
468

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Schema Quality Improving Tasks in the Schema Integration Process  
 

Peter Bellström 
Information Systems 
Karlstad University 
Karlstad, Sweden 

e-mail: peter.bellstrom@kau.se 

Christian Kop 
Institute for Applied Informatics 

Alpen-Adria-Universität Klagenfurt 
Klagenfurt, Austria 

e-mail: chris@ifit.uni-klu.ac.at
 
 

Abstract — In this article, we address quality in the schema 
integration process. More specifically, we focus on schema 
quality improving tasks in the schema integration process. In 
doing so we describe best practices found in literature used for 
conceptual modeling as such and apply these to schema 
integration tasks. Particularly, we address five tasks within the 
integration process that if used with best quality practices 
should improve the quality of the integrated schema. Within 
each best practice, we also address the usage of knowledge 
repositories to aid in the process of creating a high quality 
integrated schema. The five tasks are as follows: choosing the 
right integration strategy, choosing the right conflict resolution 
methods for the chosen level of abstraction, introducing inter-
schema properties to improve and clarify dependencies, 
combining methods, approaches and guidelines to facilitate 
recognition of conflicts and finally restructuring. The main 
contribution is given in the terms of which best practices in 
conceptual modeling are combined with important integration 
tasks. 

Keywords - Information and Model Management, 
Organizational Information, Schema Integration, Schema 
Integration Process, Schema Quality, Best Practice for 
Conceptual Modeling 

I.  INTRODUCTION 
Schema integration has a long research tradition. 

Nevertheless, it is still relevant and many tasks of the schema 
integration process are needed all the time. There are several 
reasons and application scenarios, which emphasize this 
prediction. 

Schemata are not built from scratch nowadays. There are  
many schemata available on the Web. Several of these 
schemata can be (re)used. Reusing one means that it must be 
aligned and if needed finally integrated with existing 
schemata. 

 Enterprises involve a great deal of data, which constitute 
an important economic resource and have to be maintained 
carefully. From an economic point of view, data can be 
classified into master data, inventory data and transaction 
data. Especially master data can be used in different 
information systems within an enterprise and thus shared 
across this organisation. Integration of data schemata (e.g., 
schemata of master data) becomes necessary if, for instance, 
two enterprises merge. A data schema that is used in several 
enterprises has to be at least aligned too. For another 
application scenario where integration can take place, we can 

consider an international operative enterprise with branches 
in different countries. It has to be expected that the branches 
will show a tendency to generate proprietary schema parts, 
important only for this branch. Therefore, the schema will 
evolve over time. Since the master data schema has to be 
shared by the whole enterprise, it is necessary to integrate 
new information consistently into the existing enterprise 
master data schema. 

Finally, if enterprises use provided Web Services, then it 
might be good to know the business process model and at 
least match the business process models and data models and 
check for compliance of the models to the Web Service with 
the respective models of the enterprise.   

A good quality of the result in such contexts is very 
important. Literature on quality mainly focuses on the 
quality of the product (i.e., the model). The criteria a model 
must fulfill in order to have a certain quality is explained.  In 
order to achieve this quality one must also look at the 
process and think about improving the process tasks.  

In [1], we gave a first description of what can be done in 
the integration process of static schemata in order to get a 
good integrated model (schema). In this article, we present 
and describe a continuation of this work. Since an integrated 
schema is a schema too, we analyzed the literature focusing 
on static modeling and the kind of process tasks that lead to a 
better quality of the schema.  Then we applied strategies to 
tasks that have to be done in the integration process. 
Particularly, we address five tasks within the integration 
process that if used with best quality practices should 
improve the quality of the integrated schema.  The five tasks 
are as follows: choosing the right integration strategy, 
choosing the right conflict resolution methods for the chosen 
level of abstraction, introducing inter-schema properties to 
improve and clarify dependencies, combining methods, 
approaches and guidelines to facilitate recognition of 
conflicts and finally restructuring. 

Since the paper covers the schema integration process 
and the quality of the integrated schema and the process, this 
paper is structured as follows. In Section II, we give an 
overview on integration approaches and quality of schemata. 
In Section III, we describe the integration process. Section 
IV focuses on some best practices for improving schema 
quality. In Section V, we describe the impact of the best 
practices mentioned in Section IV on the five tasks 
mentioned in Section III. The paper closes with conclusion 
and future work. 



469

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK 
In this section, we first address related work in relation to 

schema integration. This is followed by related work in 
relation to schema quality. Finally, the section ends with a 
short summary and a discussion on the research gap that we 
are addressing. 

A. Integration 
There is a long research history on several aspects of 

schema integration. A first substantial work, on integration 
was made by [2] in the mid-1980s. In another work by [3], 
other approaches on integration were summarized. In the 
following years other integration approaches have been 
published, which focus on several aspects of the integration 
problem. 

In [4], the authors used attribute equivalence as the most 
basic concept to explain the integration of structural 
schemata. In [5], the authors presented operators for deciding 
on the similarity or dissimilarity of schema construct. On the 
basis of defined assertions, in [6], the author proposed a 
method to detect equivalent schemata and to automatically 
integrate two schemata. In [7], the authors concentrate on the 
automatic detection of naming conflicts. Further algorithms 
for structural schema integration can be found in [8]. In [9], 
the authors integrate semantically enriched database 
schemata. In [10], the author presented an object-oriented 
framework for the integration of heterogeneous databases. In 
[11], the authors introduced linguistic knowledge for the 
integration step. For relationships, for instance, verbs can 
name relationships. The knowledge about the verbs and their 
linguistic semantic roles support the integration. In [12], the 
authors described black board architecture for schema 
integration of existing databases. With the system, 
knowledge from designers and end users, which feed the 
system is shared. The impact of similarity measures for 
schema matching and data integration is discussed in [13]. In 
[14], the authors described the integration of state charts in 
object-oriented models. The work of [15] is based on the 
formalization of state chart constructs. In [16], the authors 
proposed a meta-class framework, on which integration 
should be based. In [17], the author gave an overview of 
business process integration. In [18], the authors proposed 
OWL-S ontologies as a support for business process 
integration. In [19], the authors described the integration of 
use cases on the basis of petri net models. Finally, in [20] the 
authors used a behavior tree approach for integrating 
requirements. 

B. Schema Quality 
A great deal of work has been done on  the quality of 

conceptual schemata (models) too. Although quality is a 
feature of a product or artifact (e.g., a schema), it is also 
necessary to think about the quality of the process of 
generating the product to support the quality of the product.  

In [21], the authors have listed eight schema quality 
characteristics: completeness, correctness, expressiveness, 
readability, minimality, self-explanation, extensibility, and 
normality. In [22], a framework consisting of three 
dimensions is proposed: “syntax”, “semantic” and 

“pragmatics”. The syntax-dimension reflects the vocabulary 
and grammar (i.e., meta-model) of a schema. The semantic 
dimension relates the used terms and notions to the domain 
context. The chosen notions modeled by modeling elements 
must be legitimate and relevant in the domain, and they must 
be relevant and legitimate to the purpose for which the 
schema has been built. Finally, the pragmatic dimension is 
achieved if the audience can understand and follow the 
schema.  

In [23], the author concluded that there is still a need for 
standards, which are also accepted by the industry.  

In [24], the authors focused on process quality for the 
development of data schemata (ER diagrams). Their 
approach was evaluated in a large Australian bank. In the 
empirical study, it was also important, that the quality was 
checked throughout the schema development process. In 
particular, quality-checking was not only made at the end of 
a phase but before, during and after the schema development 
phases. Furthermore, it turned out, that an information 
architect, who checks the schema with respect to enterprise 
terms, can support the quality.  

In [25], the authors presented a framework of four quality 
characteristics for an ER modeling language: clarity, 
simplicity, expressiveness, and minimality.  

