
world, and then r13 in User mode of the non-secure world is
referred, the same physical register is referred. Therefore, the
monitor needs to save and restore both bank registers and
non-bank registers when it switches worlds.

By using TrustZone-capable hardware, it is possible to
make a system where a process running in the secure world
can access all system resources, such as memory or
peripherals, whereas a process running in the non-secure
world can access only a part of system resources. For
example, when used in combination with the TrustZone
Address Space Controller (TZASC), access to a particular
region of working memory can be restricted for a process
running in the non-secure world even if the process runs in
privileged mode. When a process running in the non-secure
world accesses a memory region that it is configured to be
prohibited from accessing from a process running in the non-
secure world, TZASC generates an interrupt signal and it is
sent to the processor. As a result, the violation causes an
external asynchronous abort. Similar to TZASC, when used
in combination with the TrustZone Protection Controller
(TZPC), access to a peripheral can be restricted for a process
running in the non-secure world. In contrast to TZASC, the
access control policy of TZPC can be configured per
peripheral, such as DRAM, Timer, or Real-Time Clock
(RTC). That is, the configuration of TZPC is performed
peripheral by peripheral. There is a correlation between
TZASC and TZPC. For example, when configuring a policy
such that access to a particular region of DRAM is restricted,
the access control of TZPC corresponding to DRAM is set to
off and the proper access control policy with the
corresponding region is installed on TZASC. TZPC is
configured as secure when booting the system. Therefore, for
all peripherals whose access controls are valid by TZPC,
access by a process running in the non-secure world is
prohibited by default. TZASC and TZPC can only be
configured by a process running in the secure world, in order

to protect those configurations from illegitimate modification.

IV. FRAMEWORK OF LISTEETM RECOVERY
LiSTEETM Recovery provides a method for an end-point

device to automatically recover from an error status. It also
provides a high-level memory protection mechanism. Hence,
the recovery process is securely executed without
interference. Fig. 2 shows the entire architecture of
LiSTEETM Recovery. LiSTEETM Recovery consists of three
components: Normal OS, LiSTEETM Tracker Application
(LiSTEETM TA), and LiSTEETM Monitor.

• Normal OS: An operating system that executes
general-purpose processes, such as storage access or
network communication. It is executed in the non-
secure world. All applications implementing smart
meter functions or concentrator functions run on this
operating system.

• LiSTEETM Tracker Application (LiSTEETM TA):
Surveillance and recovery processes executed in
privileged mode in the secure world. LiSTEETM TA
includes three modules: Watcher module, Recovery
module, and Notification module. The Watcher
module is an entry point of LiSTEETM TA. It is
executed periodically by a timer interrupt through
LiSTEETM Monitor. Whenever it is called, it
investigates the status of Normal OS. If it detects
Normal OS is not working, it calls the Recovery
module to reboot the system. Otherwise, it calls the
SMC instruction to switch to Normal OS. Moreover,
the Notification module is called before the
Recovery module reboots the system. It sends a
message to notify that the system is about to reboot
to the head-end system through network.

• LiSTEETM Monitor: A program running in the
monitor mode. It initializes configurations of
TrustZone-related hardware when booting the
system. It also provides a context switching function
between worlds in the hardware interrupt handler
and the SMC handler. Moreover, LiSTEETM Monitor
manages the access control policy and installs the
policy on TZASC when booting. Policy Manager
takes on their roles.

Figure 2. System Architecture of LiSTEETM Recovery.

537

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The primary feature of LiSTEETM Recovery is to provide

a method for the end-point device to detect the status of
Normal OS and to recover it even if Normal OS crashes or
stops working. Furthermore, it provides two additional
functions. One is to enhance the security protection for
LiSTEETM Monitor, LiSTEETM TA and Normal OS against
attacks. The other is to send a message to the head-end
system when an incident occurs. The details of these
functions are described below.

A. Baseline Common Functions
LiSTEETM Monitor has the role of providing baseline

common functions to operate Normal OS and LiSTEETM TA
concurrently. LiSTEETM Monitor has two functions; system
initialization and context switching between worlds.

1) System initialization
When booting the system, the processor is in the secure

world and LiSTEETM Monitor is firstly executed. To run
Normal OS and LiSTEETM TA concurrently, it needs to load
and execute both of them. It first initializes the status of the
processor in both worlds, and loads LiSTEETM TA in the
secure world. Then, it invokes context switching to transit
from the secure world to the non-secure world, loads the
boot loader program of Normal OS, and executes it in the
non-secure world. Finally, the boot loader program loads
Normal OS and executes it.

The TrustZone-enabled processor supports the function
that is either monitor or Normal OS traps each exception
(IRQ, FIQ, and external abort). When booting the system,
LiSTEETM Monitor configures that hardware interrupt
handler in LiSTEETM Monitor traps timer interrupt so that
Normal OS cannot interfere with the execution of LiSTEETM
TA when timer interrupt occurs. As well as timer interrupt,
LiSTEETM Monitor configures that hardware interrupt
handler in LiSTEETM Monitor traps external abort. Since the
access violation causes external abort as described above,
this configuration enables LiSTEETM TA to detect the
occurrence of a memory access violation.

TZPC is configured to be accessed from the secure world
only when booting the system. Since Normal OS needs to
use peripherals, LiSTEETM Monitor needs to change the
configuration of TZPC to non-secure. The only exception is
Timer, which triggers periodical execution of LiSTEETM TA.
Since it is necessary to prevent the configuration of Timer
from changing by a process running in the non-secure world,
LiSTEETM Monitor remains the configuration of TZPC
corresponding to Timer as secure.

2) Context Switching between Worlds
In LiSTEETM Recovery, the trigger of context switching

between worlds is either the SMC instruction or the Timer
interrupt caused by the hardware timer. The SMC handler in
LiSTEETM Monitor is executed when the SMC instruction is
called and it transits from the secure world to the non-secure
world. In contrast to the SMC handler, the timer interrupt
triggers transit from the non-secure world to the secure world.
In both cases, LiSTEETM Monitor invokes context switching
between worlds. It first determines the current world. As

described in section III-B, general registers and Saved
Program Status Register are not banked between worlds.
Therefore, LiSTEETM Monitor needs to save the contents of
the registers belonging to the current world on working
memory to prevent loss of the previous context, and then
change the world. Finally, it restores the contents of the
registers belonging to the transition destination world and
resumes the execution.

