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Abstract—This paper proposes an autonomous distributed al-
gorithm that can construct spatial structures for clustering in
mobile ad hoc networks. Since the topology of a mobile ad hoc
network changes frequently, a fast, light-weight, and autonomous
clustering mechanism is required. However, existing autonomous
clustering mechanisms are based on differential equations and
thus demand a lot of calculations for generating the spatial struc-
tures that yield clustering. This paper proposes an autonomous
clustering algorithm that is based on Huygens’ principle and
renormalization. The most remarkable characteristics of our
proposed scheme are light calculation loads and fast convergence
on the cluster structures. We verify the basic characteristics of
the proposed scheme. In addition, we introduce an algorithm to
control the number of generated clusters in the framework of the
proposed scheme by introducing a logarithmic representation of
network state.

Keywords—Mobile ad hoc network, Autonomous decentralized
control, Clustering, Huygens’ principle, Renormalization.

I. INTRODUCTION

This paper is an extended version of the paper presented at
COLLA2013 [1]. The significant progress of this paper from
the earlier version is that we can control the number of cluster
even if we cannot know the network state and its metric in
advance. Details are explained in the body of this paper.

In large-scale communication networks, hierarchical ar-
chitectures are effective for scalable network control. Let us
consider how hierarchical structure can be introduced into
networks. For the case of fixed networks, we can set the desired
hierarchical structure at the time of designing the networks.
However, this is not possible for mobile networks since their
topology changes dynamically. A typical example the mobile
ad hoc network (MANET) [2]. A MANET consists of mobile
terminals that work as routers. That is, each terminal offers
routing functions and data forwarding functions. Two terminals
can directly communicate if their coverage areas of wireless
communications overlap. If the areas do not overlap, the
terminals communicate but relaying data through the terminals

between them, they can establish multihop communications.
To achieve multihop communications, routing is one of most
important issues in MANETs.

The most primitive route finding approach is called flood-
ing [3]. In flooding, the sender terminal sends route finding
packets to all adjacent terminals, which resend them to all their
adjacent terminals until at least one copy of the packet reaches
the destination terminal. The total amount of route finding
packets sent in MANETs increases exponentially with network
size (the number of terminals). It is known as the broadcast
storm problem [4]. So one of the challenges in MANETs,
realizing scalable routing control [5][6], is best addressed by
setting a hierarchical structure through clustering [7][8].

Hereafter, we call a MANET terminal a node. An au-
tonomous clustering mechanism for generating a hierarchical
structure must offer several characteristics, as follows:

• Each node acts autonomously based on local informa-
tion about its neighboring nodes.

• The generated cluster structure should reflect the state
information of the network (e.g., battery power of
nodes).

• The generated cluster structure should be flexible so
that it can adapt to the dynamic environment.

• The convergence time of clustering should be suffi-
ciently shorter than the timescale of topology change
caused by node movement. This is because clustering
should dynamically adapt to the network topology.

• Action rules of each node should be as simple as pos-
sible in order to reduce the battery power consumed
by computation or processing at the node.

Since MANETs are expected to be an effective communication
tool after serious disasters, the above requirements are essential
for realizing clustering in ad hoc networks.
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Figure 1. Concept of cluster forming.

Neglia et al. proposed a clustering mechanism based
on reaction-diffusion equations [9]. Let us call it the bio-
inspired approach. This is an application of Turing patterns
and satisfies the first requirement listed above. Takano et al.
has proposed a clustering mechanism based on the Fokker-
Planck equation and includes the drift motion given by back-
diffusion [10][11][12]. Let us call it the back-diffusion based
approach. The back-diffusion based approach satisfies the first
two requirements listed above. In addition, Hamamoto et al.
recently propose a mechanism that guarantees the asymptotic
stability of the cluster structure generated by the back-diffusion
based approach; they showed that their mechanism can satisfy
the first three requirements listed above [13].

The guarantee mechanism of asymptotic stability, in par-
ticular, implies the possibility of new autonomous clustering
mechanisms. Specifically, we might be able to make a new
clustering algorithm that satisfies all the requirements listed
above by replacing the back-diffusion algorithm with a sim-
ple and fast-converging rule. This is because the guarantee
mechanism of asymptotic stability does not depend on details
of the clustering mechanism. In this paper, we use Huygens’
principle as the simple and fast-converging rule, and propose
a new clustering mechanism that satisfies all the requirements
listed above.