In [26], the authors described the “Guidelines of 
Modeling (GoM)”. Six principles of modeling are introduced 
in this framework: correctness, relevance, economic 
efficiency, clarity, comparability and systematic design. 
These principles can be seen as general strategic and 
objective definitions for modeling. Based on these goals, the 
concluded modeling process consisted of the following steps: 
goal definition, construction of an overall navigation and 
structural framework, modeling as such, and completion and 
consolidation.  

With the semiotic quality framework (SEQUAL), [27] 
explains quality of models with model externalization, goals 
of modeling, modeling domain, explicit knowledge of social 
actors, interpretation of the social actors and technical actors 
as well as with language extension. 

C. Summary of the Literature 
We adopted the integration process as described in [3], 

since this is a well-established process. They divided the 
integration process into four phases: pre-integration, 
comparison of the schemata, conforming the schemata and 
merging and restructuring. In Section III, we describe this 
process in more detail.  

In Section IV, we continue the description about schema 
quality according to some selected best practices out of the 
list of schema quality approaches. We have chosen these 
approaches since they have shown in practice that they 
improve schema quality. In Section V, we will then take 
specific best practices and combine them into five tasks of 
the integration process steps described in Section III.  

III. INTEGRATION PROCESS 
This section should be viewed as a reference point for the 

following sections, in which we describe and discuss best 
practices in the schema integration process. The integration 



470

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

process starts with a set of schemata, often referred to as 
views. These views are integrated in order to evolve the 
global schema. The schema evolvement takes place in the 
four phases proposed in [3], starting with pre-integration (A), 
followed by comparison of the schemata (B), and 
conforming the schemata (C), ending with merging and 
restructuring (D). The output of one phase is used as the 
input of the next phase (see Figure 1). 

 

Pre-
Integration

Comparison 
of the 

Schemata

Conforming 
the Schemata

Merging and 
Restructuring

 
Figure 1. The Schema Integration Process (adapted and modified from [28] 

p. 20) 
 

A. Pre-Integration 
Several tasks should be carried out in the first phase of 

schema integration. In [29], the author mentions that 
translating all schemata into the chosen modeling language, 
checking for differences and similarities in each schema and 
selecting the integration strategy are all tasks to be 
performed in pre-integration. Three additional tasks to 
perform in pre-integration are proposed in [30] as follows: 
schema element name adoption, schema element 
disambiguation and introduction of missing relationships.  

The output from this phase is a set of revised schemata, 
the definitions of schema elements and the chosen 
integration strategy. 

B. Comparison of the Schemata 
The second phase of schema integration has been 

researched a great deal and it has been called an important 
[29] and difficult phase [31][32]. Several authors [3][29][33] 
have assigned the following tasks to this phase: recognition 
of name conflicts, recognition of structural conflicts and 
recognition of inter-schema properties.  

The output from this phase is a description of schema 
element similarities and a description of differences and a 
description of inter-schema properties. 

C. Conforming the Schemata 
Also conforming the schemata, phase three has received 

some attention by other researches. For instance, in [32], the 
authors called it the most critical phase and in [13] it was 
called the key issue in schema integration. 

In conforming the schemata, the recognized similarities 
and differences are resolved by adjusting the input schemata. 

The recognized inter-schema properties are also used in 
this phase. However, its full value is shown in merging and 
restructuring where they are used as a guideline while not 
only merging the schemata but also restructuring the 
integrated schema.   

The output of this phase is a set of revised schemata. 

D. Merging and Restructuring 
The last task in the schema integration is merging and 

restructuring, in which the first task is to merge the revised 

input schemata into one global intermediate schema. The 
intermediate schema is then restructured, e.g., detected inter-
schema properties are introduced to semantically enrich the 
schema. Furthermore, schema elements that are truly 
redundant are recognized and removed from the schema. 
Merging the schemata as well as restructuring the schema 
results in a new intermediate schema.  

Before the integrated schema is handed over to the 
developers implementing the information system, the schema 
is again analyzed, meaning that the schema is checked and 
verified according to several quality criteria [3][21] and/or 
quality factors [24]. 

The result of this phase should be a high quality schema 
that can be passed to the following phases, in which the 
information system is implemented. 

IV. SOME BEST PRACTICES REGARDING SCHEMA 
QUALITY 

Both the Guidelines of Modeling (GoM) [26] and the 
quality factors explained in [24] have a focus on improving 
the quality of the modeling process and quality of the 
resulting product (i.e., the conceptual schema). 

Both frameworks are a good basis for understanding the 
quality of the conceptual modeling integration process. The 
Guidelines of Modeling provide a more strategic framework 
for covering all aspects of enterprise models (e.g., data, 
organization, processes, and behavior). The work in [24] 
focuses on data schemata (models), more specifically 
schemata modelled with ER diagrams.  

Because of its operational focus, we adopted the 
following practices from [24] for the integration process in 
order to fulfill the quality factors and improve the quality of 
the modeling: 

• Introducing a specific kind of stakeholder role – the 
information architect 

• Introducing continuous quality checks and reviews.  
As well as the general practices: 

• Stakeholder participation 
• Introducing naming conventions and standards 

The information architect (in [24] called data 
administrator) is a person introduced to review a schema 
with respect to the other data schemata (models) existing in 
the enterprise. 

According to the authors of [24], who proposed 
continuous checks and reviews for schema development, 
reviews must not only be made at the end but also before and 
during a development step. Such reviews should support the 
aim of the total quality management that the quality checks 
and reviews should NOT detect errors but prevent errors. 

The participation of different kind of stakeholders is a 
successful technique used in Information Systems and 
Enterprise Engineering. Since the schemata (models) 
represent the knowledge of ideas of people with different 
backgrounds, it is necessary that different stakeholders are 
involved. 

The introduction of an information architect implies also 
the usage and management of standards (e.g., what a schema 



471

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

should look like syntactically, what terms are used and 
preferred to other terms, etc.). 

Beside this, the author of [27] also motivates the 
language as a factor for schema quality. According to [27] an 
important means to achieve good schema quality is to choose 
an appropriate language. He puts the language into the right 
perspective. A good language is useful but not sufficient. 
Someone can still generate a poor schema with a good 
language. Furthermore, the language is chosen already when 
modeling the original task.  But a language has two aspects, 
one regarding its notions defined in the meta-model and the 
other aspect is the external representation of notions. In [49], 
the author proposed nine principles of language 
representation: Semantic clarity, Perceptual discriminability, 
Semantic Transparency, Complexity Management, Cognitive 
Integration, Visual Expressiveness, Dual Coding, Graphic 
Economy, Cognitive Fit. Semantic clarity means that there 
must be a one to one mapping between a representation and a 
notion. Perceptual discriminability is given if concepts are 
well distinguishable with their representation. A semantic 
transparency exists if the representation supports the 
meaning of the notion. With complexity management, the 
level of abstraction and filtering is supported by notion 
representations. A language has a cognitive integration if it is 
possible to navigate between subsets (i.e., different 
diagrams) of the language. Visual expressiveness describes 
to what extent the language cognitive variables (e.g., shape, 
size, color, brightness, etc.) support good interpretation and 
understanding of a schema. Does the language support 
graphical notation together with text (i.e., dual coding)? Are 
there not too many symbols for expressing notions of the 
language (graphic economy)? Finally, is it possible to adapt 
and use symbols, which were selected for the specific 
audience and the skills of the audience (i.e., cognitive fit)? 
Whereas the language itself cannot be changed, the external 
representation of the language can be changed in order to fit 
with the skills of the audience. The minimal change is the 
harmonization of external representations (semantic clarity), 
if there is no one-to-one mapping between the external 
representation and the notion and one notion has more 
representations. Another possibility would be to transform  
more abstract representations of notions to representations 
that fit with the skills of all users. Finally, representations 
can be changed in size and color to represent a certain state 
of a schema element (e.g., a concrete class). This would be a 
way to express that a certain schema element is already 
integrated. 