B. Periodical Surveillance and Recovery
While executing Normal OS, whenever the timer

interrupt occurs, the processor jumps to the hardware
interrupt handler in LiSTEETM Monitor. The hardware
interrupt handler context switches from the non-secure world
to the secure world and calls LiSTEETM TA. Specifically
LiSTEETM Monitor saves a context of Normal OS to
memory and restores a context of LiSTEETM TA, then
changes the world and finally calls the Watcher module of
LiSTEETM TA. The Watcher module checks the status of
Normal OS. If it judges that Normal OS is not working, the
Watcher module calls the Recovery module that reboots the
system. Otherwise, it calls the SMC instruction. Then, the
SMC handler in the LiSTEETM Monitor is executed. It
context switches from LiSTEETM TA to Normal OS, and
restarts Normal OS at the point just before the timer interrupt
occurred. While executing LiSTEETM Monitor and
LiSTEETM TA, the execution of Normal OS is suspended.
That is, Normal OS continues to be processed as if nothing
were executed during the execution of LiSTEETM TA. Fig. 3
shows the flowchart of the periodic surveillance and
recovery process.

There are many ways for the Watcher module to
determine whether Normal OS is working or not. One of the
methods is to check the data area of Normal OS. In general,
when an operating system is working, there must be a certain
data area that is updated regularly. By checking this data area,
it is possible for the Watcher module to judge whether
Normal OS is working or not.

Figure 3. Flowchart of periodical surveillance and recovery.

538

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Memory Protection
By utilizing TZASC, LiSTEETM Monitor provides an

access control function such that access of Normal OS
running in non-secure mode to the working memory area,
which LiSTEETM Tracker Application running in the secure
world uses, is subject to restrictions. Policy Manager in
LiSTEETM Monitor manages three kinds of access control
policies: full access, access denied, and read-only. When
booting the system, Policy Manager divides working
memory into several regions and it installs one of the three
access control policies for each working memory region on
TZASC before loading Normal OS.

Table II shows how each policy works. Full access
indicates no restriction. A process running in both non-
secure world and secure world can freely access the region
configured according to this policy. This policy is primarily
used to share data between Normal OS and LiSTEETM TA.
Access denied indicates full restriction. A process running in
the non-secure world can neither read nor write to a region
configured according to this policy, whereas a process
running in secure world can read and write to the region.
Read-only indicates a process running in the non-secure
world cannot overwrite the content on the memory, whereas
a process running in the secure world can freely access the
region using ordinary random access memory, such as
DRAM or SRAM, as the working memory which is, of
course, physically writable memory.

TABLE II. ACCESS CONTROL POLICY

Policy From secure
world process

From non-secure world
process

Read Write
Full access OK OK OK

Access denied OK NG NG
Read-only OK OK NG

Using these policies, LiSTEETM Recovery provides two

memory protection mechanisms. Fig. 4 shows how these
memory protection mechanisms work. One is protection for
the kernel area of Normal OS. The other mechanism is
protection for LiSTEETM Monitor and LiSTEETM TA.

To realize protection for the kernel area of Normal OS,
LiSTEETM Monitor provides read-only memory. In general,

when a program is loaded into memory, a data region (data
segment) and a code region (code segment) are assigned. In
the initial state before booting the system, all regions are
allowed to be accessed from the non-secure world by default.
In order to allow the boot loader to write the code segment
into the memory, LiSTEETM Monitor leaves the memory
region as is until the code segment is loaded. Just after
executing the kernel of Normal OS, LiSTEETM Monitor sets
the memory region as read-only for kernel code segment of
Normal OS. As a result, even Normal OS is prohibited from
overwriting its own code segment.

To protect LiSTEETM Monitor and LiSTEETM TA, Policy
Manager in LiSTEETM Monitor installs an access control
policy such that Normal OS cannot access the memory area
allocated to LiSTEETM Monitor and LiSTEETM TA, whereas
LiSTEETM TA and LiSTEETM Monitor can access all areas
when booting the system. This policy protects LiSTEETM
Monitor and LiSTEETM TA from illegitimate falsification by
Normal OS, even if Normal OS is attacked and under the
control of an attacker.

Besides the protection for LiSTEETM Monitor and
LiSTEETM TA, memory protection provides a hardware
access control mechanism. One of the possible attacks to
disable end-point devices is that of shutting down the system.
To prevent such an attack, Policy Manager in LiSTEETM
Monitor installs an access control policy so that Normal OS
cannot access the registers corresponding to power
management. Thus, it is possible to protect the system
against the shutdown attack even if Normal OS is under the
control of an attacker.

In the case of policy configured to access denied or read-
only, TZASC generates an interrupt signal when the access
violation caused by a process running in the non-secure
world occurs. LiSTEETM Monitor configures the hardware
interrupt handler in LiSTEETM Monitor to trap the interrupt
so that the system will continues to work without crashing
even if access violation occurs, and LiSTEETM Monitor can
detect the access violation.

D. Message Notification
LiSTEETM Recovery provides a function to notify the

head-end system that Normal OS has stopped working and is
rebooting the system by sending a message through the

Figure 4. Memory protection mechanism.

539

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network even if the operating system is modified or the
control of the operating system is taken over; the resulting
network function is disabled by an attacker. The Notification
module has the role of sending a message. Although Normal
OS has a network connectivity function, such as TCP/IP
stack, LiSTEETM TA cannot use the function since there is a
case where it is not working when sending a message. Thus,
LiSTEETM TA supports the network connectivity function
including the network application, the network protocol stack
and the network driver to notify the error situation to the
system administrator through the network. Obviously, it is
possible to send a head-end system a message whenever
LiSTEETM TA is executed to notify that the system works
correctly.

V. PROTOTYPE IMPLEMENTATION
We used ARM C/C++ Compiler 5.01 to build LiSTEETM

Monitor and LiSTEETM TA. We used gcc 4.4.1 to build
Linux 3.6.1 as Normal OS. We chose Motherboard Express
uATX with the CoreTile Express A9x4 processor that
supports TrustZone as an execution environment.

