
223

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ALPACA: A Decentralized, Privacy-Centric and Context-Aware
Framework for the Dissemination of Context Information

Florian Dorfmeister, Sebastian Feld, and Claudia Linnhoff-Popien
Mobile and Distributed Systems Group

Ludwig-Maximilians-Universität München
Munich, Germany

Email: {florian.dorfmeister, sebastian.feld, linnhoff}@ifi.lmu.de

Abstract—With the ongoing rise of smartphones as everyday
mobile devices and their steadily increasing amount of sensing
and communication capabilities, we are on the brink of a subtle,
widespread adoption of context-aware computing techniques into
our daily lives. Focusing on functionality and performance, the
majority of existing architectures for managing context informa-
tion typically deploy central components for collecting, analyzing
and distributing its users’ up-to-date data. However, preservation
of users’ privacy needs remains a crucial factor for such systems’
acceptableness. Inspired by existing works on privacy in context-
aware applications and the authors’ beliefs in the necessity
to put users back in control, this article adopts a privacy-
centric perspective and presents ALPACA: A novel approach
for modeling and managing a user’s rich context information
in a user-centric and privacy-preserving way fit for a multitude
of different usage scenarios. To this end, this article offers a
general conceptual mapping of a user’s privacy needs to distinct
layers. Based on this conceptualization we introduce a privacy-
centric approach for modeling this information. Additionally, we
propose a context-aware mechanism for the definition of context-
dependent release triggers in order to enable fine-grained control
over the disclosure of sensitive information. Finally, we present
the components of the proposed system architecture, explain how
they interact with each other and discuss how our framework can
be integrated into a modern mobile operating system.

Keywords-context modeling, context-awareness, privacy-centric
design, context-dependent privacy policies, context obfuscation.

I. INTRODUCTION

Both the acquisition of a user’s current context, e.g., by
applying activity classification or other reasoning techniques
to her smartphone’s sensor readings as well as approaches
for effectively modeling and managing context information are
active areas of research. At the same time, however, also the
leakage of sensitive personal data is an issue of substantial
interest on both a legal, social, and technical level. The ongoing
scandalization of agencies’ large-scale data collection on the
Internet hopefully affords an appropriate, albeit unpleasant,
opportunity to sensitize the public for these privacy issues.
The latter get additionally tightened as, due to the popularity
of smartphones, we are heading towards a full supply of small
electronic devices with broadband Internet access, extensive
sensing and computing capabilities. The privacy problems
naturally exist regardless of extensive eavesdropping, as the
number of applications that silently collect context information
and send it to the Internet is legion. Privacy-aware users usually

face an all-or-nothing option at install time and, once approved,
there is no control over an application’s usage of personal
or context information at all. In order to contribute to the
tackling of some of the technical aspects of these problems,
we originally published the concepts and design of the Layered
Architecture for Privacy-Assertions in Context-Aware Applica-
tions (ALPACA) in [1]. The main goal of this privacy-centric
framework for managing context information is to turn a user’s
mobile device into a personal data vault that only the user has
full access to as well as to enable fine-grained access control
mechanisms for the dissemination of sensitive information. In
this article, we will provide an updated and more thorough
view at the different components and present new additions
to the framework. In particular, we will go into detail on
our ontology-based modeling approach and the context-aware
trigger mechanism, which allows for the definition of context-
dependent privacy policies. We will give more insight into
our system’s key components, communication protocol, and
entity authentication and outline its applicability to the Android
operating system and different usage scenarios.

One can think of many beneficial use cases for context-
aware applications, such as proactive route planning services
taking into consideration the current traffic volume and a
user’s appointment schedule, smart mechanisms automatically
adjusting a phone’s audio profile based on the user’s cur-
rent occupation or context-aware online social networking,
e.g., buddy finder apps notifying the user about friends in
proximity [2], [3]. In addition, there are applications such
as the SmartBEEs context-aware business platform [4], which
do not act based on a single-user or peer-to-peer basis, but
leverage the combined knowledge of multiple users’ current
contexts and their surroundings’ state, e.g., for business process
optimization. In order to prevent unintentional disclosure of
personal data, users must yet be able to control what kind
and resolution of context information applications are able to
collect at any time. Enabling the acquisition of a user’s context
information with the help of her smartphone’s sensors and
eligible reasoning mechanisms in return also enables spying on
this person. Thereby “one person’s sensor is another person’s
spy”, as [5] puts it. For the enabling of high levels of service
quality, the algorithms used for context acquisition typically
aim at maximizing resolution, freshness, and accuracy of their
findings. When talking about preserving a user’s privacy, how-
ever, different and partly even contradicting objectives are to be

224

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pursued. For example, in many situations it might be perfectly
sound to deliberately reduce the resolution of a piece of context
information before sharing it with others in order not to reveal
too much. Many approaches for managing context information
focus on the generation, modeling, processing, and efficient
distribution of the latter as well as the realization of context-
aware applications built thereon. Most of these works take a
primarily functional view on their system and try to maximize
parameters such as classification accuracy, availability, and
scalability. Some works also argue that not only the usability
and utility of context-aware applications are paramount for
a wide acceptance, but also the establishment of appropri-
ate privacy mechanisms, which make users feel safe and
comfortable within such ubiquitous computing environments.
Concordantly, in this work we propose an integrated approach
for giving the full control over the release and granularity of
sensitive context information to the data’s owner, comprising
a novel ontology-based and privacy-centric context model as
well as a mechanism for defining context-dependent access
control policies and the corresponding system architecture.

The remainder of this article is structured as follows: In
Section II, we will give our problem statement and a definition
of sensitive context. Section III reviews related work on privacy
in context-aware applications and presents a comprehensive
list of requirements for privacy in context-aware applications.
In Section IV, we present a general conceptualization of a
user’s privacy needs, which is the foundation of our privacy-
centric modeling approach presented in Section V. In Section
VI, our context-aware release triggers for the definition of a
user’s privacy policies will be introduced. Our framework’s
system architecture and communication protocol are described
in Section VII. After discussing our approach in Section VIII,
we conclude.

II. PROBLEM STATEMENT

This work focuses on the modeling and management of a
mobile user’s rich context information in a privacy-preserving
way. We found our understanding of context on the general
definition by Abowd et al., declaring context to be “any
information, that can be used to characterize the situation of
an entity [...] relevant to the interaction between a user and
an application” [6]. Strictly following a user-centric approach,
we assume a user’s smartphone to be the primary source
of information about her current situation. With this work
focusing not only on functionality, but on protecting a mobile
device user’s privacy, we complement the given definition to
characterize sensitive context as follows: Sensitive context is
any information available through a user’s device, that can be
used by any entity to infer the situation of the user regardless
of any interaction between the user and any application.
Given this definition, we aim at designing a generic and
integrated solution for the management and context-dependent
access control of a mobile device user’s static and dynamic
context information. Consequently, we consider it essential to
primarily focus on putting the user in full control over the
acquisition, release, and resolution of her personal data.

From a privacy-centric point of view, on the one hand, the
less data is going to leave the user’s mobile device, the better.
Yet in order to enable a diversity of context-aware applications,
there is usually a need for communicating one’s current context

information to other parties. For privacy reasons, however, we
argue that there must not be any party but the user herself
able to access or control her complete context information at
any point in time, thereby ruling out any solutions based on
a trusted third party approach. On the other hand, providing
central reasoning components with some carefully selected
context information seems nonetheless desirable in some sit-
uations, e.g., in order to allow for the efficient realization of
multi-subject context-aware applications. Existing frameworks
typically comprise four consecutive stages to enable context-
awareness, i.e., context acquisition, context modeling, context
exchange, and reasoning [7]. In order to protect a user’s context
privacy along this chain, an integrated approach should hence
comprise the following requirements:

1) An abstract conceptualization of a user’s privacy
needs, that models context on easily comprehensible
layers according to different groups of requesters.