The use of boundary objects can be another best practice 
especially for the communication between different kinds of 
stakeholders. In [34], the authors introduced boundary 
objects to communicate between professionals and amateurs 
in the zoological research field. Boundaries are abstracts that 
support the sharing of the knowledge and communication 
between communities of practice. Boundary objects are 
interfaces between these communities. In [35], the author 
described four classes of boundary objects: repositories, 
standardized forms and methods, physical objects like 
prototypes or models. Furthermore, he distinguishes between 
three types of knowledge boundaries between communities 

of practices: syntactic, semantic and pragmatic boundaries. 
Syntactic boundaries exist if different communities have 
different vocabularies. In this case, a common lexicon can 
support the overcoming of the differences. To solve semantic 
boundaries, the parties must create and define a common 
meaning with the help of boundary objects.  Finally, 
boundary objects for pragmatic boundaries help to establish a 
negotiation process to find common interests. A pragmatic 
boundary always includes a semantic and a syntactic 
boundary. Also, a semantic boundary includes a syntactic 
boundary. In [36], enterprise architecture artifacts are 
introduced as boundary objects to support the 
communication and coordination in an enterprise 
transformation process.  

Boundary objects should also be used during integration 
since many different kind of stakeholders are involved. 
Stakeholders can have different views on the domain and 
even different vocabularies and meanings. They also use 
parts of the schemata differently. Hence, schema integration 
has to solve even pragmatic boundaries. Therefore, boundary 
objects for pragmatic boundaries are needed.  

Even the schema in the original modeling language can 
be a boundary object, because boundary objects can be 
schemata too. In the following, we will differentiate between 
a schema, the modeling language already in use for modeling 
and integration and boundary objects in a stricter sense. In 
this sense, a boundary object is any extension to the given 
schema or any additional method or schema from a different 
modeling language, if the original modeling language does 
not have sufficient power to act as an interlingua between all 
stake holders.  

However, no predefined set of boundary objects exists, 
which fulfill the criteria to support communication. 
Therefore, the challenge is to find the adequate boundary 
object for a communication purpose. If there were several 
previous integration process projects in an enterprise, then 
the stakeholders can rely on given experiences. However, if 
it is the first integration project, then the stakeholders must 
agree on what kinds of models, objects, repositories or the 
like that they will use. 

V. APPLYING BEST PRACTICES TO INTEGRATION TASKS 
In general, the best practice of “continuous 

improvement” is a driver for the whole integration process. 
Whereas quality is usually considered in or even after the last 
step of schema integration, we will follow the principle to 
introduce quality as early as possible. Therefore, we will 
focus on tasks needed during the whole integration process 
and not only in the last phases. We will relate the tasks to the 
best practices in order to improve them. These tasks are: 
choosing the right integration strategy, choosing the right 
conflict resolution methods for the chosen level of 
abstraction, introducing inter-schema properties to improve 
and clarify dependencies, combining methods, approaches 
and guidelines to facilitate recognition of conflicts and 
finally restructuring.  



472

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Choosing the Right Integration Strategy 
In [3], several strategies are proposed to integrate end-

user schemata (views). They distinguish between binary and 
n-ary integration strategies. Among the binary strategies, a 
ladder strategy or a balance strategy can be chosen. In the 
ladder strategy, the stakeholders start with two views. They 
integrate these two views. Then the first integrated schema is 
compared and matched with another view and so on. In the 
balanced strategy two views are integrated to become an 
intermediate schema. This intermediate schema is integrated 
with other intermediate schemata until the global schema is 
reached. The n-ary strategies are the one-shot strategy (a 
global schema is generated at once from all views) and the 
iterative strategy. The iterative strategy uses one shot 
strategies only to produce intermediate schemata. These 
schemata are then integrated with each other (two or more). 
Integrated schemata can also be integrated with further 
views. The iterative strategy can be seen as a mixture of the 
previous three strategies.  

Figure 2 illustrates how the binary ladder strategy aids in 
the process of providing enough points of inspection during 
the schema integration process. 

 

 
Figure 2. Binary ladder integration strategy with enough inspection points 

 
1) Continuous Checks and Reviews 

For continuous checks and reviews, the integration 
strategy must provide enough definite points of inspections.  

A one shot strategy can be excluded as a good strategy by 
applying this best practice. Otherwise, it would mean that a 
global schema exists without any intermediate results. If 
intermediate results are missing, then it is impossible to 
define definite review milestones. Following the best 
practice of continuous improvement given in literature, an 
iterative and balanced or ladder strategy should be applied. 
Doing so, this intermediate schema can be reviewed each 
time an intermediate schema is generated.   
It cannot be decided which of the other three strategies that 
should be chosen since all these strategies have intermediate 
points where schemata can be reviewed before or during 
integration. The decision between a balanced, a ladder, or an 
iterative strategy, is a pragmatic decision of available time 
for the integration and other environmental factors. 

2) Information architect, stakeholder participation and 
standards  

Since integration is part of modeling an information 
architect, standards and stakeholder involvement are also 
necessary for integration.  

The information architect has to assure that a certain 
intermediate schema as well as the additional views already 
have to be integrated in compliance with existing schemata 
in the enterprise. Stakeholders check the semantic 
correctness and completeness with respect to a certain 
examined section represented by the views (schemata) or 
intermediate schemata. For both information architect and 
stakeholder involvement, strategies that have more 
intermediate points for discussions and reviews (i.e., ladder, 
balanced, iterative strategy) are more supportive. 

Standards help to check if the schema is syntactically 
correct and if terms are used in compliance with the 
enterprise. It is therefore necessary that standards are used. 
Standards equally drive all the four strategies (one shot, 
ladder, balanced and iterative). Knowledge repositories, such 
as stemmers and lemmatizers, could be used to facilitate the 
task of checking that terms are used in a correct way. 
Drawing tools might also aid in the modelling process and be 
used to check that the schema is syntactically correct. 

B. Choosing the Right Conflict Resolution Methods for the 
Chosen Level of Abstraction 
In the second phase of schema integration, comparison of 

the schemata, two schemata are always compared to find the 
similarities and differences often referred to as conflicts. In 
the third phase that follows, conforming the schemata, the 
similarities and differences, i.e., the conflicts, are resolved. 
The problem is that the same resolution methods are often 
proposed (and used) for both implementation neutral 
schemata and implementation dependent schemata. 
However, using different conflict resolution methods for 
different levels of abstraction is very important since 
schemata are designed to be applied on different levels of 
abstraction. For instance, an implementation neutral schema 
is often used in the earlier phases of information systems 
development while an implementation dependent schema in 
the later phases is close to programming and technical issues. 

The purpose of the schema under design may also vary. 
This is also addressed in [37], in which the authors state that 
“A schema can serve at least four different purposes. First, it 
can be used for clarifying the language used in an 
organisation. Secondly, it can be used for making explicit the 
rules that prevail in an organisation, which helps to criticise 
them and possibly to draw up new rules. Thirdly, a schema 
can be useful for reviewing existing information systems. 
Fourthly, a schema can be used for developing a new 
information system.” (p. 122). 

One way to combine the two levels of abstraction, 
implementation neutral and implementation dependent, with 
the quotation given in[37] is described in Table I.  

Summing up, if the differences between an 
implementation independent schema and an implementation 
dependent schema are ignored and the same conflict 
resolution methods are used, we might end up with not only 
a schema that is hard to understand but also end up with 
semantic loss. It is therefore of great importance that 



473

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

choosing the right conflict resolution methods for the chosen 
level of abstraction is taken into consideration in schema 
integration. 

 

TABLE I. SCHEMA PURPOSE COMBINED WITH SCHEMA LEVELS OF 
ABSTRACTION 

Purpose ([37]) Level(s) of 
abstraction 

Comment 

Clarifying the 
language used in an 
organisation. 

Implementation 
neutral level 

Often the designers 
are interested in 
concepts and 
connections between 
concepts and not in 
implementation 
dependent issues. 