Regarding a memory map, from 0x48000000 through
0x4A000000 is assigned for SRAM, and from 0x60000000
through 0xE0000000 is assigned for DRAM. Table III shows
the memory map with the access control policy of the
memory. In Table III, Normal OS (code) indicates the Linux
kernel code. Normal OS (data) includes the Linux data, the
application code and the application data. For clarification,
full access is applied from the non-secure world for an area
not described in Table III.

TABLE III. MEMORY MAP

Data Start
Address Size

Security
Permission
(From non-

secure world)
Vector tables +

Initialization code
+ LiSTEETM
Monitor +

LiSTEETM TA

0x48000000 0x01B00000 Access denied

Normal OS (code) 0x60000000 0x002FE000 Read-Only
Normal OS (data) 0x602FE000 0x3EF02000 Full access
Shared memory 0x9F200000 0x00C00000 Full access

For the Policy Manager in LiSTEETM Monitor to install

an access control policy on TZASC, the start address and the
size of each memory region are predefined. After the boot
loader loads Linux at the predefined value, LiSTEETM
Monitor installs the access control policy on TZASC. As
shown in Table III, the access to the memory regions
allocated to LiSTEETM Monitor, LiSTEETM TA and the code
segment of Normal OS is restricted for the Normal OS
running in the non-secure world, whereas the access to the
region allocated to the data segment of Normal OS and
shared memory is not. For clarification, LiSTEETM Monitor
and LiSTEETM TA running in the secure world can access all
regions. Furthermore, since LiSTEETM Monitor sets the
configuration registers of TZASC to prohibit Normal OS

from accessing them, Normal OS cannot change this
configuration.

Table IV shows the configuration of TZASC. In Table IV,
the meaning of the value of the security permissions field is
as follows: 0b1111 indicates full access from both the secure
world and the non-secure world, 0b1100 indicates secure
read/write is permitted but non-secure read/write is restricted
(access denied), and 0b1110 indicates secure read/write and
non-secure read are permitted but non-secure write is
restricted (read-only). An entry with larger entry number is
accorded higher priority than one with smaller entry number.
Therefore, we first set all regions with a policy of full access
as entry number 0, and then set access control policies from
entry number 1 through 7. The size of a region to which
access control is applied is discrete, such as 32 KB, 64 KB,
…, 1 MB, 2 MB, 4 MB, …, 2 GB, 4 GB. Therefore, to set
policy for LiSTEETM Monitor and LiSTEETM TA whose size
is 0x01B00000 (27 MB), we used four entries: entry number
1 (16 MB), entry number 2 (8 MB), entry number 3 (2 MB),
and entry number 4 (1 MB). In contrast to the size of
LiSTEETM Monitor and LiSTEETM TA, the size of Normal
OS (code) is a fraction (32 MB – 8 KB), and TZASC has
restrictions such that it is impossible to define an entry
whose size is smaller than 32 KB. Instead, it is possible to
define a subregion to equally divide a region into eight with
the access control policy, and enable the policy for each
subregion. For example, when the size of a region is 32 KB,
it is possible to enable a policy for each 4 KB subregion. An
8 bit subregion disable field controls enabling and disabling
the policy. Each bit in a subregion disable field enables the
corresponding subregion to be disabled. For example, when
zero is set to the value of the highest bit in a subregion
disable field, the policy for subregion 0 (the subregion
having the highest address) is enabled. To set the policy for a
Normal OS (code) region, we first defined two regions, 2
MB (entry number 5) and 1 MB (entry number 6) and set the
read-only policy. Then, we defined the region with a size of
64 KB (entry number 7) that overlaps the last portion of
entry number 6, equally divides the region into eight, sets the
policy of full access, and enables the policy for the last
subregion only. As a result, the policy of full access is set to
the subregion having the highest address only, and the policy
of read-only remains for the rest of the subregions.

As shown in Table III and Table VI, the policies can be
clearly defined and there is no overlapped region. Thus, no
policy conflict exists in LiSTEETM Recovery.

TABLE IV. CONFIGURATION OF TZASC

Entry
Number

Start
Address Size

Subreg
ion

disable
Security

Permission

0 -- -- -- 0b1111
1 0x48000000 0x17(16MB) 0x0 0b1100
2 0x49000000 0x16(8MB) 0x0 0b1100
3 0x49800000 0x14(2MB) 0x0 0b1100
4 0x49A00000 0x13(1MB) 0x0 0b1100
5 0x60000000 0x14(2MB) 0x0 0b1110
6 0x60200000 0x13(1MB) 0x0 0b1110
7 0x602F0000 0xF(64KB) 0x7F 0b1111

540

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5 shows the assignment of the timer interrupt. We
allocated a timer interrupt caused by a timer (timer 1) to Fast
Interrupt Request (FIQ) and the timer interval was set to 1
second. The FIQ interrupt is handled by the hardware
interrupt handler in LiSTEETM Monitor, then it calls
LiSTEETM TA and, as a result, LiSTEETM TA is periodically
called. We used another timer (timer 2) and allocated it to
Interrupt Request (IRQ), and the timer interval was set to 4
milliseconds. The IRQ interrupt is handled by the interrupt
handler in Linux. Since Linux assumes the timer interrupt is
allocated to IRQ, modification of the Linux source code to
adopt LiSTEETM Monitor is unnecessary.

Table V shows a configuration of hardware interrupt. We
configured Secure Configuration Register (SCR) and Current
Program Status Register (CPSR) so that the FIQ handler of
LiSTEETM Monitor is called when the FIQ interrupt occurs,
whereas the IRQ handler in Linux is called when the IRQ
interrupt occurs during executing Linux. Table VI shows the
register setting to achieve the configuration of Table V.
CPSR.I indicates the Interrupt disable bit and is used to mask
the IRQ interrupt. CPSR.F indicates the Fast interrupt disable
bit and is used to mask the FIQ interrupt. CPSR.A indicates
the asynchronous abort disable bit and is used to mask
asynchronous abort. SCR.FIQ controls which mode the
processor enters when the FIQ interrupt occurs. If one is set,
it enters monitor mode, otherwise it enters FIQ mode.
SCR.IRQ controls which mode the processor enters when the
IRQ interrupt occurs. If one is set, it enters monitor mode,
otherwise it enters IRQ mode. SCR.FW controls whether the
F bit in the CPSR can be modified in the non-secure world.
SCR.EA controls which mode the processor enters when
external abort including the one generated by TZASC. If one
is set, it enters monitor mode, otherwise it enters abort mode.
SCR.AW controls whether the A bit in the CPSR can be
modified in the non-secure world. If zero is set, CPSR.A can
be modified only in the secure world, otherwise it can be
modified in both worlds.