2) A formal model of a user’s context, that already
integrates some core aspects of privacy of context
information and provides the ability to easily integrate
current and future privacy and security methods into
context-aware applications.

3) An effective mechanism for controlling the dissemi-
nation in form of user-defined privacy policies. These
policies have to consider the user’s as well as the
requesting entity’s context and should be evaluated
in a context-aware manner.

4) An integrated system architecture, that is suitable for
the above mentioned use cases and all kinds of con-
text requesters, i.e., applications running exclusively
on the user’s device, peer-to-peer, and third party
services while always emitting only the minimum
amount of information required.

In the next sections, we propose a solution to all of
these requirements: The privacy layers described in Section IV
incorporate an abstracted view on a user’s privacy needs. Our
Context Representations model is concerned with the formal
representation of a user’s context information (Section V). We
design a mechanism for context-dependent privacy preferences
in Section VI and eventually put the pieces together with our
privacy-centric and context-aware framework for the dissemi-
nation of context information in Section VII.

III. RELATED WORK

This section presents related work on privacy mechanisms
for context-aware applications. Several different categories of
approaches can be found in literature. Some of them rely
on trusted third party (TTP) solutions for efficient context
dissemination, whereas other systems adopt a peer-to-peer
(P2P) based approach in order to avoid such central points of
attack. In addition, there are rule languages for defining access
control based on contextual information as well as different
obfuscation techniques for adequately reducing the richness of
a user’s context information before their release.

A. Context management frameworks and tools

A common architectural model for the realization of
location-based and context-aware applications is the use of a
TTP acting as some kind of middleware for the aggregation

225

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of its users’ context information [8]. It is necessary for all
of the system’s participants to fully trust this component. The
CoPS architecture introduced in [9] implements such a central
privacy service. While allowing for different granularities of
context items, it does not permit the definition of context-
dependent access rules. Another TTP-based approach called
CPE [10] enables the definition of context-dependent privacy
preferences, but lacks mechanisms for releasing information
in different granularities. With a focus on context-dependent
security policies, the CoBrA platform [11] deploys the Rei
policy language [12] in order to enable the definition of access
control rules depending on a user’s current context. Beyond
that there is much literature on different techniques for the
obfuscation of contextual information. As an example, [13]
presents another centralized approach focussing on context
ownership and offering obfuscation mechanisms for several
kinds of context information based on SensorML process
chains, obfuscation ontologies, and detailed taxonomies de-
scribing dynamic granularity levels. In contrast to these sys-
tems, purely P2P-based approaches such as [14] get along
without any central component. As a major drawback, such
architectures can hardly be efficiently deployed in applications
depending on up-to-date context information of a whole group
of users at the same time. Behrooz et al. presents CPPL, which
is a policy language that can be used to define the access
rules for a user’s context information in a context-dependent
way [15]. Noticeable, the rules that can be set up here are
not only context-dependent, but the engine responsible for
policy enforcement itself is context-aware, i.e., it maintains
an up-to-date set of active policies according to the user’s
current context in order to minimize the number of policies that
have to be considered when processing an incoming request
for context information. However, the policy mechanism has
been designed to only depend on the context owner’s content
and its social relationship to the context requester. We argue,
however, that a comprehensive policy approach should be able
to also take the requester’s current context into account as well.
Consequently, it is not clear how a requester’s context could
be transferred to the context owner in a sensible and privacy
preserving way, too.

B. Privacy mechanisms for context-aware applications

Based on the above mentioned works [9]–[15] and further
literature on privacy in context-aware applications, in this sec-
tion we identify and complement a set of different techniques
and requirements for realizing different aspects of privacy.
Naturally, an integrated approach for modeling and managing
context should incorporate all of these mechanisms. In the
following, we will list and briefly explain the most important
of these requirements.

1) Fine-grained control: Above all, a minimum set of
access control operators such as grant and deny has to be
available in order to be able to define different requesters’
access rights. Additionally, users should be in a position to
define their privacy preferences in a context-dependent way.
For example, Xie et al. [16] show that a user’s willingness
to release any of her context information to others depends
on a number of different factors, such as time, companion
and emotion. Considering the nuances in privacy preferences
among different users, Bokhove et al. also argue for the need
of fine-grained and expressive privacy mechanisms [17].

2) Adjustable quality-of-context (QoC): Variable granu-
larity and other QoC-related aspects can be used to reduce
a piece of context information’s precision or accuracy [18].
As an example, consider a user reading her e-mails. Different
granularities of her currently modeled activity context might
contain read-e-mail, computer-work, office-work
and working. Moreover, credibility issues, such as inten-
tional ambiguity and (white) lies, can be used in order
to lower the confidence or validity of a piece of context
information. Notice that such behavior is common in our
everyday actions in the offline world, too, e.g., not answering
telephone calls in order to conceal presence or availability. Ad-
justable freshness and temporal resolution are other means
for intentionally reducing a piece of information’s quality, e.g.,
regarding its age, capturing time or temporal validity. It can
hence be used in a similar way as intentional ambiguity to
obfuscate a user’s context.

3) Consistency and completeness: We define consistency
of a user’s privacy preferences as another important require-
ment, stating that a context requester must not be able to
retrieve ambiguous, e.g., contradicting pieces of context in-
formation. Considering that completely denying a request for
a piece of a user’s context information might itself reveal
much, we define completeness to be the principle of answering
any request with a plausible response. This is important, as
it is often more privacy-preserving to give an imprecise yet
plausible reply than to refuse a request.

4) Notifications and logging: Notifications can optionally
be sent to a user upon a request of her context information
[9]. Additionally, requests should be logged. These techniques
allow for users being well informed about usage of their
personal information [17] and can be used as a social means
able to contain the intentional abuse of contextual information.

5) Symmetry: Another important concept adapted from the
offline world is symmetry, stating that a certain party has to
reveal just as much of its own information as it requests [19].
In connection with context-aware applications, this especially
applies to the realization of peer-to-peer-based scenarios.

6) Anonymity and pseudonymity: Other concepts for
privacy in context-aware applications are anonymity,
pseudonymity, and k-anonymity [20] relating to a user’s
identity not being known by a system, only being known by
a pseudonym, and a user being indistinguishable from k-1
other users, respectively.

In order to seamlessly protect a user’s privacy, it also
seems beneficial to closely band together the acquisition,
modeling and management of a user’s context information.
More general requirements are extensibility, e.g., a system’s
ability to automatically integrate new types of context sources
and usability.

IV. A LAYERED CONCEPTUALIZATION OF PRIVACY

We will now introduce a practical conceptualization of
privacy as a general mapping from different groups of re-
questers of context information to distinct privacy layers. These
layers resemble what we believe to be a good compromise
about a privacy-aware user’s sensation of different levels of
information accessibility and reduction of complexity. To keep

226

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Public Layer

Protected Layer

Private Layer

Reality

Privacy Layer Context Requester

Everyone

(Trusted) Peers/
Apps

Local Apps

Example Information

Age group (25-31),
gender, etc.

(Obfuscated) context
information, e.g., rough

location estimation

Exact GPS location,
appointments in
schedule, etc.

Data, discrete and continuous
values, e.g., temperature,
altitude, acceleration, etc.

Sensors

Blacklist

Whitelist

Trust Distinction

Figure 1. The four different privacy layers defined in ALPACA and their
most likely audiences as well as some example context items for each layer.

things small and simple, there are only two roles defined: the
context owner, who is the user whose context is to be protected
and the context requester, which might be any application,
service or peer requesting access to the user’s context.