Making explicit the 
rules that prevail in an 
organisation. 

Implementation 
neutral level 

Rules must be 
expressed in a way 
that makes it possible 
for stakeholders to 
understand the rules 
and thus be able to 
criticize them. 

Reviewing an already 
existing information 
system. 

Implementation 
dependent level 

In this case the schema 
should describe an 
already implemented 
information system. 

Developing a new 
information system. 

Implementation 
independent level / 
implementation 
dependent level 

The designers might 
not only use different 
schemata during the 
development of the 
information system 
but also different 
modeling languages 
dependent on phase 
and focus in the 
information systems 
development process. 

 
1) Continuous Checks and Reviews 

Having compared two source schemata and recognized 
the conflicts between these, it is important that during the 
third phase, conforming the schemata, the right conflict 
resolution methods are used. Since this is not always the 
case, applying the best practice of continuous checks and 
reviews are of importance. If the designers and/or 
stakeholders introduce a resolution method that should not 
be used for the current level of abstraction, it should be 
recognized during continuous checks and reviews and 
changed to the right one. This should in the end contribute to 
an integrated schema with high quality since an additional 
check and review has been conducted. For instance, if during 
comparison of the schemata we have recognized a synonym 
conflict, e.g., Customer in schema 1 and Client in schema 2 
(see Figure 3), it should be resolved during the conforming 
of the schemata by introducing a resolution method that is 
applicable for the current level of abstraction. 

It should be noted that if the schemata are designed on an 
implementation neutral level it is important that a resolution 
method that retains all concept names and dependencies are 
applied since they might be of importance for one or several 
stakeholders. We should therefore not rename one or both 
concept names, which is one of the most common proposed 
resolution methods for a synonym conflict but instead 

introduce a resolution method that keeps both concept 
names. One way to fulfill this could be to introduce mutual 
inheritance dependency described as: A and B are synonyms 
if and only if A inherits B and B inherits A [39]. 

 

 
Figure 3. Recognition of synonyms [38] (p. 71) 

2) Information architect, stakeholder participation and 
standards  

By involving not only the information architect but also 
the stakeholders, several of the mentioned pitfalls can be 
recognized and addressed in the current iteration cycle. This 
is motivated since it is the stakeholder and the information 
architect that possess the knowledge about their organization 
and on how the concepts should be named and connected to 
each other. The information architect also has to take into 
account already existing source schemata within the 
enterprise while a stakeholder might instead focus on 
integrating a schema of a specific department. 

Naming conventions, standards and ontologies, so-called 
knowledge repositories, might also exist in the enterprise that 
need to be taken into account in the integration. It should be 
noted that these naming conventions and standards do not 
restrict the naming of the concepts which impoverish the 
language used in the schema but instead are used as a tool to 
facilitate the integration process as such. Therefore, 
standards should not enforce the usage of one concept name 
but instead give guidelines on how concept names should be 
used such as name concepts in the singular. 

3) Modeling languages, its external representations and 
boundary objects  

Conventions are not only necessary for the naming of the 
schema elements. If a language does not have a one to one 
mapping but a symbol redundancy exits [20], then one and 
the same symbol has to be chosen in all schemata. Otherwise 
it confuses the stakeholders. 

Some authors, e.g., [40], even eschew the distinction 
between classes and attributes if possible. The modeling 
language ORM [40] focuses on the representation of facts. 
There are no classes and attributes. Instead, object types are 
related to each other via roles. KCPM [41] has adopted this 
strategy. This not only helps to be more stable if requirement 
changes occur, but also has an advantage in schema 
integration. Problems of structural conflicts can be avoided.  

In KCPM, even glossaries were added as an additional 
means for representing the schema. Such modeling 
languages and more sophisticated representations of schema 
elements can be used for both implementation independent 
and implementation dependent schemata. If the language 
itself does not provide a glossary representation, it can be 
introduced as a boundary object. Additionally, ontologies 



474

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and knowledge repositories can be seen as boundary objects 
too. 

C. Introducing Inter-Schema Properties to Improve and 
Clarify Dependencies 
Another task in pre-integration (phase 1) and comparison 

of the schema (phase 2) is the recognition of inter-schema 
properties. An inter-schema property is not really a conflict 
but it describes a specific dependency (link) between two 
concepts often referred to as two concepts that are similar but 
not exactly the same concept. Two of the most common 
inter-schema properties as described in literature are 
holonym-meronym dependencies “part-of” (see Figure 4a) 
and hypernym-hyponym dependencies “is-a” (see Figure 
4b).  

 

 
Figure 4. Inter-schema holonym-meronym property (a) and inter-schema 

hypernym-hyponym property (b)  

When two schema elements partly match and have been 
recognized as an inter-schema property, it is documented and 
passed to the following phase in the schema integration 
process, in which it is used as a knowledge repository and/or 
guideline on how to resolve the partly recognized match.  

Introducing and being able to use inter-schema properties 
in the schema integration process is of great importance 
since an inter-schema property should have a clearer 
meaning then, for instance, an association dependency 
between two concepts. The inter-schema property should 
therefore also be used not only to clarify and improve a 
specific meaning of two concepts but also to reduce the 
number of concepts in the integrated schema if possible. 
Nevertheless, it should be noted that reducing the number of 
concepts should be done very carefully. Deleting a concept 
might not only reduce the quality of the integrated schema 
but also at the worst violate the completeness quality factor 
addressed in [24]. 

Finally, a holonym-meronym dependency might be of 
two types: aggregation and composition, in which 
composition is the stronger one. 

1) Continuous Checks and Reviews 
In the second phase of the schema integration process, 

comparison of the schemata, either the binary strategy (see 
Figure 2) or n-ary iterative strategy should be used while 
recognizing similarities and differences, e.g., inter-schema 
properties, between two source schemata. When an inter-
schema property has been recognized, it should be 
documented and passed on to the following phases in the 
integration process. In the end, the inter-schema property 
should not only, be treated as a source to semantic 
improvement but also be used as guidance anda knowledge 
repository. 

Nevertheless, an inter-schema property should be used in 
the right way and not in a way that pollutes the source 
schemata and/or the integrated schema. In the worst case, an 
inter-schema property is used in a wrong way causing 
semantic errors. Applying the best practices of continuous 
checks and reviews is therefore of great importance to 
improve not only the quality of the integrated schema as such 
but also to verify that the inter-schema property is used in a 
correct way. 

For instance, if we in the comparison of the schemata 
have recognized not only a hypernym-hyponym dependency 
between concept Article and Product in schema 1 but also a 
hypernym-hyponym dependency between concept Product 
and Article in schema 2, problems might later on be 
introduced into the integrated schema (see Figure 5).  

 

 
Figure 5. Recognition of difference between two source schemata including 

inter-schema hypernym-hyponym properties [38] (p. 90) 

The inter-schema dependencies are documented and 
passed on to the following phase, conforming the schemata, 
in which the schemata are adjusted to solve the recognized 
conflicts and inter-schema properties. Finally, the modified 
source schemata (and some extra information resources) are 
passed to the last phase, merging and restructuring, in which 
the schemata are first merged and later on restructured. In the 
worst case, both hypernym-hyponym dependencies 
described above, Article and Product, are introduced to the 
integrated schema causing what is sometimes called reverse 
subset relationship [21] or cyclic generalization [29] (see 
Figure 6).  

 

 
Figure 6. Reverse subset relationship / cyclic generalization (adapted and 

modified from [38]) 

 
However, applying the best practice of continuous checks 

and reviews, this problem should be recognized and resolved 
in the current iteration cycle and not left till later iterations in 
the integration process. Figure 7 illustrates how the reverse 
subset relationship / cyclic generalization can be resolved by 
introducing mutual inheritance dependency [39]. 