TABLE V. RELATIONSHIP BETWEEN WORLD AND INTERRUPT

World when
interrupt occurs Interrupt Jumps to

Non-secure world FIQ Hardware interrupt handler (FIQ
handler) in LiSTEETM Monitor

IRQ IRQ handler in Normal OS (Linux)

Secure world FIQ Pending FIQ
IRQ Pending IRQ

TABLE VI. CPSR AND SCR REGISTER SETTING

 Non-secure world Secure world
(LiSTEETM TA)

Secure world
(Monitor)

C
P
S
R

I
0/1 (depending on
the configuration
of Normal OS)

1 (IRQ disabled) 1 (IRQ disabled)

F 0 (FIQ enabled) 1 (FIQ disabled) 1 (FIQ disabled)

A 0 (Asynchronous
abort enabled)

0 (Asynchronous
abort enabled)

1 (Asynchronous
abort disabled)

S
C
R

FIQ 1 (enter monitor
mode)

0 (enter FIQ
mode)

0/1 (depending
on which world
transiting to)

IRQ 0 (enter IRQ
mode)

0 (enter IRQ
mode)

0 (enter IRQ
mode)

FW
0 (can be modified
CPSR.F only in
secure)

0 (can be
modified CPSR.F
only in secure)

0 (can be
modified
CPRS.F only in
secure)

EA
1 (enter monitor
mode)

0 (enter abort
mode)

0/1 (depending
on which world
transiting to)

AW

0 (can be modified
CPSR.A only in
secure)

0 (can be
modified CPSR.A
only in secure)

0 (can be
modified
CPSR.A only in
secure)

As shown in Table V, when a processor is in the non-

secure world and the FIQ interrupt assigned for timer 1
occurs, the FIQ handler in monitor mode is called since one
is set to SCR.FIQ. The FIQ handler in monitor mode
switches from the non-secure world to the secure world and
calls the FIQ handler in LiSTEETM TA. Finally, the FIQ
handler in LiSTEETM TA calls the Watcher module. The
entry point to LiSTEETM TA from LiSTEETM Monitor is
only the FIQ handler in LiSTEETM TA and it never returns to
LiSTEETM TA after the Watcher module calls SMC
instruction under the current implementation. When
considering returning to the original location in LiSTEETM
TA when entering the secure world next time as future
extension, the FIQ handler in monitor mode sets the
instruction located in the address next to the address of the
instruction just after calling the SMC instruction in the
previous time to r14 before calling the FIQ handler of
LiSTEETM TA. On the other hand, when the IRQ interrupt
occurs, the IRQ handler in Normal OS is called. Furthermore,
Normal OS cannot change the configuration of CPSR.F since
zero is set to SCR.FW. Therefore, the FIQ interrupt is always
enabled and the timer interrupt is input to the monitor.

When a processor is in the secure world and FIQ or IRQ
interrupt occurs, the interrupt is pending since zero is set to
CPSR.F and CPSR.I. For future extension, LiSTEETM
Monitor changes SCR.FIQ setting during context switching
so that LiSTEETM TA handles the FIQ interrupt directly
without LiSTEETM Monitor when the FIQ interrupt occurs in
the secure world. That is, zero is set to SCR.FIQ when it
transits from the non-secure world to the secure world to
jump to the FIQ handler in LiSTEETM TA when the FIQ
interrupt occurs in the secure world. On the other hand, one
is set when it transits from the secure world to the non-secure
world to enter monitor mode when the FIQ interrupt occurs
in the non-secure world.

Figure 5. Assignment of timer interrupt.

541

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When a processor is in monitor mode, FIQ and IRQ
interrupt are disabled to avoid occurrence of multiple
interrupt.

In order to determine whether Linux is working or not,
we made a small application program, which runs on Linux
and communicates with LiSTEETM TA. Shared memory is
used to exchange data between LiSTEETM TA and Normal
OS. The application program writes a counter value into the
shared memory periodically. Then LiSTEETM TA reads the
counter value from the shared memory. When Normal OS is
crashed, the application program cannot update the counter
value. If the counter value is not updated in a certain amount
of time or the counter value is not an expected value,
LiSTEETM TA determines that Normal OS is not working.
Another method of checking the status of Normal OS is to
monitor the status of a specific field, such as a task structure
or page tables in Normal OS, but we have not implemented it.
Thanks to the memory protection function, it is impossible
for Normal OS to check the checking process running in
LiSTEETM TA. Since it is possible to maintain secrecy of
Normal OS as to which memory area of Normal OS
LiSTEETM TA monitors or how often LiSTEETM TA checks
it, it is difficult for an attacker to plan a countermeasure to
circumvent the checking.

LiSTEETM Recovery provides a method to continue
working even if a memory access violation caused by
TZASC occurs. Fig. 6 shows the flowchart of how
LiSTEETM TA and LiSTEETM Monitor recover from the
error status to the normal status when an access violation
caused by TZASC occurs. When booting the system,
LiSTEETM Monitor configures SCR.EA so that external
aborts including the ones TZASC generates are handled in
Monitor mode, instead of by the abort handler in Normal OS.
Furthermore, it is prohibited to mask external abort from the
non-secure world to configure SCR.AW. Therefore, when an
access violation occurs in user mode in the non-secure world,
for example, a processor jumps to the abort handler in
LiSTEETM Monitor. At this time, the values of r14 (lr) and
spsr are the values of PC (Program Counter) and spsr of the
mode just before the access violation occurs, respectively.
The abort handler in LiSTEETM Monitor saves registers
including r14 and spsr of original mode in the non-secure
world on working memory, context switches from the non-
secure world to secure world, and calls the abort handler in
LiSTEETM TA. The abort handler in LiSTEETM TA checks
the status of Normal OS. For example, LiSTEETM TA checks
which process running in Normal OS triggers access
violation or checks memory address where an access
violation is triggered to investigate the reason for the access
violation later. After LiSTEETM TA checks the status, it calls
the SMC instruction and jumps to LiSTEETM Monitor. While
LiSTEETM TA works in the background when an access
violation occurs, LiSTEETM Recovery behaves as if data
abort occurs from the viewpoint of Normal OS. When data
abort occurs, a processor automatically stores PC and cpsr of
the mode just before data abort occurs to r14 and spsr
respectively. LiSTEETM Monitor carries out a similar
operation with the processor when an access violation occurs.
LiSTEETM Monitor switches from the secure world to the

non-secure world, restores the saved values including setting
the saved value of r14 and spsr just before the access
violation occurs to banked registers for abort mode in order
to be able to return to the original location after exiting abort
mode, and calls the abort handler of Normal OS. Therefore,
when Normal OS restarts a process, the data abort handler is
executed.