The paper is organized as follows: Section II explains
the concept of cluster formation and the guarantee mech-
anism of asymptotic stability, which is the foundation of
this research. Section III proposes an autonomous clustering
mechanism based on Huygens’ principle. Section IV shows
cluster structures generated by our proposed scheme using
numerical examples and verifies that they reflect the network
condition. Section V introduces an algorithm to control the
number of generated clusters in the framework of the proposed
scheme by introducing a logarithmic representation of network
state. In addition, we show a control method of the number of
clusters. The conclusion is discussed in Section VI.

II. PRELIMINARY

This section shows the framework of autonomous decen-
tralized clustering and the related mechanism to stabilize the
cluster structure.

A. Concept of Cluster Formation

In our clustering model, each node has a certain value and
cluster formation is conducted by the distribution of the values
of nodes. The initial value is determined by considering a
certain network metric (e.g., battery power of each node). The
clustering algorithm extracts a coarse grained spatial structure
from the initial distribution of the values and this procedure
corresponds to clustering. Figure 1 shows an example of cluster
formation in a simple 1-dimensional network. The horizontal
axis represents node position, and the vertical axis represents
the value of the distribution for each node. The upper-half
of Figure 1 represents the initial distribution, which reflects a
certain network state. The lower-half of Figure 1 represents
the generated coarse grained spatial structure. Each peak of
the coarse grained distribution corresponds to the center of a
cluster, and cluster structures reflect the initial condition.

The back-diffusion based approach is an example of this
mechanism, and has a relatively faster convergence rate than
the bio-inspired approach [14]. However, this clustering mech-
anism does not consider change from the initial condition,
and so cannot adapt to the dynamic environment common to
MANETs. That is why this mechanism does not satisfy the
third requirement listed in the previous section.

B. Guarantee mechanism of Asymptotic Stability

To adapt the spatial structure to dynamic environments,
the guarantee mechanism of the asymptotic stability of cluster
structures was proposed by Hamamoto et al. [13]. In this
mechanism, cluster structure generation can adapt to changes
in network state; the mechanism generates stable spatial struc-
tures if the network state is fixed. As an alternative approach,
Takayama et al. proposed the self-adjustment approach to
stabilize the cluster structure [15]. However, it has a restriction
that is applicable only to the back-diffusion based clustering.
Thus, we focus on [13] in this paper.

Let us consider a one-dimensional network model for
simplicity, and let q(i, t) be the distribution value at node
position i at time t. The distribution value, q(i, t), determines
the cluster structure. As an example, the initial condition q(i, 0)
and cluster structure q(i, t) obtained at time t are shown
in Figure 1. The conventional back-diffusion based approach
described in Takano et al. [12] presents a rule that governs
the temporal evolution of the distribution, q(i, t). However,
as shown in the previous section, it is difficult to guarantee
the stability of q(i, t) for large t. In other words, the cluster
structure is not stable in a dynamic environment.

Let us consider discrete time tk (k = 1, 2, . . . ), and
distribution q(i, tk). Since we need an autonomous decentral-
ized algorithm, the temporal evolution of distribution q(i, tk)
is determined by its local information. By introducing the
temporal evaluation operator of T , the temporal evolution is
formally described as

q(i, tk+1) = T (q(i− 1, tk), q(i, tk), q(i + 1, tk)). (1)

This rule states that the distribution of node i at the next time is
completely determined by the values of the present distribution
at node i and its adjacent nodes.
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Figure 2. Outline of the guarantee mechanism of asymptotic stability.
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Figure 3. Example of wave propagation obeying Huygens’ principle.

To guarantee asymptotic stability, we consider a vector
of the distribution. Each node i has the following N + 1
dimensional vector

q(i, tk) = {q0(i, tk), q1(i, tk), . . . , qN (i, tk)}. (2)

Here, we define the rule for the temporal evolution of the
vector q(i, tk). Let qinit(i, tk) be the distribution describing

the network state at time tk. Then we set

q0(i, tk+1) = qinit(i, tk+1). (3)

If qinit(i, tk) is independent of time, q0(i, tk+1) = q(i, 0), that
is, the initial condition of the conventional mechanism. Note
that, in general, we allow the time-dependence of qinit(i, tk).
Next, for qn+1(i, tk+1) (n = 0, 1, . . . , N − 1), we set

qn+1(i, tk+1) = T (qn(i− 1, tk), qn(i, tk), qn(i + 1, tk)).
(4)