 



475

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
Figure 7. Reverse subset relationship / cyclic generalization resolved by 

introducing mutual inheritance depencency [38] (p. 90) 

2) Information architect, stakeholder participation and 
standards  

Introducing inter-schema properties should result in a 
semantically richer schema since the inter-schema properties 
should have a much clearer meaning compared with the 
association dependency with or without specified cardinality, 
for instance. Nevertheless, introducing new schema 
constituents could result in new problems and errors not only 
since it is the stakeholders that have to be trained in using the 
new constituent in a correct way, for instance, during a 
modeling sessions, but also since the new constituent needs 
to be taken into account during schema integration. 
Involving information architect as well as stakeholders is 
also of great importance, since these actors possess the 
knowledge about their specific domain. Therefore, they also 
know how to name concepts and how concepts should be 
connected. 

Finally, so-called knowledge repositories (e.g., naming 
conventions, standards and ontologies) might also exist 
within the enterprise where the integration is taking place. 
Ontology, or even domain ontology, might be useful when 
deciding how to resolve the cyclic generalization 
dependency. This is the case since a description on how 
concept Article and concept Product are dependent might be 
stated in the ontology (see Figures 5-7). 

3) Modeling language and boundary objects 
If the modeling language does not provide the possibility 

to model inter-schema properties, then these dependencies 
can be seen as a boundary object. 

D. Combining Methods, Approaches and Guidelines to 
Facilitate Recognition of Conflicts 
In the first phase, pre-integration, as well as in the second 

phase, comparison of the schemata, the source schemata are 
analyzed aiming to recognize similarities and differences 
within one source schema and between two source schemata, 
generally referred to as conflicts. In doing so, several 
matching approaches are needed. The result from each 
matching approach also needs to be combined into one 
result. This is motivated since combining the result from 
several matching approaches into one result should produce 
a better result than just using the result from one single 
approach [42]. For instance, in [43], the author has described 
and exemplified the use of matching approaches for 
recognizing similarities and differences while integrating 
structural Karlstad Enterprise Modeling schemata. In [43], 

the author uses a composite schema based matching 
approach, in which “[…] the match result of a first matcher 
is consumed and extended by a second matcher […]” [42] (p. 
343) The composite schema based matching approach 
described in [43] is divided into two parts stating with 
element level matching followed by structural level matching 
(Figure 8). Element level matching includes the usage of 
concept name comparison, linguistic rules and if a domain 
ontology exists also domain ontology-based matching. 
Structural level matching includes the usage of rule-based 
comparison and if they exist also domain ontology matching 
and/or taxonomy based matching. 

 

 
Figure 8. Matching as described and discussed in [43] 

To illustrate the importance of using several methods, 
approaches and guidelines, so-called matchers, we will 
shortly address some aspects of the matching approach 
illustrated in Figure 8. In doing so, we use the example 
schemata illustrated in Figure 9. For a more complete 
description and discussion of the example, the reader should 
refer to [43]. It should be noted that in the matching example 
described below we focus on recognizing similarities and 
differences between two source schemata. In other words, 
we emphasise the second phase, comparison of the schemata, 
mentioned as a challenge [33], also referred to as an 
important [29] and difficult [31] [32] [44] phase of schema 
integration. It should also be noted that the end result of the 
matching approach might include redundant dependencies 
and concepts since we have not yet decided on what 



476

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dependency to use, e.g., synonym or inter-schema 
hypernym-hyponym. 

Figure 9a illustrates the result after conducting the first 
phase, pre-integration and Figure 9b the result after applying 
the composite schema based matching approach as described 
in [43] but before deciding if it is a conflict, synonym, or an 
inter-schema hypernym-hyponym dependency between 
Order and High Priority Order. Finally, Figure 9c shows the 
legend of the used symbols in Figure 9. 

 
Figure 9. Illustrating example of matching approaches (adapted and 

modifed from [43]) 

Figure 9a should be interpreted as follows: S1.Order is 
composed of one or several S1.Order Item while S1.Order 
Item is part-of (dependent on) exactly one S1.Order. The 
same interpretation is applicable for S2 with the change of 
concept name from S1.Order to S2.High Priority Order. 

Figure 9b should be interpreted as follows: S1.Order is 
composed of one or several S1.Order Item and S2.Order 
Item while S1.Order Item and S2.Order item is part-of 
exactly one S1.Order. S2.High Priority Order is composed 
of one or several S1.Order Item and S2.Order Item while 
S1.Order Item and S2.Order item is part-of exactly one 
S2.High Priority Order. Finally, S2.High Priority Order is-a 
S1.Order and S1.Order and S2.High Priority Order are 
synonyms. 

Focusing on name comparison, linguistic rules and rule 
based comparison, we may describe the process of matching 
the two source schemata in Figure 9a as follows: 

Name comparison, the labels of schema 1 are compared 
to the labels of schema 2, on the element level results in the 
following correspondences: S1.Order Item = S2.Order Item, 
S1.Order Item ~ S2.High Priority Order, S1.Order ~ 
S2.Order Item and S1.Order ~ S2.High Priority Order.  

Applying two linguistic rules on the element level 
sharpen the meaning of the three last correspondences as 
follows: S1.Order Item belongs/related to S2.High Priority 
Order, S2.Order Item belongs/related to S1.Order and 

S2.High Priority Order is-a S1.Order. The linguistic rules 
are in [30] (p. 415) described as follows: 
 

a) If the compared schema elements have names in the 
form of A and AB […], then the relationship “AB 
belongs/related to A” can be assumed between the 
elements. 

 
b) If the compared schema elements have names in the 

form B and AB […], then the relationship “AB is a 
B” can be assumed between the elements. 

 
Applying rule based comparison, first addressed in [38] 

and later adapted and modified in [30] [43] [45] [46], on the 
structural level, the following might be suggested: S1.Order 
is synonymic with S2.High Priority Order (1), S2.High 
Priority Order is-a S1.Order (2), S2.Order Item is part-of 
(composition) S1.Order (3), S1.Order Item is part-of 
(composition) S2.High Priority Order (3) and finally 
S2.High Priority Order is-a S1.Order (4).   

The rules applied in the presented example might be 
described as follows: 

1) If the comparison of concept names, element level 
matching, yields match and the comparison of 
concepts neighborhood, structural level matching, 
yields partial match, with one concept in each 
source schemata named differently, then synonymic 
concepts are most likely recognized.  

2) If the comparison of concept names, element level 
matching, yields match and the comparison of 
concepts neighborhood, structural level matching, 
yields partial match, with one concept name named 
with prior addition to the other one, then an inter-
schema hypernym-hyponym property is most likely 
recognized. 

3) If the comparison of concept names, element level 
matching, yields partially match and the 
comparison of concepts neighborhood, structural 
level matching, yields partial match or match, with 
one concept named with a following addition to the 
other one, then an inter-schema holonym-meronym 
property is most likely recognized. 

4) If the comparison of concept names, element level 
matching, yields partially match and the 
comparison of concepts neighborhood, structural 
level matching, yields partial match or match, with 
one concept named with a prior addition to the 
other one, then an inter-schema hypernym-
hyponym property is most likely recognized. 

1) Continuous Checks and Reviews 
Having designed the source schemata, it is important that 

in both pre-integration and comparison of the schemata a 
combination of matching methods, approaches and 
guidelines are used to recognize not only conflicts within one 
source schema but also conflicts between two source 
schemata. In doing so, it is possible to check the quality of 
the schema after each matching approach has been applied 
and if necessary also to review the schema. It should, 
however, be noted that the schemata produced using each 



477

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

matching method, approach and guideline are intermediate 
versions of the schemata that are finally going to be 
integrated. For instance, in the example described above, 
name comparison results in several matches while the 
linguistic rules that follow sharpen the meaning of these 
matches ending up with new intermediate versions of the 
schemata. Doing continuous checks and reviews after each 
matching method, approach and guideline has been applied, 
should contribute to a high quality integrated schema. This is 
motivated since recognizing problems as early as possible 
should contribute to a review that is not as cumbersome as 
identifying problems later on in the integration process 
resulting in big changes. 