When LiSTEETM TA determines that Linux is not
working, it sends the head-end system a message. In order to
send a message to the head-end system when LiSTEETM TA
detects that Linux is not working, we ported a network driver
and UDP/IP stack to LiSTEETM TA. We defined a
proprietary protocol and data format over UDP to notify the
head-end system that LiSTEETM TA starts reboot of the
system. An application data size of UDP packet is 32 bytes,
and it consists of 4 bytes of device ID, 1 byte of flag
indicating the status of the device, and 27 bytes of reserved
area.

VI. EVALUATION
In this section, we describe the result of the evaluation in

terms of security to verify the problems of the legacy system
defined in Section II can be solved. Performance and cost
analysis of LiSTEETM Recovery is also described below.

A. Security Analysys
1) Surveillance and Recovery: LiSTEETM Recovery can

recover from a failure to reboot the system even if Normal
OS crashes. The reason for the crash could be a software
bug or a cyber-attack, including a zero-day attack prompted
by unknown vulnerabilities. In either case, since the
hardware timer interrupt continues working regardless of the
state of Normal OS, LiSTEETM TA is always periodically
called and can detect a failure of Normal OS. At the next
level, it is desirable to detect the failure as soon as possible.
Detection time depends on how frequently LiSTEETM TA
checks the status of Normal OS. Since the execution time of
LiSTEETM TA and context switching by LiSTEETM Monitor
is very short, LiSTEETM Recovery can detect the crash of
Normal OS very quickly. Some attackers may continue to

Figure 6. Flowchart of access violation handling.

542

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attack just after rebooting the system. One possible
approach to a countermeasure for the attack is to let
LiSTEETM TA have a minimum function like the “safe
mode”, but we have not implemented that.

2) Attack Prevention: The proposed system provides
two levels of attack prevention mechanism. The first level is
to prevent Normal OS from illegitimate modification. When
an attacker gains full control of Normal OS to misuse the
vulnerability, the attacker may overwrite the code segment
of Normal OS to directly overwrite the memory. In fact,
many vulnerabilities (e.g., CVE-2013-4342, CVE-2013-
1969, and CVE-2008-1673) allowing a remote attacker to
execute arbitrary code are reported [17]. In the case of
Linux, for example, once arbitrary code is executed with an
administrator privilege by an attacker, it is possible for the
attacker to overwrite an arbitrary area of code segment
through /dev/mem, resulting in system crash or misbehavior.
Although overwriting the code segment in memory is
generally difficult, it is relatively easy in the case of end-
point devices since the hardware configuration is fixed. As a
result, the system may go down. However, since LiSTEETM
Monitor sets the access control of the memory region for the
code segment of Normal OS as read-only, and its
configuration can be changed only from the secure world, it
is impossible for Normal OS to overwrite the code segment
of Normal OS. An advantage is that the protection does not
cause any side effects. Since a data segment is used to store
the state of the program, Normal OS updates the content of
the data segment frequently during its execution. In contrast
to the data segment, since a code segment is used to store
program code, it is not expected to update its content after
booting the system. In particular because devices such as
smart meters or concentrators are not expected to change
their function after being deployed, the dynamic update
function is not required. Thus, this protection mechanism
can protect Normal OS from illegitimate modification
without side effects. Moreover, the feature of read-only
memory is vey useful for the data, whose value is only
changed by LiSTEETM TA and to which Normal OS only
refers. The typical application is a secure clock. In a legacy
system, it is very difficult to provide a secure clock on an
operating system without network connectivity or dedicated
hardware if illegitimate modification of the operating
system is premised. However, LiSTEETM TA can provide a
local secure clock function by software. Since LiSTEETM
TA is executed periodically and it knows the frequency of
the execution, it is possible for LiSTEETM TA to update a
counter value written in a read-only memory in a certain
amout of time periodically. Because the counter value is
read-only from Normal OS, Normal OS cannot revert the
counter value. The second level is to protect LiSTEETM
Monitor and LiSTEETM TA from illegitimate modification
and suspension. Since the first level of protection is
effective only for a code segment of Normal OS, an attack

that overwrites a data segement cannot be prevented. Thus,
there are still possibilities that control of Normal OS is
gained by an attacker. Even in such cases, thanks to TZASC,
since Normal OS is prohibited from overwriting the content
of memory where LiSTEETM TA and LiSTEETM Monitor
are allocated, illegitimate modification is prevented. Since
communication interface between Normal OS and
LiSTEETM TA is limited, it is impossible to compromise
LiSTEETM TA by an attack. Moreover, since the interrupt
configuration register is accessible only from the secure
world, there is no way for Normal OS to stop the timer
interrupt. Furthermore, LiSTEETM provides a mechanism to
protect against shutdown attack. Since it is impossible to
prevent Normal OS from executing a shutdown procedure
with a priviledged instruction in the non-secure world, when
a process running in the non-secure world tries to shutdown
the system, LiSTEETM TA can detect it and discard the
shutdown request. Since end-point devices usually keep
working all the time, devices could be implemeted without
having a shutdown or reboot function. However, it is
necessary to have a shutdown function in some cases. For
example, the system may need to reboot when updating
firmware. Another example is that a service enginner may
need to reboot the system when inspecting the status of the
end-point devices for maintanance purposes. Although it has
not been implemented, it is possible to endow LiSTEETM
TA with a function to determine whether it should shutdown
or not based on the status of the system. For example, when
LiSTEETM TA detects an access to the memory region
mapped to the registers corresponding to power
management and determines that the system is under a
particular status, such as a maintanance mode, it may allow
executing a shutdown procedure. Similarly, when
LiSTEETM TA detects the access, it sends a head-end
system a message to inquire whether the shutdown request
is accepted or not by using the message notification function.
Based on a response to the inquiry, it can determine
whether or not a shutdown procedure can be executed
without interference of Normal OS.