Although the above rule may look complicated, we can eas-
ily understand it through graphical representation. Figure 2
explains the temporal evolution of vector (2) at node i. The
horizontal axis represents discrete time as t0, t1, . . . , and
qinit(tk) is a certain value expressing the network state of a
node at time tk. Each component of the vector is a value of the
distribution and (4) is the temporal evolution rule for the nth
component (n = 1, 2, . . . , N − 1). The temporal evolution of
each component will be updated to the upper-right component
in Figure 2. The component at the bottom, q0(i, tk+1), is
overwritten by the network condition qinit(i, tk+1) at the
present time. The component at the top will be discarded.

The temporal evolution of the conventional mechanism cor-
responds to the sequence indicated by the green broken line in
Figure 2. In the guarantee mechanism of asymptotic stability,
we focus on the sequence of the same vector components. If
we choose small n for the nth component, we obtain a finer-
grained spatial structure as indicated by the blue line. A large
n yields a coarse grained spatial structure as indicated by the
red line.
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Figure 4. Renormalization transformation as per Huygens’ principle.

III. DESIGN OF THE AUTONOMOUS STRUCTURE
FORMATION TECHNOLOGY BASED ON HUYGENS’

PRINCIPLE

In this section, we first propose a new autonomous de-
centralized clustering based on Huygens’ principle and its
renormalization transformation. Second, we investigate the
attenuation of the cluster structure caused by the fixed point of
the renormalization transformation, and introduce a procedure
of amplification for avoiding the attenuation.

A. Huygens’ principle and Renormalization

Huygens’ principle, or the Huygens-Fresnel principle de-
scribes the temporal evolution of the wavefront and can explain
the laws of reflection and refraction. Figure 3 shows an
example of wave propagation obeying Huygens’ principle.
Let us consider a wavefront at present time t. In Huygens’
principle, spherical waves originate from all points on the
wavefront and the envelope of these spherical waves gives the
temporal evolution of the wavefront at time t + ∆t.

Renormalization is a way to extract simple and important
macroscopic characteristics from a large-scale and complex
system, and its procedure is called renormalization transfor-
mation. This procedure is suitable for generating a simple
cluster structure extracted from the spatial structure of the
network state. Renormalization transformation is defined as
the combination of coarse-grained transformation and scaling.
In this paper, we adopt the renormalization transformation
based on Huygens’ principle as temporal evolution operation
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Figure 5. Fixed point under renormalization transformation.

T . Specifically, each node generates spherical wave-like in-
formation for temporal evolution of the distribution. Concrete
procedures of the renormalization transformation are shown
below.

Let us consider a one-dimensional network and a distribu-
tion on the network. The panel at the top of Figure 4 shows an
example of the distribution at the present time. We consider
the shape of the distribution as the wavefront. The panel at
the middle of Figure 4 shows the temporal evolution of the
wavefront as given by Huygens’ principle. This procedure
has a smoothing effect in which the fine-grained structure in
the shape of the distribution becomes smooth. The temporal
evolution of the distribution causes an increase in the value
of the distribution, that is, the wavefront proceeds upward. In
order to compensate for this increase, we introduce scaling
as shown in the panel at the bottom of Figure 4. We define
the renormalization transformation as the combination of such
temporal evolution and scaling.

Let the distribution value of node i at time tk be q(i, tk),
and let the set of nodes that are adjacent to node i at time tk
be M(i, tk). In addition, q̃(i, j, tk+1) is the wavefront of the
spherical wave at node i at time tk+1 that originated from node
j at time tk. Our renormalization transformation is expressed
as

q(i, tk+1) =
1
b

max
j∈M(i,tk)

q̃(i, j, tk+1), (5)

where, the maximizing operation in (5) means Huygens’ prin-
ciple; it determines the most advanced wavefront of spherical
waves that originated from the node itself and its neighbor-
hood, b is the scaling parameter.