As shown in Figure 1, we define four logical layers that
can be mapped to a user’s privacy needs, as well as different
gateway mechanisms controlling these layers’ permeability.
At the bottom layer we put reality, possibly containing more
information than any types of sensors and reasoning mech-
anisms will ever be able to capture. Obviously, there is no
need to implement anything on this layer. However, it still
has to be considered as this layer constitutes what is to be
reflected by any context modeling approach. Users might feel
uncomfortable knowing that each of their smartphone’s sensors
is recording data all the time, e.g., in some situations or
at certain locations a user might not want her smartphone’s
microphone to record audio, and hence this sensor should be
turned off automatically. Users should thus be able to set up
a context-dependent blacklist for defining which sources of
context information should be turned off. Every time the user’s
context changes, this blacklist has to be re-evaluated.

The next layer is the private layer, holding all the in-
formation a user wants to have available for herself, i.e.,
context-aware services and applications running exclusively
on her mobile device. Consider for example locally run apps,
which adapt their appearance and behaviour according to
the user’s current context. In order for such services to be
responsive and proactive, this layer enables access to the most
fresh and sophisticated context representations. Naturally, these
high-resolution representations are probably not intended for
everyone else as well. Thus, the trigger mechanism described
in Section VI is used as a context-dependent whitelist for the
release of certain representations to the upper layers.

Context information which pass this whitelist enter the
protected layer and might hence be available for some other
entities, too, such as trusted services and peers. For example, a
user might be reluctant to share her current whereabouts with
everyone, but maybe with some of her friends in her spare
time or with her employee during working hours. Naturally, the
number and composition of context representations available
on this layer will hence change dynamically based on the user’s
privacy preferences and current context.

48.14985,11.59476

Accuracy: 10m

Obfuscation: geo. none

Context

ActivityContextLocationContext

Munich

Freshness: 200min

Obfuscation: geo. city-level

Workplace

Confidence: 0.8

Obfuscation: semantic ...

...

…

Obfuscation: ...

Figure 2. An example context tree with its second-level Context nodes
linking to an arbitrary number of representations, each indicating its level
of obfuscation based on the semantics of the underlying information.

Additionally, a user might be willing to share some kind
of information about herself with anyone, meaning that these
information are available on the public layer. This might, e.g.,
be true for information that are somehow obvious anyway,
such as personal profile data containing the user’s gender or
age group. However, a user might still define notifications to be
displayed when these kinds of information are being requested.
That said, notice that our system’s user is of course not forced
to abide by these layers in the way we just described, but rather
can individually choose which level of visibility fits her own
situation by the use of appropriate release triggers.

V. MODELING CONTEXT USING ALPACA-CORE

A privacy-oriented approach for modeling a user’s context
should inherently focus on the enabling of fine-grained access
control mechanisms over these dynamic and sensitive data.
Applying the privacy techniques listed in Section III to the
modeling part of our framework implies that at least the con-
cepts of variable granularity, intentional ambiguity, white lies,
freshness, and consistency should directly be integrated into
our model. Our basic concept is that a user should be able to
maintain different versions of her current context information
that can be shared with different context requesters, as the
latter might not appear equally trustworthy to the context
owner. Accordingly, Context Representations (CoRe) model is
designed to inherently store several heterogenous versions of a
user’s context information in parallel, each serving a different
purpose for different groups of context requesters. Notice, that
there have been some considerable modifications to the original
version presented in [1].

A. Representations of context information

Approaches for context modeling (cf. [21] for a compre-
hensive survey) typically adopt a hierarchic understanding of
context, which can be illustrated using a tree-based structure.
In such a hierarchic scheme, the root node aggregates all
categories of a user’s context information. At the second level,
distinctions between the basic types of context information
are made, such as a user’s current time, location, or activity.
Each of the tree’s second-level nodes may be a parent to a
hierarchy of an arbitrary number of nodes representing the
corresponding category in a different way. To preserve a user’s
privacy, the simultaneously possible representations of a user’s
current location might differ, e.g., in their spatial resolution,
accuracy and freshness, or in case of a white lie maybe even
validity. Apart from the creation of such hierarchies being a

227

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Context Representation Grant

Base Concepts

representedBy accessibleVia

represents GrantFor

ActivityContext ActivityRepresentation

Subconcepts

representedBy

represents

subclassOf ObjectProperty functional Obj.Prop.subpropertyOf

ActivityGrant

GrantForActivity

accessibleVia

Entity

PeerEntity

hasGrant

hasActivityGrant

Figure 3. The cornerstone concepts and properties of the CoRe model: Context, Representation, Grant, and Entity as well as corresponding example subclasses.

non-trivial task [13], it is thus not possible to stick to such
taxonomies in general, due to contemporaneous representations
of the same kind of context differing in more than one
dimension. In contrast to existing context models such as
MUSIC [22], which use the term “representation” in order
to label the data formats used for communication (such as
XML or JSON), we hence suppose distinct representations
of context information to possibly differ from each other
on a semantic level, independent from any encoding. As an
example, consider the three different representations of the
user’s current location in Figure 2: The instance on the left
holds the current GPS position fix of the user. In contrast,
the one in the middle only states the user’s location on a city
level, while the third uses a non-geographic, symbolic location
identifier that cannot be mapped to a geographic one – at
least not without any further knowledge about the user. The
acquisition of these representations is not within the scope of
this work. However, we require this process to be performed by
sensing, reasoning, and context obfuscation services running
on the user’s device. The different representations stored in
the model can be marked to be accessible by different groups
of requesters. Which representation is to be released to whom
might depend on the privacy level assigned to the requester and
on context information itself: Services running exclusively on
the user’s mobile device are likely to be allowed to access the
user’s context information with the highest resolution available,
whereas peers and third party services might only be able to
retrieve some kind of adequately obfuscated representations.

B. Components of the CoRe model

Following an OWL-based modeling approach, our context
model consists of the base classes shown in Figure 3, i.e., Con-
text, Representation, Grant and Entity. Each of the first three
has subclasses for the different categories of context, such as
ActivityContext, ActivityRepresentation and ActivityGrant, re-
spectively. As stated above and indicated by the representedBy
property, a certain subclass of context may be described by
multiple contemporaneous instances of the according subclass
of Representation. The model’s basic structure was inspired
by the ASC model by Strang et al. [23] enabling service
interoperability based on a shared understanding of and trans-
formation rules for different, yet logically equivalent scales.
There, the interrelation of different scales such as a mile and
kilometer scale are described along with transformation rules
that can be used to translate from one scheme to another. Quite
the contrary, our CoRe approach aims at modeling different
representations of the same kind of context information, which

according to the privacy mechanisms listed in Section III do
not necessarily have to share a similar or at least consistent
meaning at all. In fact, there must not exist any transformation
rules which allow for a trivial conversion, e.g., from a low-
resolution representation to a high-resolution one.

As an enabler for the definition of privacy preferences
based on our model, an instance of Representation can be
made accessible to a group of context requesters via subclass
instances of Grant. This can be modeled by using the cor-
responding subproperty of the functional GrantFor property
as depicted in Figure 3. A context requester can be any
Entity requesting some of the user’s context information and
can be referred to individually, by group membership, or by
dynamic constraints on context. In order to allow for privacy
policies that also depend on the requester’s context, such as
“friends at my location”, the CoRe model also stores the known
contexts of all active requesters. As claimed by the requirement
for consistency, however, a requesting entity must never be
granted access to more than one representation of the same
type of context information at the same time, as this might
result in an ambiguous response. In order to integrate this
understanding of consistency into the CoRe model all sub-
properties of the hasGrant property are marked as functional,
too. Constricting the modeled relations by the ontology’s
functional property constraint as described allows for dynamic
consistency checking at runtime based on the built-in OWL
reasoning capabilities. Hence, a user’s privacy policies do not
have to be tested statically for any inconsistencies, which
instead can automatically be detected by an inconsistent state
of the ontology. Likewise, we provide the GrantFor property
with a minCardinality constraint of 1, stating that there must
also be at least one Representation for each Grant. This can
be used to realize some kind of garbage collection that is able
to automatically detect and remove an obsolete Grant. Notice,
that the inverses of these properties are not constrained like
that, e.g., one instance of Representation can be accessible via
several Grant instances simultaneously and a Representation
can exist even if there is no corresponding Grant.