3) System Reliability: In a legacy system, one single bug
could affect the entire system, causing a critical failiure.
Ideally, from a defensive viewpoint, the entire system
including the operating system should be bug-free to
achieve high availability. However, it is impracticable to
build a complicated system without bugs. Linux 3.6.1
consists of over 15 million lines of code and many new bugs
that cause critical crash are reported frequently (e.g., CVE-
2013-4563, CVE-2013-4387, and CVE-2012-2127) even
though it is carefully reviewed by many professionals [17].
Thus, the smaller the critical component that has to be
robust within a system, the better. In the case of LiSTEETM
Recovery, the critical components correspond to LiSTEETM
TA and LiSTEETM Monitor. In contrast to Linux, the code
size of LiSTEETM Monitor and LiSTEETM TA is relatively

543

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

small. The volume of source code for LiSTEETM Monitor is
about 700 lines and its code and data size are 2.1 KB and
1.6 KB, respectively. Similarly, the volume of source code
of LiSTEETM TA is about 41200 lines and its code and data
size are 1.09 MB. Compared to the volume of source code
of Linux, the risk of LiSTEETM Monitor and LiSTEETM TA
including bugs is small.

4) Response to Failure: The Notification module in
LiSTEETM TA sends a message to the head-end system just
before rebooting the system. The message, which notifies
that particular devices are about to reboot, is sometimes
useful information for administrators. For example, if
messages are sent by devices having a particular software
version number, the reboot could be caused by an attack
aimed at a vulnerability specific to the software. If messages
are sent by devices located in one particular network, the
reboot could be caused by a network worm distributed in
that specific network. Although LiSTEETM Recovery cannot
prevent an attack in advance, the notification feature can
help the administrator investigate the reason for the failure
during or after the incident. For example, it is impossible for
LiSTEETM Recovery to prevent an attacker from
compromising Normal OS and causing reboot frequently.
However, the administrator can notice that frequent reboot
occurs to the device through network since Notification
module sends a message each time when rebooting. The
attackers may try to block sending of the message to
circumvent the notification. However, Normal OS cannot
interfere with the Notification module sending a message to
the head-end server since the Notification module is
executed inside LiSTEETM TA. Moreover, since LiSTEETM
TA is processed in an environment isolated from Normal
OS, security processes, such as encrypting a message, are
easy to implement in LiSTEETM TA. Therefore, once an
encryption key and an encryption process are implemented
in LiSTEETM, it is possible to keep them secret from Normal
OS. In the next step, it is possible to include a firmware
update feature to implement functions receiving data from

the head-end system and writing the data into the file system
to extend the function of the Notification module. In
combination with the “safe mode” described above, this
function is effective against a continuous attack that occurs
just after the system recovers.

B. Performance Analysis
As well as the implementation environment, we used

Motherboard Express uATX that contains the ARM Cortex-
A9x4 processor running at 400 MHz as an experimental
environment. Level 1 instruction cache, level 1 data cache,
and level 2 cache are 32 KB, 32 KB, and 512 KB,
respectively. It contains 1 GB DRAM as the main memory
and we assigned the same memory map as that described in
Section V.

First, we measured the execution time of LiSTEETM TA
during execution of Normal OS; to be precise, the time
period from the beginning of the hardware interrupt handler
in LiSTEETM Monitor through to the execution of the SMC
instruction. Without calling the Notification module, the
average time is 1.7 microseconds over 10,000 trials.
However, if the Notification module is called, the average
time is 4.1 milliseconds over 10,000 trials. Note that the
Notification module is called when rebooting the system,
which rarely occurs. Thus, this performance overhead poses
no problem.

Next, we measured the performance degradation of
Normal OS. Since the execution of Normal OS is suspended
during execution of LiSTEETM TA, the performance of
Normal OS degrades in any case. The total of Normal OS
suspension time depends on the frequency of calling
LiSTEETM TA. There is a tradeoff between the performance
degradation of Normal OS and the delay in detecting the
crash of Normal OS. When the frequency is increased, the
performance degradation of Normal OS is also increased. On
the other hand, when the frequency is decreased, the delay
for detecting the crash of Normal OS becomes larger. Since a
general application is assumed to be executed on Normal OS,
we used dhrystone as a benchmark program to measure the
performance degradation [18].

Fig. 7 shows the result of the experiment. The bar graph

Figure 7. Result of performance degradation. Figure 8. Result of performance degradation with message transmission.

544

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

shows the dhrystone score and the line graph shows the
performance degradation. The higher the score, the better the
performance is. Each bar shows the timer interval of calling
LiSTEETM TA and its value is default (never called), 5
seconds, 3 seconds, 1 second, 0.2 seconds and 0.04 seconds
respectively. When the timer interval was set to 5 seconds,
the performance degradation was suppressed within 0.001 %.
Even if the interval was set to 0.04 seconds, the performance
degradation was less than 0.2 %. The result shows that
although there is a tradeoff between performance
degradation of Normal OS and detection rate logically, the
performance degradation can be ignored in practice even if
the frequency of calling LiSTEETM TA is increased. Fig. 8
shows another result of the experiment. In the case of Fig. 7,
it is assumed that the Notification module sends a head-end
system a message only when Normal OS stops working and
the system is rebooting. Therefore, the result does not
include processing time of the Notification module. On the
other hand, Fig. 8 assumes that the Notification module
sends a head-end system a 32 byte message whenever
LiSTEETM TA is executed even if Normal OS is working
correctly. This experiment assumes that Notification module
sends the head-end system a message periodically even if
Normal OS keeps working so that an administrator can
monitor the status of each device. Although the result of the
experiment shows that the performance slightly degrades
compared with the experiment without message transmission,
it can still be ignored in practice. Note that the score was
better for the experiment with message transmission than for
the experiment without message transmission when the
interval was set to 5 seconds, 3 seconds and 1 second. When
the timer interval is long, the execution times of LiSTEETM
TA and LiSTEETM Monitor are negligible compared with the
execution time of Normal OS since the task is too small to
measure accurately. Thus, this can be regarded as an error.