Next, let us consider a method of tuning parameter b
using Figure 5. In Figure 5, the horizontal axis represents the
maximum value of the distribution at time t , and the vertical
axis represents the maximum value of the distribution after
renormalization transformation at time t+∆t. Here, the black
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Figure 6. The wavefront of the spherical wave reaches an adjacent node.

line shows the linear equation y = x. This linear equation
corresponds to the top of Figure 4. Next, the maximum value of
the distribution is increased obeying Huygens’ principle. This
increment can be expressed by v∆t and the blue line, which is
shifted up from y = x by v∆t. The red line is obtained from
the blue line by dividing the latter by the scaling parameter
b (b > 1). There is an intersection point between the red line
and the black line, and this intersection point is given by

p∗ =
v ∆t

b− 1
. (6)

The value of interaction point p∗ is the fixed point under
renormalization transformation. We can understand that the
maximum value of distribution q(i, tk) converges to p∗ with
iterations of the temporal evolution, regardless of initial con-
dition q(i, 0). Hence, the method of tuning parameter b does
not need to be highly accurate.

Next, we consider the concrete form of q̃(i, j, tk+1). Let
the propagation speed of the spherical wave be v, the distance
between two adjacent nodes be ∆x, and the interval of the
temporal evolution (renormalization transformation (5)) be ∆t
(i.e., tk+1− tk = ∆t). Here, ∆x is not physical distance but is
a kind of hop count, so we choose ∆x = 1. We consider the
situation wherein the temporal evolution (5) is determined only
by adjacent nodes, v is chosen as 1 ≤ v ∆t < 2. As shown in
Figure 6, the wave front of the spherical wave originating from
node i influences both node i and its adjacent nodes. They are
expressed as

q̃(i± 1, i, tk+1) = q(i, tk) + v ∆t sin θ, (7)
q̃(i, i, tk+1) = q(i, tk) + v ∆t, (8)

where θ is a constant and, from v ∆t cos θ = ∆x,

θ = arccos
(

∆x

v ∆t

)
. (9)

Since v, ∆t, and sin θ are constants and we can know them
in advance, temporal evolution (5) is a simple operation.
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Figure 7. Determination of the cluster and cluster head.

B. Amplification of the Range of the Distribution

Our renormalization transformation (5) makes the distribu-
tion flat and we can obtain a coarse-grained spatial structure.
However, different from physical phenomena, there are situa-
tions that the distribution does not change when the difference
in distribution values is small. This is because the positions
of nodes in the network are discrete. If the distribution value
at a node can affect that of the adjacent node, the following
relation is required;

|q(i± 1, tk)− q(i, tk)| > v ∆t (1− sin θ). (10)

When smoothing proceeds and the condition (10) is no longer
met, the two adjacent nodes no longer interact and the distri-
bution is unchanged. To avoid this phenomenon, we introduce
amplification of the range of the distribution in addition to
renormalization transformation (5). The additional operation
is

q(i, tk+1)← p∗ + a (q(i, tk+1)− p∗) , (11)

after renormalization transformation (5). This operation means
that the difference between the distribution value and p∗

is amplified by a factor of a. Here, the aforementioned
p∗ = v ∆t/(b − 1) is the fixed point of renormalization
transformation, and also is the convergence point. Note that,
the value of parameter a should be chosen as a > b.

Finally, we explain how to determine clusters and cluster
heads from the generated spatial structure (Figure 7). By fol-
lowing the direction of the steepest gradient of the distribution,
we can find a node with local maximum value. We define it as
the cluster head, and the nodes belonging to the same cluster
head belong to the same cluster.

IV. EVALUATION FOR STATE DEPENDENT
CHARACTERISTICS OF CLUSTERS

This section shows cluster structures generated by our
proposed scheme using numerical examples and verifies that
they reflect the network condition. Our simulation programs
are written by C language.

A. Simulation Model and Parameters

In this subsection, we explain a simulation model and pa-
rameters used in our verification. In this verification, we use a
unit disk graph having a torus boundary as the network model.
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Figure 8. Unit disk graph having torus boundary.
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Figure 9. Initial condition.

We can configure the unit disk graph through the following
procedure. We set the position of each node randomly, and set
a circle of a certain radius around each node. If the circle of a
node encloses another node(s), we set a link between the center
node of the circle and each node lying within the circle. Since
we can assume that circle radius is wireless communication
range, the unit disk graph is a model that can express MANET
topology. Figure 8 shows an example of the torus boundary
by focusing on the wireless communication range of a certain
node. The reason of setting the torus boundary condition is to
eliminate the effect of the network edge, and to concentrate
our attention on the characteristics of clustering mechanism
itself. In this evaluation, we set 1, 000 nodes on a plane of
1 km × 1 km, and use 60 m as the wireless communication
range.