2) Information Architect, Stakeholder Participation and 
Standards 

As addressed in [42], the selection of matchers, in our 
case methods, approaches and guidelines can be made both 
automatically and manually by a user. However, a generic 
automated solution process, which selects methods, 
approaches and guidelines to combine, is difficult to 
accomplish and besides, a manual selection process is easier 
to implement. A semi-automatic approach, including both 
automatic and manual tasks, should therefore be chosen. 
During such semi-automatic approach, the information 
architect as well as stakeholders should be very much 
involved. This is also emphasized in [42], in which the 
authors state that “[…] user interaction is necessary in any 
case […]” (p. 343), referring to the process of selection of 
matchers. This is also in line with [24], who state: 
“Involvement of all stakeholders in the data modelling 
process was found to be more important than any other 
single issue in achieving quality improvements.” (p. 646). In 
general, the information architect and the stakeholders 
should be involved during the whole integration process 
meaning that they should also be involved while checking 
and reviewing each source schemata after each method, 
approach and guideline has been applied.  

Finally, standards such as naming conventions are also 
important to take into consideration during schema 
matching. This is motivated since ontologies [47] as well as 
lexicons such as WordNet [48] are useful in the process of 
recognizing similarities and differences and should therefore 
be part of schema matching. 

E. Restructuring 
Restructuring is the last task within the fourth phase 

(merging and restructuring). If there is a need to semantically 
enrich the schema, then detected inter-schema properties can 
be introduced. Usually, the better the steps and tasks before 
have been executed, the less has to be done for restructuring. 
However, especially for the implementation dependent 
level, restructuring is needed to prune and optimize the 
resulting schema. It is also necessary if schema alignment 
and merging were done automatically. Once again a 
semantic and pragmatic understanding of the terms is 
required. 
 
 

1) Continuous checks and reviews 
 Continuous checks and reviews can be applied as a 
quality improving instrument to avoid that pruning leads to 
a schema that is not any longer agreed on by all involved 
parties. After each major restructuring solution the schema 
should be checked if its semantic content has not been lost. 

2) Information architect 
Once again the information architect can act as a 

mediator between the stakeholders. If necessary, it is his 
obligation to describe the pragmatics and effects of a 
schema change. He is also a supervisor for executing several 
schema checking and restructuring methods and as an 
organizational interface when working with boundary 
objects. 

3) Stakeholder participation  
The more stakeholders from different interest group are 

involved the more perspectives are considered. 
4) Modeling languages and boundary objects 

Good modeling languages or additional boundary 
objects can prevent misunderstandings and errors. 

In [49], the author has proposed the introduction of icons 
and pictures to improve the comprehensibility of conceptual 
schemata. Others [40] [50] have focused on verbalization of 
conceptual schemata. Verbalization is a technique, where 
elements of a schema are translated back to its natural 
language representation. For a class diagram this means that 
classes and attributes are mainly translated into nouns and 
noun phrases. Associations between classes are translated 
into sentences, which contain the translated classes as the 
sentence subject and objects.  They argued that a conceptual 
schema, which is transformed back to natural languages 
sentences representing facts of the domain, is more 
understandable. Especially, non-computer scientists, who 
are not familiar with the notions and notations of a modeling 
language, will be supported with this approach.   

For implementation dependent schemata additional 
techniques adopted from model checking and validation can 
be used for restructuring. Suppose the schema was 
developed for an information system, particularly for the 
database used by the information system.  Forms (i.e., user 
interfaces) can help the stakeholders to understand, which 
schema elements are necessary for which features of the 
information system.  

Visual query languages [51], which allow the navigation 
through the conceptual schema, are another way of checking 
the schema. For the OMT modeling language, [52] has 
proposed the manual checking of the schema against natural 
language queries. In [53], a proposal was made on how this 
can be automated. Advantages and technical problems were 
discussed. With visual or controlled natural language query 
languages, manual query checking and/or systems that 
check the schema automatically based on queries, a 
restructuring and validation cycle can work as illustrated in 
Figure 10.   



478

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
Figure 10. Restructuring task with queries 

At the beginning, there is the integrated schema. Since the 
schema will be implementation dependent, meaning that 
there will a database working on base of the schema, queries 
should be generated (1). These are the queries, which most 
likely will be applied on the integrated database schema. The 
Information architect together with the stakeholders should 
generate these queries. Afterwards the queries are executed 
manually or automatically with a tool on the conceptual 
schema (2). The result of these executions should be 
reviewed (2) and the schema should be discussed (3), i.e., is 
the database schema already optimized for the queries or not. 
Depending on the result (4), the schema should be 
restructured and optimized (5) or it turns out that the schema 
already fits with the retrieval requirements of the 
stakeholders (6). In this case, the final restructured schema 
was developed. Finally, with a modeling language (e.g., 
ORM or KCPM) that does not distinguish between classes 
and attributes but nevertheless provides mappings to the 
logical database schema restructuring can be supported. 
There is no need to prune a class to an attribute if this class 
does not have further properties. The transformation rules 
given by these modeling languages will do this.   

These examples show that choosing the right modeling 
language does not only help during the modeling but also 
later supports possible schema integration. If the original 
modeling language used is not sufficient, all the stakeholders 
(i.e., the information architect and the other involved 
stakeholders) should agree on some boundary objects (e.g., 
glossaries, or methods such as querying) to get a common 
understanding and negotiate about the schema.  

VI. CONCLUSION AND FUTURE WORK 
In this article, we have focused on schema quality within 

the schema integration process. In doing so, we have 
addressed five best practices of quality improvement given in 
the literature and five specific integration tasks that should 
increase the quality of the schema being designed. The best 
practices addressed are: continuous checks and reviews, 
information architect, stakeholder participation and 
standards, a good modeling language as well as the use of 
boundary objects.  The five integration tasks addressed are: 

choosing the right integration strategy, choosing the right 
conflict resolution methods for the chosen level of 
abstraction, introducing inter-schema properties to improve 
and clarify dependencies, combining methods and 
approaches and guidelines to conflict resolution and finally 
restructuring. Wherever it is possible, we have also 
addressed, within each integration task, how the best 
practices might be used to aid in the process of producing a 
high quality schema.  

To conclude (see also Table II), the best practices used 
for conceptual modeling if addressed in connection to 
schema integration can improve the five mentioned tasks and 
hence the integration process as such. Continuous checks and 
reviews, information architect and stakeholder participation 
can be drivers for choosing the right integration strategy. 
Continuous checks and reviews, standards, information 
architect and stakeholder participation are essential in the 
conflict resolution task. The more conflicts are checked and 
resolved the better. The more the stakeholders and the 
information architect is involved the more conflicts can be 
resolved. Standards support this task as long as they do not 
restrict the specific naming of enterprise concepts. 

For the inter schema property introduction, which is used 
in at least two phases of the integration process, continuous 
checks and reviews can help to verify that the inter-schema 
property is used in the correct way. Stakeholders and the 
information architect are those who possess the domain 
knowledge and can thus support the aim to get a 
semantically richer schema with clear meanings. Standards 
and ontologies are useful to support the detection of inter-
schema properties. 

Modeling language of good quality (i.e., language with 
specific features and a good external representation that 
supports schema understanding) is important for the 
following task: choosing the right conflict resolution 
methods for the chosen level of abstraction, introducing 
inter-schema properties to improve and clarify dependencies 
and during restricting. Boundary objects can also be applied 
in choosing the right conflict resolution methods for the 
chosen level of abstraction, introducing inter-schema 
properties to improve and clarify dependencies and during 
restricting. 

In the long run, these improved tasks contribute to a high 
quality integrated schema.  

To summarize, in this work we have described a 
framework for the schema integration process and aligned 
best practices to task. In future, we will study some of the 
best practices in detail. For instance, the kinds of external 
representations that are good for the schema integration 
purpose are important to identify. This question is also 
important for boundary objects. Are there specific boundary 
objects that should be preferred? It might also be important 
to determine if the approaches to restructuring the 
implementation dependent schema can also be applied to 
implementation independent schemata. 