C. Cost Analysis
1) Development Cost: LiSTEETM Recovery does not

require any modification to Linux in order to run it as
Normal OS on LiSTEETM Monitor. Thus, in terms of
application developer’s cost, since developers can reuse all
existing programs including libraries, middleware, and
applications running on Linux, no additional develpment
cost is necessary. In terms of device developper’s cost,
configuration, such as network address setting of
Notification module, and memory address setting and
security permission setting of TZASC is necessary to
integrate LiSTEETM Recovery into a device. In addition to
the development cost, verification cost in order to check that
the configuration is correct is necessary. For embedded
devices in Smart Grid, there are cases where the
performance requirement is specified. For example, in the
case of a smart meter, it is reported that an acceptable delay
in responding to a management server is in the range of 50
ms to 300 ms under a specific condition [19]. As described
in the performance analysis, since performance degradation
is insignificant when introducing our proposed method, the

cases requiring performance tuning are limited. Therefore,
the development cost can be controlled.

2) Production Cost: LiSTEETM Recovery is software-
based technology and no additional hardware except a
TrustZone-capable ARM processor and an address space
controller is required. TrustZone-capable processors are
widely available. In fact, all ARM Cortex A series
processors support TrustZone. Therefore, the additional cost
is mitigated. As a result, development cost per device can be
minimized.

3) Maintenance Cost: It is assumed that a tremendous
number of devices will be deployed in the field for smart
grids. In the case of a cyber-attack, since many devices
could be a target of the attack and the attack could be done
in a very short period of time through the network, it is
impracticable in terms of both cost and time for field service
engineers to physically visit each site and reboot them. The
autorecovery feature of LiSTEETM Recovery mitigates this
problem. Moreover, the report is sent to the head-end
system once the device reboots. This function contributes to
reduction of the cost of troubleshooting. Thus, LiSTEETM
Recovery provides an opportunity to reduce maintainance
cost compared with legacy systems.

VII. RELATED WORK
To recover from an operating system failure, various

approaches have been proposed.
The simplest approach is that of including the recovery

mechanism within the operating system. One method is to
use Non-maskable Interrupt (NMI) as a watchdog timer [20].
NMI is a processor interrupt that cannot be ignored. When
NMI is generated, the NMI handler implemented within the
operating system is called regardless of the status of the
operating system. Since it is not necessary to save and
restore registers to execute a process implemented in NMI
handler, performance overhead is mitigated. Thus, NMI can
be used as a surveillance and recovery process to implement
the NMI handler so that it detects whether the operating
system hangs or not. In [21], Dolev et al. propose self-
stabilizing operating system by utilizing NMI. Although
NMI is easy to use as a watchdog timer because it has
already been implemented in Linux, it is vulnerable because
the NMI handler could be invalidated to overwrite the code
segment of the operating system. Furthermore, since
implementation of a rich application in an interrupt handler,
such as a network communication function or a data
encryption function, is not anticipated, it is difficult to realize
the notification function.

Another approach to recover from the failure is to check
the status of the operating system from outside using
virtualization technology. It is easy to realize an isolation
environment by utilizing virtualization technology. Karfinkel
developed the trusted virtual machine monitor (TVMM), on
which a general-purpose platform and a special-purpose
platform executing security-sensitive processes run
separately and concurrently [22]. The libvirt project develops
a virtualization abstraction layer including a virtual hardware
watchdog device [23]. To cooperate with the watchdog

545

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

daemon installed in a guest OS, a virtual machine monitor
can notice that the daemon is no longer working when
periodically trying to communicate with it. Although
virtualization technology is widely deployed in PC-based
systems, it is difficult to implement it in embedded devices
as fewer hardware devices support it. Moreover, since the
volume of source code for a virtual machine monitor (VMM)
tends to become large, the risk of VMM including bugs also
becomes large. To overcome the restriction, Kanda
developed SPUMONE, which a lightweight virtual machine
monitor designed to work on embedded processors [24]. It
provides a function to reboot the guest OS. However,
SPUMONE does not provide a memory protection
mechanism between the virtual machine monitor and the
guest OS (Normal OS). Thus, it is vulnerable to an attack on
the virtual machine monitor from the guest OS.

To make a secure environment by utilizing TrustZone,
various systems have been proposed.

In [25], Yan-ling et al. propose a secure embedded
system environment with multi policy access control
mechanism and a secure reinforcement method based on
TrustZone. It assumes various applications and services runs
on it. In [26], Sangorrin et al. propose a software architecture
on which real-time operating system and a general-purpose
operating system are executed concurrently on a single ARM
processor with low overhead and reliability by utilizing
TrustZone. Baseline common functions described in Section
IV basically uses the same technique in the existing
approaches. Our contribution is clarifying a total architecture
and functions which must work in a secure environment with
a full implementation to enable end-point devices
automatically to recover from an error status in a Smart Grid.

VIII. CONCLUSION AND FUTURE WORK
LiSTEETM Recovery works effectively to resist critical

bugs or attacks including zero-day attacks, that could
potentially cause the system to crash, in order to keep
availability of end-point devices. The performance
evaluation has been presented to show that the degradation
of the existing system is sufficiently small. Considering
commercialization, we have shown that the development
cost and production cost can be minimized. Moreover,
LiSTEETM Recovery can save maintenance cost.

Future work includes resistance to sophisticated attacks.
In one possible attack, an attacker illegitimately modifies the
shared memory area to fake as if Normal OS works correctly
while almost all Normal OS functions actually stop. As a
result, LiSTEETM TA misunderstands that Normal OS works
correctly. One approach to solve this attack is to implement
LiSTEETM TA so that it itself checks the status of Normal
OS without the support of an application program running on
Normal OS. For example, whenever Normal OS is running,
it must update a certain data area, such as page tables or
process tables. Therefore, in monitoring the data area,
LiSTEETM TA can determine whether Normal OS is working
or has crashed. An advantage of LiSTEETM is that it is
impossible for an attacker to reverse-engineer and to tamper
with an algorithm of LiSTEETM TA from Normal OS
because of the memory protection mechanism. Thus, an

attacker cannot know how to compromise Normal OS in
order to produce misleading information. We have not
implemented this though. Another possible attack involves
damaging the file system locating Normal OS. Network boot
can be a solution where LiSTEETM TA downloads a small
rescue program from the head-end system when booting fails.