In order to be able to automatically assess the resolution,
validity, and sensitivity of a Representation instance, each
of them provides information about its ObfuscationLevel. As
shown in Figure 4, each type of context can have an arbitrary
number of obfuscation levels and each Representation belongs
to exactly one of these. Considering the great differences
in semantics that different types of context information and
obfuscation techniques might display, a generic labeling ap-

228

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Context ObfuscationLevel

hasObfuscationLevel

obfuscationOf

ObjectProperty functional Obj.Prop.

generalizationOf

specificationOf

Representation

hasItem

obfuscationType

hasCurrentItem

Figure 4. Each instance of Representation describes a certain type of Context
using a corresponding scheme, i.e., a certain instance of ObfuscationLevel.

proach for these levels seems unfeasible. Hence, each subclass
of Context is expected to define its own obfuscation scales,
probably provided by the service used for creating the cor-
responding representations. Within a single scale there might
be a naturally defined hierarchy, such as the granularity of
location. Instances of the same subclass of Representation
can hence be marked to be a generalizationOf one another,
which is a transitive property. This can be used to model
that a context requester who is granted access to a high-
resolution representation can also access low-resolution ones,
e.g., if she only asks for the latter. This does not violate the
consistency requirement, as conflicting responses caused by
contradicting representations cannot arise. In addition, each
ObfuscationLevel has a functional hasCurrentItem property
indicating which of the corresponding Representation instances
is currently valid and should thus be used for the evaluation
of the user’s privacy policies. This is necessary as for each
ObfuscationLevel there might be a multitude of Representation
instances stored in the model in parallel, some of which are
not valid any more, but still remain in the CoRe model, e.g.,
to enable adjusting the freshness of released information.

In this section, we have described a novel, privacy-centric
approach for modeling a user’s context information, which can
be used to manage multiple representations of a user’s context
information intended for different context requesters. In the
next section, we will focus on how context-dependent privacy
policies can be realized based on our model.

VI. CONTEXT-DEPENDENT PRIVACY POLICIES

In order to protect a user’s context information from unin-
tended leakage, our system takes a highly restrictive, whitelist-
based approach: Apart from fully trusted apps running ex-
clusively on the user’s device, explicitly stating that some
information should be accessible by a certain requester is the
only possibility for a user to share any piece of context infor-
mation. In this section, we will introduce a suitable mechanism
for the realization of corresponding privacy policies, show
example usage, and demonstrate our framework’s capability to
preserve consistency by automatically detecting and resolving
conflicting policy definitions at runtime.

A. Trigger-based release of context information

The ALPACA framework comprises a new mechanism
for the definition of flexible, fine-grained, and context-based
access control rules on behalf of the context owner. In order
to facilitate the definition of both static and context-dependent
privacy policies, the context owner must be able to manage
her contacts in groups comparable to current online social
networking (OSN) services. To this end, Release Triggers
(RTs) can be set up as privacy policies for controlling the

Conditions*

cond(CO, context_type, representedBy,

obfuscation_level, …)

<releaseTriggerId>

Effects+

Metadata*

grant({(CR, context_type, representedBy,

obfuscation_level, …)[AND (CR,…)]}

-> {(CO, context_type, representedBy,

obfuscation_level, …)[AND (CO,…)]})

precedesOver*, sideEffect*

Figure 5. The logical structure of the release trigger mechanism: Conditions
and Effects allow for the definition of context-dependent privacy preferences.

release of a user’s context information. Behrooz et al. dif-
ferentiate between situational context, that can be used to
evaluate privacy policies and sensitive context, that is to be
protected by the policies [15]. In contrast, we argue that all
of a user’s context information is likely to be both relevant
in the policy definitions and worthy of protection. The RT
concept hence enables the deployment of context-dependent
privacy preferences based on and intended for the rich context
information stored in the CoRe model. It can be used for
dynamically whitelisting the release of a certain Representation
of context information to a context requester.

The logical structure of a trigger and its subcomponents
are outlined in Figure 5. For identification purposes, every
trigger is assigned a unique name. It further consists of sets
of Conditions and Effects as well as a Metadata section. The
Condition part holds all prerequisites posed on the context
owner’s (CO) current context for the trigger to become active.
Here, several conditions can be specified per trigger, which
are evaluated as a whole using the logical AND operator.
The required conditions may base on Representations of any
context type and ObfuscationLevel that are available in CoRe.
This allows the definition of conditions based on any desired
granularity as well as any combinations of context types. The
Effects part states what kind of Representation is to be released
upon a certain entity (CR) requesting context information.
In order to differentiate between context requesters in the
Effects part, entities may either be referred to explicitly or
implicitly via group membership, context properties, or any
combination thereof. The latter allows for referring to the
requester’s context in a trigger definition, too, so that the final
release of context information can depend on the requesting
entity’s context. In the Metadata part, e.g., information about
the relative importance of a trigger can be defined, such as
precedence rules used for conflict resolution.

If a trigger fires, the corresponding instance of Repre-
sentation will be made accessible to a context requester. In
terms of the concepts of the CoRe model, this is achieved
by the creation of a new Grant instance. The latter will be
linked to the Entity characterized in the release trigger’s Effects
part as well as with the described Representation. Which
instance of Representation is to be released to the requester

229

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can be defined by the context owner in terms of the desired
obfuscation level, maximum or minimum accuracy, confidence,
and freshness properties. Again, several effects can be defined
within the scope of a single trigger. However, it is important
that each release of a Representation by any Entity is managed
by a dedicated Grant instance, as the access to individual
representations may depend on different conditions on the
requester’s context. From [9] we have adapted the idea that
accessing a piece of context information by a certain requester
might have side effects such as notifying the user, as we agree
on that being a proper means suitable for keeping the user
informed and containing data abuse. If desired, a user can
hence also specify which SideEffect should be activated when
a certain kind of Representation is accessed using a certain
Grant. The metadata section can be used to define the relative
importance of a trigger compared to others, which is needed for
resolving conflicting policy definitions. Both the side effects
and precedence rules will also be added to the CoRe model.

B. Context-aware policy evaluation

Apart from allowing for context-dependent privacy poli-
cies, our approach can be considered context-aware, too, as the
policy evaluation takes into account the user’s current situation
in order to reduce the number of rules that have to be evaluated
upon an incoming request for context information. To this
end, the evaluation of a user’s release triggers is performed
in two stages, thereby fulfilling the requirement for context-
awareness of privacy policies stated in [15]. In the first stage, a
release trigger is set active if all of its Conditions are met. As
already explained, these conditions only depend on the context
owner’s locally known context and can hence be evaluated pro-
actively to any context request. The up-to-date subset of active
triggers is managed directly in the CoRe model and is adjusted
accordingly with each change of the user’s context. As a result,
only active triggers have to be evaluated upon an incoming
request for context information, i.e., during the second stage.
This procedure can be naively implemented as follows: If the
local context changes, all Grant instances are removed from
the model. In the next step, all triggers are removed from the
context owner’s active trigger subset. Notice, that in this state
no one but private layer entities has access to the context
information. Now the first, context-aware stage of the trigger
evaluation starts: Based on the currently modeled context, all
triggers’ Conditions will be matched in order to decide which
triggers enter the active set. This set then holds all triggers
that can potentially fire upon an incoming request for the user’s
context information. The second stage is a lazy rule evaluation
performed in reaction to an actual request. Consequently, this
evaluation only has to be performed on the filtered subset of
active triggers instead of the user’s complete policy set, which
has the potential to improve the response time of the system.
The active triggers will now be evaluated and in the case a
trigger fires, a corresponding Grant instance as well as any
SideEffects are added to the model.