 



479

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. BEST PRACTICES AND INTEGRATION TASKS 

Integration 
tasks/Best 
Practice 

Choosing the Right  
Integration Strategy 

Choosing the Right 
Conflict Resolution 

Methods for the 
Chosen Level of 

Abstraction 

Introducing Inter-
Schema Properties to 
Improve and Clarify 

Dependencies 

Combining Methods, 
Approaches and 

Guidelines to 
Facilitate 

Recognition of 
Conflicts 

Restructuring 

Continuous 
Checks and 

Reviews 

Are facilitated by the 
ladder, balanced and 
iterative integration 
strategy.  

Are the enablers to 
verify that the schemata 
illustrate the chosen 
level of abstraction 
during the whole 
integration process. 

Are the enablers to 
verify that the inter-
schema properties are 
used in a correct way 
during the whole 
integration process. 

Are the enablers to 
verify that each 
method, approach and 
guideline are used in a 
correct way and that 
each of these 
contributes to a more 
reliable matching 
result during the whole 
integration process. 

Are the enablers to 
verify that the 
schemata are correct 
after each greater 
restructuring. 

Information 
Architect 

Checks and verifies, from 
the perspective of the 
information architect, that 
an appropriate integration 
strategy is choosen. 

Checks that the choosen 
conflict resolution 
methods are in 
compliance with existing 
enterprise schemata. 

Checks that the 
introduced inter-
schema properties are 
in compliance with 
existing enterprise 
schemata. 

Checks that the result 
from each method, 
approach, and 
guideline complies  
with existing 
enterprise schemata. 

Moderates the  
restructruing process. 
The information 
architect can give 
information on which 
pragmatic effects a 
certain restructuring 
decision can have. 

Stakeholder 
Participation 

Checks and verifies, from 
the perspective of the 
stakeholders, that an 
appropriate integration 
strategy is choosen. 

Checks that choosen 
conflict resoluton 
methods are semantically 
correct and that the 
schema is complete from 
a stakeholder 
perspective. 

Checks that the 
introduced inter-
schema properties are 
semantically correct 
and that the schema is 
complete from a 
stakeholder 
perspective. 

Checks that each 
method, approach and 
guideline produces 
semantically correct 
results and that the 
schema is complete 
from a stakeholder 
perspective. 

Improves the schema 
quality since the 
stakeholders are 
informed about the 
effects of a restructing 
decision and therefore 
also can influence how 
restructuring is 
performed. 

Standards Help in the process of 
checking that the schemata 
are syntactically correct 
and that terms are used in 
compliance with the 
enterprise schemata. 

Help in the process of 
introducing the correct 
resolution method for 
not only naming 
conflicts but also 
structural conflicts. 

Help in the process of 
introducing the correct 
inter-schema propterty 
and help in the process 
of introducing the 
inter-schema property 
in a correct way. 

Help in the process of 
introducing and 
applying each method, 
approach and 
guideline.  

Not applicable 

Modeling 
language 
quality 

Not applicable A modeling language, 
which does not 
distinguish between 
classes and attributes can 
prevent structural 
conflicts 

Not applicable Not applicable The modeling 
language and its 
external representation 
can support 
restructuring (e.g., by 
providing modeling 
elements that make 
restructuring easier) 

Boundary 
objects 

Not applicable With the right boundary 
objects, the stakeholders 
can be made aware that 
conflicts exist. 

Interschema properties 
can be seen as 
boundary objects. 

Not applicable Boundary objects in 
the form of additional 
methods can help to 
identify possible errors 
and can support the 
understanding of the 
schema. 

 
 

REFERENCES 
[1] P. Bellström and C. Kop, “Towards Quality Driven Schema 

Integration Process Tasks,” Proceedings of the The Sixth 
International Conference on Information, Process, and 
Knowledge Management (eKNOW 2014), 2014, pp. 98-104. 

[2] C. Batini and M. Lenzerini, “A Methodology for Data 
Schema Integration in the Entity-Relationship Model,” IEEE 
Transactions on Software Engineering, vol. 10 (6), 1984, pp. 
650-664. 

[3] C. Batini, M. Lenzerini, and S. B. Navathe, “A Compartive 
Analysis of Methodologies for Database Schema Integration,” 
ACM Computing Surveys, 1986, vol. 18 (4), pp. 323-364. 

[4] J. A. Larson, S. B. Navathe, and R. Elmasri, “A Theory of 
Attribute Equivalence in Databases with Application to 
Schema Integration,” Transactions on Software Engineering, 
vol. 15 (4), 1989, pp. 449-463. 

[5] A. Savasere, A. Sheth, and S. Gala, “On Applying 
Classification to Schema Integration,” Proceedings of the 
First International Workshop on Interoperability in 



480

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Multidatabase Systems (IMS’91), IEEE Press, 1991, pp. 258-
261. 

[6] P. Johannesson, “A Logical Basis for Schema Integration,” 
Third International Workshop on Research Issues on Data 
Engineering (RIDE-IMS’93), IEEE Press, 1993, pp. 86-95. 

[7] H. K. Bhargava and R. M. Beyer, “Automated Detection of 
Naming Conflicts in Schema Integration: Experiments with 
Quiddities,” Proceedings of the 25th Hawaii International 
Conference on System Sciences, IEEE Press, 1992, pp. 300-
310. 

[8] J. Geller, A. Mehta, Y. Perl, E. Neuhold, and A. Sheth, 
“Algorithms for Structural Schema Integration,” Proceedings 
of the Second International Conference on Systems 
Integration (ICSI’92), IEEE Press, 1992, pp. 604-614. 

[9] M. García-Solaco, F. Saltor, and M. Castellanos, “A Structure 
Based Schema Integration Methodology,” Proceedings of the 
Eleventh International Conference on Data Engineering, IEEE 
Press, 1995, pp. 505-512. 

[10] H. Dai, “An Object-Oriented Approach to Schema Integration 
and Data Mining in Multiple Databases,” Proceedings on the 
Technology of Object-Oriented Languages (TOOLS), IEEE 
Press, 1997, pp. 294-303. 

[11] E. Métais, Z. Kedad, I. Comyn-Wattiau, and M. Bouzeghoub, 
“Using Linguistic Knowledge in View Integration: Toward a 
Third Generation of Tools,” Data & Knowledge Engineering, 
vol.  23 (1), 1997, pp. 59-78. 

[12] S. Ram and V. Ramesh, “A Blackboard-Based Cooperative 
System for Schema Integration,” IEEE Expert, 1995, vol. 10 
(3), pp. 56-62. 

[13] S. Spaccapietra and C. Parent, “View Integration: a Step 
Forward in Solving Structural Conflicts,” IEEE Transactions 
on Knowledge and Data Engineering, vol. 6 (2), 1994, pp. 
258-274. 

[14] H. Frank and J. Eder, “Towards an Automatic Integration of 
Statecharts,” International Conference on Conceptual 
Modeling (ER 1999), 1999, pp. 430-444. 

[15] B. H. C. Cheng and E. Y. Wang, “Formalizing and Integrating 
the Dynamic Model for Object Oriented Modeling,“ IEEE 
Transactions on Software Engineering, vol. 28 (8), 2002, pp. 
747-762. 

[16] M. Stumptner, M. Schrefl, and G. Grossmann, “On the Road 
to Behavior-Based Integration,” Proceedings of the 1st  
APCCM Conference, 2004, pp. 15-22. 

[17] A. Raut, “Enterprise Business Process Integration,” 
Conference on Convergent Technologies for Asia-Pacific 
Region, IEEE Press, 2003, pp. 1549-1553. 

[18] S. Fan, L. Zhang, and Z. Sung, “An Ontology Based Method 
for Business Process Integration,” International Conference 
on Interoperability for Enterprise Software and Applications 
in China, IEEE Press, 2008, pp. 135-139. 