REFERENCES
[1] Isozaki, H., Kanai, J., Sasaki, S. and Sano. S., “Keeping High

Availability of Connected End-point Devices in Smart Grid,”
In Proc. Fourth International Conference on Smart Grids,
Green Communications and IT Energy-aware Technologies,
Apr. 2014, pp. 73-80.

[2] C4 Security. “The Dark Side of the Smart Grid,” [Online].
Available: http://www.c4-security.com/The Dark Side of the
Smart Grid – Smart Meters (in)Security.pdf [Accessed 20
Nov. 2014]

[3] Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., and Yegin,
A., “Protocol for carrying authentication for network access,”
IETF RFC 5191 [Online]. Available:
http://tools.ietf.org/html/rfc5191 [Accessed 20 Nov. 2014]

[4] Zhao, F., Hanatani, Y., Komano, Y., Smyth, B., Ito, S., and
Kambayashi, T., “Secure authenticated key exchange with
revocation for smart grid,” The third IEEE PES Conference
on Innovative Smart Grid Technologies (ISGT 2012), IEEE
Power & Energy Society (PES), Jan. 2012, pp. 1-8.

[5] Wang, W. and Lu, Z., “Cyber security in the Smart Grid:
Survey and challenges,” Computer Networks, Vol. 57, Issue 5,
Apr. 2013, pp. 1344-1371.

[6] Khurana, H., Hadley, M., Ning, L., and Frincke, D.A.,
"Smart-grid security issues," IEEE Security & Privacy, Vol. 8,
Issue 1, Jan-Feb. 2010, pp. 81-85.

[7] Li. K, "Towards Security Vulnerability Detection by Source
Code Model Checking," Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International
Conference on, Apr. 2010, pp. 381-387.

[8] Rinard, M., Cadar, C., Dumitran, D., Roy, D. M., and Leu, T.,
"A Dynamic Technique for Eliminating Buffer Overflow
Vulnerabilities (and Other Memory Errors)," Computer
Security Applications Conference, 2004. 20th Annual, Dec.
2004, pp. 82-90.

[9] Huang, Z and Harris, I.G., “Return-oriented vulnerabilities in
ARM executables,” IEEE 2012 Conference on Technology
for Homeland Security, Nov. 2012, pp. 1-6.

[10] De Craemer, K., and Deconinck, G., "Analysis of state-of-the-
art Smart Metering communication standards,” in Young
Researchers Symposium (YRS), 2010. [Online]. Available:
https://lirias.kuleuven.be/bitstream/123456789/265822/1/Sma
rtMeteringCommStandards.pdf [Accessed 20 Nov. 2014]

[11] Wang, W., Xu, Y., and Khanna, M., "A survey on the
communication architectures in smart grid," Computer
Networks, Vol. 55, Issue 15, Oct. 2011, pp. 3604-3629.

[12] Liotta, A., Geelen, D., van Kempen, G., and van Hoogstraten,
F., “A survey on networks for smart-metering systems,”
International Journal of Pervasive Computing and
Communications, Vol. 8, No.1, 2012, pp. 23-52.

[13] Varghese, S. M., and Jacob, K. P., "Anomaly Detection Using
System Call Sequence Sets," Journal of Software, Vol. 2, No.
6, Dec. 2007, pp. 14-21.

[14] Pont, M. and R. Ong., “Using watchdog timers to improve the
reliability of single-processor embedded systems: Seven new
patterns and a case study,” In Proc. First Nordic Conf. on
Pattern Languages of Programs, Sept. 2002, pp. 159-200.

[15] ARM. “ARM Security Technology,” [Online]. Available:
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-

546

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf [Accessed 20
Nov. 2014]

[16] Alves, T. and Felton, D., “TrustZone: Integrated Hardware
and Software Security,” Information Quarterly, Vol. 3, No. 4,
2004, pp. 18-24.

[17] MITRE. “Common vulnerabilities and exposures,” [Online].
Available: http://cve.mitre.org [Accessed 20 Nov. 2014]

[18] ARM. “Dhrystone Benchmarking for ARM Cortex
Processors,” [Online]. Available:
http://infocenter.arm.com/help/topic/com.arm.doc.dai0273a/D
AI0273A_dhrystone_benchmarking.pdf [Accessed 20 Nov.
2014]

[19] Miyashita, M. and Ohtani, T., "Transmission Characteristics
Evaluation of Demand-side Communication -Evaluation of
Response Time Using International Standard Protocol for
Meter Reading and Wireless LAN-," CRIEPI Research
Report, Jun. 2011 (in Japanese).

[20] Kleen, A., “Machine check handling on linux,” Technical
report, SUSE Labs, Aug. 2004 [Online]. Available:
http://halobates.de/mce.pdf [Accessed 20 Nov. 2014]

[21] Dolev, S. and Yagel, R., “Towards Self-Stabilizing Operating
Systems,” IEEE Transaction on Software Engineering, Vol.
34, No. 4, Jul/Aug. 2008, pp. 564-576.

[22] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and Boneh,
D., “Terra: A virtual machine-based platform for trusted
computing,” In Proc. Symposium on Operating System
Principles, Oct. 2003, pp. 193-206.

[23] "libvirt - the virtualization API.," [Online]. Available:
http://libvirt.org [Accessed 20 Nov. 2014]

[24] Kanda, W., Yumura, Y., Kinebuchi, Y., Makijima, K., and
Nakajima, T., "SPUMONE: Lightweight CPU Virtualization
Layer for Embedded Systems," In Proc. Embedded and
Ubiquitous Computing, Dec. 2008, pp. 144-151.

[25] Yan-ling, Z., Wei, P., "Design and Implementation of Secure
Embedded Systems Based on Trustzone," In Proc.
International Conference on Embedded Software and Systems,
Jul. 2008, pp. 136-141.

[26] Sangorrin, D., Honda, S. and Takada, H., "Dual Operating
System Architecture for Real-Time Embedded Systems," In
Proc. 6th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, Jul. 2010,
pp. 6-15.