To enable context-awareness in an actual implementation of
the trigger mechanism in a rule language, the triggers’ logical
structure must be split into two parts: The Conditions part on
the one hand and the Effects and Metadata part on the other
are thus to be defined in two seperate rules, as illustrated by
the example trigger definition in Figures 6, 7, and 8.

C. Example of a release trigger

We will now demonstrate the interplay of the CoRe model
and our release trigger mechanism by means of a simple
example scenario: Alice, who is the context owner, has set
up a pair of release triggers defining which information she is
willing to share with her colleagues. Her co-worker Bob is the
context requester, who currently is at work. The full description
of the first trigger can be seen in Figure 6 as pseudo-code. This

T r i g g e r 1 {
C o n d i t i o n :

E n t i t y : A l i c e
C o n t e x t : TimeContext
r e p r e s e n t e d B y : workt ime

C o n d i t i o n :
E n t i t y : A l i c e
C o n t e x t : L o c a t i o n C o n t e x t
r e p r e s e n t e d B y : atWork

E f f e c t :
C o n t e x t : L o c a t i o n C o n t e x t
O b f u s c a t i o n : b u i l d i n g−room
−−−
E n t i t y : coworker
C o n t e x t : L o c a t i o n C o n t e x t
r e p r e s e n t e d B y : atWork

Metada ta :
p r e c e d e s O v e r : T r i g g e r 2

}

Figure 6. Schematic definition of an example release trigger, Trigger1,
depending on the context owner’s current time and location given in pseudo
code.

trigger defines that given it is worktime and Alice’s current
location is found to be her workplace, co-workers who are
at work themselves are allowed to see in which room she
currently resides in. The actual implementation of the trigger
happens, as already mentioned, by outsourcing the condition
part into an own rule. A second rule describes the effects and
metadata part of the trigger. The corresponding sub-rules are
shown in Figures 7 and 8, respectively. The syntax used here
takes a generic format assuming rule evaluation in forward-
chaining mode. The makeTemp creates a blank node in the
model. For the sake of brevity, the definition of any SideEffects
and usage of exact RDF syntax have been left out here.

The conclusion part of the Conditions rule

[shareRoomWithCol leagues :
(A l i c e h a s C o n t e x t ? t)
(? t t y p e TimeContext)
(? x o b f u s c a t i o n O f ? t)
(? x h a s C u r r e n t I t e m workt ime)
(A l i c e h a s C o n t e x t ? l)
(? l t y p e L o c a t i o n C o n t e x t)
(? y o b f u s c a t i o n O f ? l)
(? y h a s C u r r e n t I t e m atWork)
−> (A l i c e h a s A c t i v e T r i g g e r T r i g g e r 1)]

Figure 7. The context-aware Conditions part of Trigger1 as a separate rule.

230

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

shareRoomWithColleagues shown in Figure 7 simply
states that Trigger1 is to be added to Alice’s set of active
triggers. For this to happen, all conditions defined in the
rule’s body part must match the current state of the model.
Just as required, the conditions of this rule exclusively depend
on Alice’s context information. So even though the overall
result of the release trigger depends on the context of a
requesting co-worker, too, shareRoomWithColleagues
can be evaluated pro-actively to any incoming request. As
soon as it is working hours and Alice arrives at work,
Trigger1 will hence be set active. In contrast, as depicted

[T r i g g e r 1 :
(A l i c e h a s C o n t e x t ? l)
(b u i l d i n g−room o b f u s c a t i o n O f ? l)
(b u i l d i n g−room h a s C u r r e n t I t e m ? l r)
(? l r t y p e L o c a t i o n R e p r e s e n t a t i o n)
(? cw isA coworker)
(? cw h a s C o n t e x t ? cwl)
(? cwl t y p e L o c a t i o n C o n t e x t)
(? cwl r e p r e s e n t e d B y atWork)
−> makeTemp (? g)

(? g c r e a t e d B y T r i g g e r 1)
(? g G r a n t F o r L o c a t i o n ? l r)
(? cw h a s L o c a t i o n G r a n t ? g)]

Figure 8. Effects and Metadata parts of Trigger1 as a separate rule.

in Figure 8, the Trigger1 rule itself takes into account
the current context of the context requester. However, it
only has to be evaluated when a context requester sent a
request for her context information with his own context
piggybacked. The first four triplets define that this rule targets
the currently valid representation of Alice’s location context
on the building-room obfuscation level. The remaining lines
of the rule’s body state that the matching representation shall
be made accessible for any co-worker who is at work: A
new instance of LocationGrant is added to the model and
linked to the chosen representation and matching entities. If
there were any SideEffects that should be performed upon
this Grant being used, it would also be stated here and the
corresponding individuals are added to the model.

The release trigger shown in Figure 9 only relates to
Alice’s time context and does not pose any requirements to
her whereabouts. In contrast to the first one, hence, this rule
also matches when she is on a business trip or on a day off or
simply late for work. Consequently, Alice decided to only let
her colleagues know about her location on a city-level in this
case. Assume that Bob requests her current location during the
working hours: In case Bob is not at work himself, none of
the two triggers will release her location information to him.
If Bob is at work and Alice is not, only the second trigger
matches the current situation and a Grant instance to her city-
level location will be linked to Bob. When she is at work,
however, both triggers match the situation. Accordingly, both
rules fire and Bob is granted access to two different instances
of LocationRepresentation, which clearly violates the require-
ment for consistency. How the CoRe model is capable of
automatically detecting and resolving such conflicting policy
definitions will be explained in the next section.

T r i g g e r 2 {
C o n d i t i o n :

E n t i t y : A l i c e
C o n t e x t : TimeContext
r e p r e s e n t e d B y : workt ime

E f f e c t :
C o n t e x t : L o c a t i o n C o n t e x t
O b f u s c a t i o n : c i t y
−−−
E n t i t y : coworker
C o n t e x t : L o c a t i o n C o n t e x t
r e p r e s e n t e d B y : atWork

}

Figure 9. Schematic definition of an example release trigger, Trigger2,
depending on the context owner’s current time only.

D. Dealing with inconsistent privacy preferences

When making usage of context-dependent access control
policies, it might happen that two or more (possibly con-
tradicting) rules match a given situation. We define a set of
privacy policies to be conflicting, if they produce an ambiguous
set of access grants for a context requester. A set of Grant
instances is ambiguous, if any Entity is granted access to
more than one Representation instance of the same subclass
of Context at the same time. This situation is prone to harm
a user’s integrity, which becomes evident when considering
two contradicting representations, such as a user’s true and
fake location information: If a requester is allowed to access
several representations of the same subtype of Context at
once, the result is not only ambiguous, but also likely to
negatively influence the context owner’s respectability due to
being caught lying. Considering the structure of the release
trigger mechanism, such situations might occur when a context
requester matches the entity description in more than one
active trigger’s Effects. In order to automatically detect such
situations at runtime, we use the underlying ontology’s built-in
reasoning capabilites to dynamically check the CoRe model’s
state for consistency. Constraining all subproperties of the
hasGrant and GrantFor properties to be functional and setting
the minCardinality constraint of the GrantFor property to 1 as
described in Section V-B allows for the following assertions:

1) Any instance of Entity is allowed to be linked to at
most one instance of a given subclass of Grant.

2) Any Grant can only be linked to exactly one instance
of the corresponding subclass of Representation.

If the rule evaluation produces a state that conflicts with these
requirements, checking the model for consistency will result in
an error. This check is performed each time the rule evaluation
finishes. In order to solve conflicting policy definitions, the
precedesOver property can be set for a release trigger. In an
actual implementation, the first time an inconsistent state is
detected the context owner can be notified about the conflict
and the triggers that caused it. The user then can decide which
of the triggers involved should precede over the other. The
decision will be stored in a precedesOver property of the
winning trigger. The next time the same inconsistent state
arises, inferior Grant instances can be automatically removed
from the model, as every Grant instance links to the trigger it

231

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

has been created by.