[19] W. J. Lee, S. D. Cha, and Y. R. Kwon, “Integration and 
Analysis of Use Cases Using Modular Petri Nets in 
Requirements Engineering,” IEEE Transaction of Software 
Engineering, vol. 24 (12), 1998, pp. 1115-1130. 

[20] K. Winter, I. J. Hayes, and R. Colvin, “Integrating 
Requirements: The Behavior Tree Philosophy,” 8th IEEE 
International Conference on Conference on Software 
Engineering and Formal Methods (SEFM), IEEE Press, 2010, 
pp.41-50. 

[21] C. Batini, S. Ceri, and S. B. Navathe, Conceptual Database 
Design an Entity Relationship Approach. Redwood City: 
Benjamin/Cummings Publishing Company, 1992.  

[22] O. L. Lindland, G. Sindre, and A. Solvberg, ”Understanding 
Quality in Conceptual Modeling,” IEEE Software, vol. 11 (2), 
1994, pp. 42-49. 

[23] D. L. Moody, “Theoretical and Practical Issues in Evaluating 
the Quality of Conceptual Models: Current State and Future 

Directions,” Data & Knowledge Engineering, vol. 55 (3), 
2005, pp. 243-276. 

[24] D. L. Moody and G. G. Shanks, “Improving the Quality of 
Data Models: Empirical Validation of a Quality Management 
Framework,” Information Systems Journal, vol. 28 (2), 2003, 
pp. 619-650. 

[25] S. S. Cherfi, J. Akoka, and I. Comyn-Wattiau, “Perceived vs. 
Measured Quality of Conceptual Schemas: An Experimental 
Comparision,” Proceedings of Tutorials, Posters, Panels and 
Industrial Contribution of the Twenty-Sixth International 
Conference on Conceptual Modeling (ER 2007), vol. 83, 
2007, pp. 185-190. 

[26] J. Becker,  M. Rosemann and C. von Uthman, ”Guidelines of 
Business Process Modeling,” Business Process Management, 
LNCS 1806, 2000, pp. 30-49. 

[27] J. Krogstie, Model based Development and Evolution of 
Information Systems – A Quality Approach. London: 
Springer, 2012. 

[28] P. Bellström, View Integration in Conceptual Database 
Design Problems, Approaches and Solutions. Licentiate 
Thesis. Karlstad Univeristy, Karlstad University Press 2006:5, 
2006. 

[29] W. Song, Schema Integration – Principles, Methods, and 
Applications. Dissertation. Stockholm: Stockholm University 
& The Royal Institute of Technology No. 95-019, 1995. 

[30] P. Bellström and J. Vöhringer, “A Semi-Automatic Method 
for Matching Schema Elements in the Integration of 
Structural Pre-Design Schemata,” International Journal on 
Advances in Intelligent Systems, vol. 4 (3 & 4), 2011, pp. 
410-422.  

[31] L. Ekenberg and P. Johannesson, “A Formal Basis for 
Dynamic Schema Integration,” Conceptual Modeling – 
(ER’96), LNCS 1157, 1996, pp. 211-226. 

[32] L. Lee and T. W. Ling, “A Methodology for Structural 
Conflict Resolution in the Integration of Entity-Relationship 
Schemas,” Knowledge and Information Systems, vol. 5 (2), 
2003, pp. 225-247. 

[33] P. Johannesson, Schema Integration, Schema Translation, and 
Interoperability in Federated Information Systems. 
Dissertation. Stockholm University & Royal Institute of 
Technology No. 93-010-DSV, 1993. 

[34] S. L. Star and J. R., Griesemer, “Institutional Ecology, 
‘Translations’ and Boundary Objects: Amateurs and 
Professionals in Berkley’s Museum of Vertebrate Zoology, “, 
1907-39, Social Studies of Science, 19 (3), 1989, pp. 387-420. 

[35] P. R. Carlile, “Transferring, Translating and Transforming. 
An Integrative Framework for Managing Knowledge Across 
Boundaries,” Organization Science, 15 (5), 2004, pp. 555-
568. 

[36] R. Abraham, “Enterprise Architecture Artifacts As Boundary 
Objects – A Framework of Properties,” Proceedings of the 
21st European Conference on Information Systems (ECIS), 
2013, Paper 120. 

[37] M. Boman, Jr. J. A. Bubenko, P. Johannesson, and B. 
Wangler, Conceptual Modelling. London: Prentice Hall, 
1997.  

[38] P. Bellström, Schema Integration  How to Integrate Static and 
Dynamic Database Schemata. Dissertation. Karlstad 
University, Karlstad University Studies 2010:13, 2010. 

[39] R. Gustas,  Semantic and Pragmatic Dependencies of 
Information Systems. Kaunas: Kaunas Technologija, 1997. 

[40] T. Halpin and M. Curland, “Automated Verbalization for 
ORM-2,” Proceedings of OTM 2006 Workshop , LNCS Vol 
4278, 2006, pp. 1181-1190. 

[41] H.C. Mayr and C. Kop, “Conceptual Predeign – Bridging the 
Gap between Requirements and Conceptual Design,” 



481

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Proceedings of the 3rd Int. Conference on Requirements 
Engineering (ICRE’98), IEEE Press, 1998, pp. 90-100.  

[42] E. Rahm and P.A. Bernstein, “A Survey of Approaches to 
Automatic Schema Matching,” The VLDB Journal, vol. 10, 
2001, pp. 334-350. 

[43] P. Bellström, “A Semi-Automatic Approach for the 
Integration of Structural Karlstad Enterprise Modeling 
Schemata,” Advances in The Human Side of Service 
Engineering, 2014, pp. 13-24. 

[44] A. Doan, F. N. Noy and A. Y. Halevy, “Introduction to the 
Special Issue on Semantic Integration,” SIGMOD Record, vol 
33 (4), 2004, pp. 11-13.  

[45] P. Bellström, “A Rule-Based Approach for the Recognition of 
Similarities and Differences in the Integration of Structural 
Karlstad Enterprise Modeling Schemata,” The Practice of 
Enterprise Modeling, 2010, pp. 177-189. 

[46] P. Bellström and J. Vöhringer, “A Three-Tier Matching 
Strategy for Predesign Schema Elements,” The Third 
International Conference on Information, Process, and 
Knowledge Management (eKNOW 2011), 2011, pp. 24-29. 

[47] T.R. Gruber, “A Translation Approach to Portable Ontology 
Specifications,” Knowledge Acquisition, 5, 1993, pp. 199-
220. 

[48] G.A. Miller, “WordNet: A Lexical Database for English,” 
Communication of the ACM, 38 (11), 1995, pp. 39-41. 

[49] D. Moody, “The ‘Physics’ of Notations: Toward a 
ScientificBasis for Constructing Visual Notations in Software 
Engineering,” IEEE Transaction on Software Engineering, 
vol. 35 (6), 2009, pp. 756-779. 

[50] H. Dalianis, “A Method for Validating a Conceptual Model 
by Natural Language Discourse Generation,” Proceedings of 
the Fourth International Conference CAiSE’92 on Advanced 
Information Systems Engineering, LNCS Vol 594, 1992, pp. 
425-444. 

[51] K. Järvelin, T. Niemi, A. Salminen, “The Visual Query 
Language CQL for Transitive and Relational Computation,” 
Data & Knowledge Engineering, vol. 35, 2000, pp. 39-51. 

[52] J. Rumbaugh, M. Blaha, W. Premelani, F. Eddy and W. 
Lorensen, Object oriented Modeling and Design. Prentice 
Hall International Inc.  Publ. Comp. 1991. 

[53] C. Kop, “Checking Feasible Completeness of Domain Models 
with Natural Language Queries,” Proceedings of the 8th Asia-
Pacific Conference on Conceptual Modeling, vol. 130, 2012, 
pp. 33- 42. 
 

 
 