In order to verify the state dependent characteristics of the
cluster structures generated, we use two initial distributions as
shown in Figure 9 where distribution values are described by a
color map. The left figure in Figure 9 expresses a randomized
state. The initial values of qinit(i, 0) for all node positions,
i, are random values that obey a uniform distribution with
range [0, 10]. The right figure in Figure 9 expresses a spatially
structured state. Three areas have relatively high values, and
the values of these areas are determined by random values
that obey a uniform distribution with range [5, 10]. The values
of other area are determined by random values that obey a
uniform distribution with range [1, 2]. If, for example, the
value represents battery energy, the randomized state does not
express any power-supply information whereas the spatially
structured state indicates three power-supply zones. The pa-
rameters used in the evaluation are shown in Table I.

!"#"$%! !"#"&%!

!"#"'%! !"#"$%%!

Figure 10. The cluster structures generated from a randomized state.

B. Evaluation

Figures 10 and 11 show the cluster structures generated
from a randomized state and a spatially structured state, re-
spectively. The four panels of each figure shows the number of
iterations or, equivalently, the position of the vector component
in the guarantee mechanism of the asymptotic stability of clus-
ter structures. From these results, if we choose few iterations,
we get a finer-grained cluster structure, and if we choose
more iterations, we get a coarse grained cluster structure.
We can also recognize that the cluster structures reflect the
spatially configured state of the initial condition. Since the
initial condition reflects the network state (e.g., battery power
of each node), it means the cluster structure generated by
our proposed scheme can reflect the state information of the
network.

V. CONTROLLABILITY OF THE NUMBER OF CLUSTERS
BASED ON THE GUARANTEE MECHANISM OF ASYMPTOTIC

STABILITY

This section investigates the clusters generated by our
proposed scheme combined with the guarantee mechanism
of asymptotic stability and reveals a technological problem

TABLE I. PARAMETER SETTING.

parameter value
v 1.5
b 1.1
a 1.2

∆x 1.0
∆t 1.0
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Figure 11. The cluster structures generated from a spatially structured state.

for ensuring control of the number of clusters. To solve this
problem, we propose a control method of the number of
clusters by introducing a logarithmic representation of network
state.

A. Metric for Describing Network State

Let us consider what metrics can be used to describe
network state. For example, we can use node battery power
as the initial condition of nodes that reflects the state of the
network. There are many ways to express the battery power
in numerical values: ampere-hour [Ah], milli-ampere hour
[mAh], coulomb [C], etc. Incidentally, 1 Ah = 1,000 mAh
= 3,600 C. Thus, the ranges of the initial distribution may
quite different depending on the metric used, even if the
target networks are in the same environment. In addition, it
is possible that some other network state metrics might be
included as a part of the distribution value. Therefore, it is
difficult to specify the metric for describing network state in
advance.

In our proposed clustering scheme combined with the
guarantee mechanism of asymptotic stability, the number of
clusters are controlled by choosing the number of iterations
(i.e., the position of the vector component of (2)). In order to
realize the control of the number of clusters based on our
framework, for any given iteration number, the number of
generated clusters should be independent of the metric.

B. Evaluation for Dependence Characteristics on the Range
of the Initial Distribution

In this subsection, we investigate the convergence of the
number of generated clusters with respect to the range of

Figure 12. The number of generated clusters for randomized initial conditions
w.r.t. the number of iterations.

the initial distributions. We use the same network model and
parameter setting as used in the previous section. The values
of the initial distribution qinit(i, 0) for all node positions, i,
are given by a random values that obey a uniform distribution;
four kinds of uniform distributions are examined. Their ranges
are [1, 5], [10, 5× 10], [102, 5× 102] and [103, 5× 103]. The
difference in ranges means the difference in the metrics. An
example of an initial condition is shown in the left pane of
Figure 9.

Figure 12 shows the temporal evolutions of the number of
clusters obtained from four different initial conditions. From
these results, we can recognize that the number of clusters
strongly depends on the range of the initial distribution.
Also, the relationship between the number of clusters and the
iteration times depends on the range of the initial distribution.
Since we cannot know the network state and its metric in
advance, we cannot control the number of clusters.