In this section, we introduced the concept of Release
Triggers for the context-based definition of a user’s privacy
preferences. The trigger mechanism has been designed to con-
sider both the context owner’s and optionally also the context
requester’s context to decide which kind of representation is
to be released to the requester. The evaluation of these access
control rules is performed in a context-aware way, which takes
into account a user’s context in order to minimize the number
of rules that have to be evaluated upon incoming requests for
context information. Eventually, we explained how conflicting
policy definitions can dynamically be detected and resolved.
In the next section, we will outline our framework’s core
components and overall system architecture.

VII. ALPACA SYSTEM ARCHITECTURE

In the previous sections, we introduced the privacy-centric
CoRe approach for modeling a user’s rich context information.
Additionally, the RT mechanism enabled a context-dependent
definition of a user’s privacy policies. These aspects will now
be joined together. For this purpose the ALPACA system is
presented in the following together with a description of the
communication occuring between the different components
and context requesters. Finally, we sketch how our framework
can be integrated into a modern mobile operating system such
as Android.

A. Managing acquisition and release of context information

Our framework’s key component is the Privacy Manager
(PM), which is responsible for managing all access to the
user’s context information by enforcing the privacy policies
set up by the context owner. To this end, the user is both
able to control what information enters the CoRe model
by blacklisting the acquisition of certain types of context
information as well as to decide which kind of information is
released to whom by whitelisting access to context information
for trusted requesters (cf. Section IV). The overall system
architecture of ALPACA and the logical placement of the PM
is depicted in Figure 10. Serving as a gatekeeper, the PM is
the only component able to directly access and update the
information stored in the context model.

For the acquisition of a user’s up-to-date context informa-
tion, we assume a number of different hardware and software
sensors for low-level context recognition as well as services
capable of high-level context reasoning to be available on a
mobile device. In addition, we expect obfuscation techniques
that can be used for adjusting the granularity or validity of a
certain type of context information to be implemented as well.
The corresponding sensors and services are responsible for
capturing a user’s context, transforming it into Representation
instances of the corresponding subclass of Context and for
providing the required meta data, such as Freshness, Accuracy,
and ObfuscationLevel. Each time one of these context sources
produces a new representation, it is reported to the PM. After
authenticating the source, the PM will update the CoRe model
by adding the Representation and setting the hasCurrentItem
property of the respective obfuscation scale to link to the
new Representation. As these operations alter the state of
the context model, the PM now re-evaluates the context-
dependent acquisition blacklist, turns corresponding sensors

ALPACA Privacy
Manager

Release
Triggers

Context
Recognition
Algorithms

Raw
Sensor

Readings
...

Sensors

Reality

CoRe Model

Blacklist

Context Requester

Obfuscation
Techniques

Whitelist

Figure 10. The Privacy Manager is the core component of the ALPACA
framework and acts as an exclusive interface to the modeled context informa-
tion for both context sources and context requesters.

and reasoning services on or off, respectively, and re-evaluates
the Conditions of the context owner’s release triggers’ in order
to update the active set.

Moreover, the PM also controls the release of a user’s
context information to a context requester. As described in
Section VI, this is realized on a per-request basis using lazy
rule evaluation due to accessibility and granularity of a user’s
context information possibly depending on the requester’s
current context, too. A context requester can utilize most of the
representations’ meta data stored in the CoRe model to specify
the characteristics of the requested Representation, such as
context type, freshness, and accuracy. The PM will consider
these requirements and look up the best matching accessible
items. In the following, the basic communication flow within
context requests issued by different context requesters will be
explained.

B. Communication flow and request handling

The ALPACA framework aims at providing a generic
solution for the management of a user’s privacy preferences
and the dissemination of context information fit for all kinds
of usage scenarios. One can identify three different categories
of context requesters, that can be mapped to the privacy layers
introduced in Section IV as follows:

• Local applications running exclusively on the user’s
device and not sending any data off the device can be
allowed to access a user’s private layer context.

• Third-party services communicating context informa-
tion to remote entities are to be placed on the protected
layer or public layer. Distinct services might yet be
granted access to different representations depending
on the user’s trust in the service provider.

• Peer users requesting the user’s context information
can be placed on the protected layer, too. Which
representation they are allowed to see might depend
on both the requesting peer’s identity and context.

In order to enforce the privacy policies set up by the context
owner, in each case the PM first verifies which entity is re-
questing context information and which of the above categories

232

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Context

Requester
Context

Owner

req(C1CR,C2CR,…)

reply(C1CO,C2CO,...)

auth(CR)

updateCoRe(C1CR,C2CR,…)

1

evaluateTriggers()

queryCoRe(CR,C1,C2,…)

3.a

2

reply(C1CO,C1more,C2CO,C2more,...) 3.b

reply(C1CO,C1more,C2CO,C2more,...) 3.c

4

Figure 11. The ALPACA framework’s turn-based communication protocol
deployed for the exchange of context information between peer users.

the requester belongs to. In case the requesting entity is found
to be a fully trusted local application, no further checks have
to be performed: The PM will look up the Representation
instances in the CoRe model matching the criteria specified
in the request and return them to the context requester. Apart
from context-aware applications merely consuming context
information, also services performing context reasoning in
order to infer high-level context fall in this category. The
latter can hence be regarded both as requesters and sources
of context information.

If a context requester is a third-party service, the PM will
query the model to learn if there are any Grant instances
related to the requester. Hence, if the context owner has set up
release triggers that grant the requesting entity access to one or
more Representation instances, the PM again looks up the most
appropriate ones and returns them to the requester. However,
if a context requester is not explicitly granted access to any
Representation, a mediocre representation defined by the user
will be returned: To protect a user’s privacy, this Representa-
tion should be highly obfuscated, i.e., of considerably reduced
granularity, outright cheated, or simply “N/A”. Both personal
context-aware applications that send data over the Internet as
well as multi-subject context aware applications belong to this
category. In order to efficiently cater for different needs of
context-aware applications, the PM supports request/response-
based and publish/subscribe-based communication patterns.
Both local and remote requests for a user’s context information
may hence contain a flag indicating whether the requester is
asking for a single reply or continuous updates. In the latter
case, a desired update interval as well as a context-dependent
break condition can be set by the context requester. As long as
there is a corresponding Grant instance and the break condition
is not yet met, the PM will supply the requester with the
requested information.

Due to a user’s privacy policies possibly depending on the
requesting entity’s context as well, the context owner might
require her peer users to communicate their own context when

requesting her context information. Figure 11 outlines the
communication flow during a request for context information
issued by a peer user. As a means for protecting the requesting
entity’s privacy, too, we introduce a turn-based protocol for
the exchange of context information. Our protocol, which also
aims at fulfilling the requirement for symmetry in P2P-based
usage scenarios, works as follows: (1) The context requester
(CR) issues a request for some of the context owner’s (CO)
context information. The CR implicitly specifies which types
and granularities of context information he is interested in by
piggybacking equivalent information about himself on the re-
quest. (2) The CO’s PM analyzes the request by authenticating
the CR and adding the contained context information about
the CR to the CoRe model. At this step, naturally, the CO’s
release triggers are re-evaluated based on the updated state of
the model. The PM then looks up any Grant instances related
to the requesting entity based on the model’s current state.
Additionally, the PM also queries the CoRe model for any
active triggers that might match the CR, e.g., based on the CR’s
identity or static group membership. Based on this information,
for each context subtype the PM learns if the CO is willing
to release any Representation instances to this requester. The
next steps are hence to be performed for each type of context
information separately: Depending on whether a corresponding
Grant instance has been found or not, the PM either replies
with the respective Representation or with the subtype’s highly
obfuscated standard representation. (3.a) If both no Grant
instances and no active triggers have been found, the protocol
ends here. (3.b) Otherwise, if the CR is explicitly granted
access to a Representation, the PM looks up the corresponding
instance matching the granularity specified in the request. In
case the requester asked for a lower granularity representation
than the one that is granted to him by the respective Grant,
the PM automatically adjusts the granularity by selecting the
matching Representation using the CoRe model’s transitive
generalizationOf property. Given that the CO’s maximum
granularity for this situation is not yet reached the PM will
notify the CR about this. (3.c) Additionally, there might be
active triggers related to the CR that have not fired yet, as
they depend on the requester’s higher resolution context. If
so, the PM also informs the CR about the availability of
representations of higher granularities that possibly will be
released after learning more about the CR’s respective context
information. In order to reveal as little as possible, however,
the CO’s PM only indicates the existence of higher resolution
information, but does not betray the maximum granularity
available. (4) Upon reception of the CO’s response, the CR
updates the local CoRe model and decides about entering
another round of the protocol in order to learn more details
about the CO’s context. Notice, that based on the received
CO’s context the CR’s set of active triggers might have beeen
updated, too. If so, the CR selects a corresponding higher
granularity Representation in order to issue a new request for
the CO’s context information and the protocol is repeated until
either the CO or CR reaches a maximum level of granularity
and decides to quit.

We hence enforce the symmetry requirement by demanding
that the release and resolution of a user’s context information
directly correlates with the information the requester has to
share. Notice, however, that there is no guarantee that each
party will always learn just as much about the other one as it

233

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

conveyed about itself. At each step in the protocol an entity
can decide to quit the protocol and not share any further
information, possibly depending on the other party’s context
information just learned. However, the turn-based nature of the
protocol tries to alleviate this problem. The communication
protocol can be applied to the example from Section VI-C as
follows: According to the release triggers that Alice has set up,
she only shares her location information with her colleagues
during her working hours. If her own location context is known
to be atWork and so is Bob’s, however, she has decided to
even let him know in which room she is located. Her mobile
device of course knows what time it is and where she is
at, yet the current location of Bob must be known as well.
Assume that Bob already knows she is at work, so he directly
queries her location on a room level. Following the symmetry
requirement, he therefore has to tell her the same information
about himself. When the request arrives at Alice’s PM, Bob’s
location context can be reasoned to be atWork, hence her room-
level location information can be released to him. However, in
case Bob is not sure about here being at work, he probably
would just formulate the request with his own location being
reported as atWork, which results in Alice’s PM stating the
same and informing Bob about higher resolution context being
available. Notice, that in step (2) it is also possible that the
requester’s context can be used to calculate new local context
at the context owner’s device, e.g., learning about a peer user’s
location might lead to a context source being able to detect
proximity to that user, which might result in new triggers being
added to the context owner’s active set.

C. Entity Authentication

Different sources and requesters of context information
vary in terms of placement in the operating system and network
location, trustworthiness, liability to impersonation attacks,
and frequency of requests to the PM. Consequently, adequate
means of authentication have to be considered.

Both third-party services and peer users requesting a user’s
context information from the PM can be authenticated based
on public key certificates. Hence, the authenticity of networked
requests from these kind of context requesters can be checked
by means of digital signatures. In order to protect the user’s
context information from eavesdropping, the requester’s public
key can also be used for content encryption. Obviously, the
PM only accepts requests for the user’s protected layer context
from entities that are already known. To this end, the PM holds
a repository for all those entities’ certificates that the context
owner is possibly interested in sharing her protected context
information with. For identification and authentication of third-
party services and multi-subject context-aware applications one
can simply rely on a standard public key infrastructure (PKI)
and the validity of a given application’s certificate, respectively.
The exchange of certificates between peer users can be realized
by deploying a protocol similar to the process of becoming
friends in our privacy-preserving OSN Vegas [24]: Users that
know each other in real life can perform an out-of-band key
exchange using self-signed certificates in order to bypass the
need for a PKI. Common difficulties related to certificate
revocation can be avoided by these self-signed certificates
being valid for a limited time span only and key renewal
on a regular basis. Consequently, in order to reliably check
the origin and authenticity of an incoming request for context

Application Framework

PM/

CoRe

Linux Kernel

Libraries, Dalvik Virtual Machine

Applications

original functionality …

original interface …

…

…

Figure 12. Placement of the Privacy Manager in the Android software stack.

information the PM simply tries to verify the request’s digital
signature using the information stored in its local certificate
repository. Once authenticated, the PM maps the requester
to the corresponding entity and queries the CoRe model for
related Grant instances.

Due to its computational overhead, however, the deploy-
ment of public key cryptography is overkill for sources and
requesters of context information running locally on the user’s
mobile device and frequently interacting with the PM, e.g.,
services performing context reasoning. Instead, an HMAC-
based approach could be used for lightweight integrity check-
ing and entity authentication. In order to prevent low-level
data leakage the problem of securing communication channels
between different components on the mobile device itself will
have to be further investigated. Initial thoughts on how the
PM could blend into a mobile platform’s software stack will
be presented in the next section.

D. Integration into Android

We will now outline how our framework can be integrated
into a modern smartphone software stack such as Android.
As shown in Figure 12, the latter is based on a Linux kernel
and uses the Dalvik Virtual Machine to execute applications
written in Java and converted from bytecode to the more
lightweight .dex (Dalvik Executable) format. For security
reasons, each application runs in a dedicated sandbox process
using its own instance of Dalvik. Apart from standard libraries
in C and Java, Android ships with an Application Framework
that can be used by developers to access a mobile device’s
base functionality, such as telephony and window management,
and also to request context information, e.g., the current GPS
position fix. With the PM working as a gatekeeper responsible
for handling all requests for updating and querying the user’s
context information, this layer of the Android software stack
is where our framework’s key component is to be placed.

In order to effectively protect a user’s context information,
applications must no longer be able to access the original func-
tionality of the Application Framework directly. Applications
must yet still be able to make usage of the well-established
programming interfaces provided by the Android SDK in
order to request desired information. Consequently, even the
existence of the PM should be transparent to applications. This
can be achieved by exchanging the standard implementation
of all the respective interfaces for proxy code, which redirects
corresponding requests to the PM along with information about
the context requester’s identity. Based on the current context
and the privacy layer the requester belongs to, the PM then

234

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can decide which kind of information is to be released to
the requesting entity. Apart from this kind of legacy function-
ality, however, applications and services might be especially
designed to work with the ALPACA framework, e.g., peer-
based context-aware applications, which directly register with
the PM in order to increase performance by calling optimized
interfaces. For context acquisition the PM can simply run
the original interfaces’ code for infering the user’s current
context, feeding this information into CoRe, and updating
the set of active release triggers. Obviously, also different
kinds of covert channels that can be used by applications to
collect information without explicitly requesting it will have
to be identified and eliminated. In addition, the PM must also
be able to monitor whether applications behave as expected,
i.e., act in accordance to the corresponding privacy layer. For
example, context requesters must not be able to trick a user into
believing that an application is to be placed on the private layer
while still sending data off the device. Hence, the PM must not
only be in a position enabling it to manage access to context
information, but must also be able to control what happens
to this information afterwards. To this end, we are currently
investigating the applicability of approaches for information-
flow tracking, such as TaintDroid [25], and plan to extend
ALPACA with the necessary functionality.

VIII. DISCUSSION

Strictly following a privacy-centric point of view, all de-
cisions in the design process have been directed at offering
users a maximum level of control over the release of context
information. Hence, we will now check our framework against
the requirements stated in Section II and dicuss the pros
and cons of our privacy-centric approach for modeling and
managing a user’s context information.