The cause of the above problem is the excessive sensitivity
of cluster formation to the range of the distribution. The
mechanism of the excessive sensitivity with respect to the
range of the distribution can be recognized through Figure 13.
Figure 13 shows the behaviors of cluster formation obtained
from our proposed scheme for the initial distributions with
large and small ranges. First, each node performs temporal
evolution obeying Huygens’ principle, and then scaling. Small-
valued nodes, which are next large-valued nodes, are greatly
influenced by the latter, and the difference in values between
them is strongly decreased. Therefore, if the range of the initial
distribution is large, the distribution is rapidly harmonized.

C. Proposal of Control Method of the Number of Clusters

In order to avoid the problem caused by the difference in
the ranges of distribution, we redefine the initial condition. The
details are as follows. We do not use the network condition
directly as the initial condition, but instead use

q(i, 0) = log(qinit(i, 0)). (12)

In the vector formulation, we replace (3) with

q0(i, t) = log(qinit(i, t)). (13)
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Figure 13. An example of the behavior of the proposed mechanism on two different distribution ranges.

The reasons for introducing a logarithmic function are as
follows:

• It is possible to maintain the magnitude relation of the
values of the original initial distribution.

• If the value of the original initial distribution is large,
its new equivalent value is smaller in the sense of the
ratio.

Let us consider the situation wherein the range of initial
condition is given by [Ax, Bx]. Where x is a positive constant
representing the difference between metric values. Here, we
define the distribution range function R[q] as the difference
between the maximum and minimum values of distribution q.
The range of the conventional distribution, qinit, is expressed
as follows:

R[qinit] = (B −A)x. (14)

This means that the range of the distribution depends on x.
On the other hand, the range of the new distribution log qinit

is expressed as follows:

R[log(qinit)] = log(Bx)− log(Ax) = log
(

B

A

)
. (15)

Figure 14. The number of clusters generated using logarithmic function from
randomized initial conditions, w.r.t. the number of iterations.

This means that the range of the distribution is independent
of x. It also means that the range of the redefined initial
distribution is independent of the metric used.
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Figure 15. The number of clusters generated using logarithmic function from
the initial condition having patterned structure, w.r.t. the number of iterations.

D. Evaluation for Controllability of the Number of Clusters

Figure 14 shows similar evaluations to Figure 12 by using
the redefined initial condition (13). We recognize that the
impact of the initial condition is sufficiently weakened. In par-
ticular, all initial conditions yield completely the same result.
This means that we have a robust clustering mechanism that
can control the number of clusters by appropriately choosing
the number of iterations or the component of the vector.

Next, we evaluate an effectiveness of our control method on
other type of initial distribution. We use the initial distribution
having spatially structured state (right figure in Figure 9).
Also, we prepare the range of initial conditions in the same
manners as the previous evaluation. Specifically, their ranges
are as follows. The values on the three areas are determined
by random values that obey a uniform distribution with range
[5, 10]. The values on the other areas are also determined by
random values that obey a uniform distribution with range
[1, 2]. Let us call this initial condition type 1. Next, we define
the initial condition type 2, whose ranges are calculated by
raising the ranges of type 1 by a factor of ten. In the same
manner, we define type 3 and type 4.

Figure 15 shows the temporal evolution in the number of
clusters obtained from our scheme with the logarithmic initial
conditions for the four different ranges. From these results,
we can recognize that the number of clusters is independent
of the range of initial distribution even if the initial distribution
is spatially structured. Therefore, our proposed scheme can be
expected to control the number of clusters even if the initial
distribution has a complex spatial structure.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an autonomous clustering
mechanism based on Huygens’ principle for MANETs. For
verification, we used a unit disk graph to evaluate the charac-
teristics of the proposed scheme. The benefits of the proposed
algorithm lie in its simplicity and its ability to form the spatial
structure reflecting the initial condition of network states. To
control the number of clusters generated, the number should

be independent of the metric representing the initial network
condition. However, unfortunately, the convergence speed of
cluster configuration depends strongly on the range of the
initial distribution that describes the network state. Since we
cannot know the distribution value for each node in advance,
the difference in convergence speed makes it impossible to
control the number of clusters. To avoid this problem, we in-
troduced new distribution defined by the logarithm of the orig-
inal distribution. Consequently, the difference in convergence
speed is significantly weakened, and the number of clusters
becomes controllable. The above characteristics are suitable
for clustering in MANET. As future work, we will consider
the response of our mechanism to dynamic environments.
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