In a first step, this article introduced an abstract conceptual-
ization of privacy needs regarding context information. To this
end, four different privacy layers and appropriate inter-layer
gatekeeping mechanisms have been identified, which render
a user’s privacy preferences to be effectively manageable by
a software system. These layers provide a good compromise
about information accessibility, flexibility, and reduction of
complexity: A blacklist-based approach can be used to control
what kind of context information should be acquired by the
user’s device. For the release of context information, however,
a whitelist-based approach is pursued, argueing that a privacy-
aware user wants to feel rather safe than sorry. Consequently,
each access to context information has to be explicitly granted
by the context owner. The next goal was to find a formal
representation of a user’s context information that inherently
features general aspects of privacy and is easily extensible with
regard to the integration of novel privacy and security methods.
Based on an abstraction of context in terms of semantically
different representations of the same type of information, we
designed the ontology-based CoRe model. The latter is able
to meaningfully store multiple versions of a user’s context in
parallel, which can be used to serve different responses to dis-
tinct groups of variably trustworthy context requesters. In ad-
dition, we presented an effective mechanism for controlling the
dissemination of context information in form of user-defined
privacy policies. For this purpose, the ALPACA framework
utilizes a two-stage rule-based approach for the definition of
fine-grained and context-dependent release triggers on behalf

of the context owner. The triggers’ conditions, effects, and
affected context requesters can be specified based on the rich
context information modeled in CoRe, which allows for great
expressivity and flexibility. Consistency of a user’s privacy
policies can be detected at runtime by means of ontology-
based reasoning on our model’s current state. However, using
ontology-based reasoning on a per-request basis might become
a performance issue once the information modeled in CoRe
becomes extensive, which has to be investigated in our future
work. Finally, we introduced the Privacy Manager as our
framework’s key component and described the interplay of the
different components, which have been integrated into a system
architecture suitable for all kinds of context requesters, e.g.,
ranging from local applications to peer-to-peer and third-party
services. By omitting a TTP, there is no single point of trust
or failure. Instead, each user keeps the complete control over
the release of her context information. Multi-subject context-
aware applications can still be realized, yet in each situation
each application is only able to learn the amount of information
the context owner is willing to release.

In order to offer maximum levels of universality and
extensibility, we intentionally decoupled our framework from
the acquisition of context information. It is hence independent
from existing sensors, reasoning mechanisms, and context
obfuscation techniques implemented on the user’s device.
The latter can be used to realize the concepts of variable
granularity, plausible deniability, etc. as required. New sensors
and inference algorithms can simply register themselves at the
PM without requiring the need for modifications to any of
the ALPACA components. In a practical implementation, the
PM can simply inform the user about new types or sources of
context information being available.

Due to its restrictive nature, however, our approach in-
evitably comes at the expense of usability and out-of-the-box
functionality: All context information the context owner wants
to be accessible by other entities in certain situations have to be
explicitly released by manually setting up appropriate release
triggers. It is thus not clear whether a majority of users is
willing to adopt such a whitelist-based system, e.g., facing peer
pressure and their own reluctance towards manually configur-
ing the release of context information. The deployment of ob-
trusive notification mechanisms is also likely to be perceived as
being disturbing, such as alerting the context owner about the
release of context information on a per-request basis. However,
we argue that there is a clear necessity to give users full control
over the release and granularities of their context information
even if usability is constrained. Moreover, the general privacy
awareness of mobile users has to be trained in order to prevent
unnoticed large scale data leakage. Nevertheless, user-friendly
mechanisms will have to be developed in order to increase
the likeliness of a broad acceptance among a wide user base.
For example, a layered policy approach as proposed in [17]
could be applied, which allows both for simple privacy settings
suitable for the mostly unconcerned and pragmatic users and
fine-grained policy-definitions for fulfilling the needs of the
privacy-aware. Furthermore, it has been shown in [16] that a
personalized recommendation of most likely privacy policies
based on a user’s current context, previously learned prefer-
ences and group correlation is feasible, too, which presents
another interesting direction for future research.

235

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IX. CONCLUSION

This article presented ALPACA, an integrated framework
for modeling and managing a user’s context-information in
a privacy-centric way. To this end, we introduced a practical
conceptualization of privacy in context-aware applications with
regard to who is requesting information from the user’s mobile
device. On the basis of this abstracted view we presented
our ontology-based CoRe model, which can be used for
maintaining multiple, semantically different representations
of the same class of context information fit for differently
trustworthy groups of context requesters. In order to enable
the fine-grained definition of a user’s privacy preferences
a context-dependent, whitelist-based trigger mechanism has
been created. Eventually, we described our framework’s key
components as well as its system architecture and a turn-based
communication protocol used for the exchange of context
information between different entities.

We are currently working on a prototype implementation of
our system allowing us to conduct a user study for evaluating
the usability of our whitelist-based release mechanism. As for
our future work, we aim at finding mechanisms capable of
ensuring consistency over several consecutive context requests
by a single entity. Furthermore, we are looking for a way
to implement incentive-based mechanisms for the optional
release of additional data to third-party services in a privacy-
preserving way. Future work will also be directed at finding
new obfuscation mechanisms for different types of context
information and integrate them into ALPACA. Finally, we
want to investigate techniques increasing usability, such as an
automatic mapping of applications to the privacy layers of our
framework.

REFERENCES

[1] F. Dorfmeister, S. Feld, C. Linnhoff-Popien, and S. Verclas, “Privacy-
centric modeling and management of context information,” in CEN-
TRIC 2013, The Sixth International Conference on Advances in Human
oriented and Personalized Mechanisms, Technologies, and Services,
2013, pp. 92–97.

[2] A. Amir, A. Efrat, J. Myllymaki, L. Palaniappan, and K. Wampler,
“Buddy tracking - efficient proximity detection among mobile friends,”
Pervasive and Mobile Computing, vol. 3, no. 5, pp. 489–511, 2007.

[3] A. Küpper and G. Treu, “Efficient proximity and separation detection
among mobile targets for supporting location-based community
services,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 10, no. 3,
pp. 1–12, Jul. 2006, last accessed on 2014-06-16. [Online]. Available:
http://doi.acm.org/10.1145/1148094.1148096

[4] F. Dorfmeister, M. Maier, M. Schönfeld, and S. Verclas, “Smartbees:
Enabling smart business environments based on location information
and sensor networks,” in 9. GI/KuVS-Fachgespräch ”Ortsbezogene
Anwendungen und Dienste”. Springer, 2012, pp. 23–37.

[5] M. Ackerman, T. Darrell, and D. J. Weitzner, “Privacy in context,”
Human–Computer Interaction, vol. 16, no. 2-4, pp. 167–176, 2001.

[6] G. D. Abowd et al., “Towards a better understanding of context and
context-awareness,” in Handheld and ubiquitous computing. Springer,
1999, pp. 304–307.

[7] P. Makris, D. Skoutas, and C. Skianis, “A survey on context-aware
mobile and wireless networking: On networking and computing en-
vironments’ integration,” Communications Surveys Tutorials, IEEE,
vol. 15, no. 1, pp. 362–386, First 2013.

[8] A. Solanas, J. Domingo-Ferrer, and A. Martı́nez-Ballesté, “Location
privacy in location-based services: Beyond ttp-based schemes,” in
Proceedings of the 1st International Workshop on Privacy in Location-
Based Applications (PILBA), 2008, pp. 12–23.

[9] V. Sacramento, M. Endler, and F. N. Nascimento, “A privacy service for
context-aware mobile computing,” in Security and Privacy for Emerging
Areas in Communications Networks, 2005. SecureComm 2005. First
International Conference on. IEEE, 2005, pp. 182–193.

[10] M. Blount et al., “Privacy engine for context-aware enterprise applica-
tion services,” in Embedded and Ubiquitous Computing, 2008. EUC’08.
IEEE/IFIP International Conference on, vol. 2. IEEE, 2008, pp. 94–
100.

[11] H. Chen, T. Finin, and A. Joshi, “An intelligent broker for context-
aware systems,” in Adjunct proceedings of Ubicomp, vol. 3, 2003, pp.
183–184.

[12] L. Kagal, T. Finin, and A. Joshi, “A policy language for a perva-
sive computing environment,” in Policies for Distributed Systems and
Networks, 2003. Proceedings. POLICY 2003. IEEE 4th International
Workshop on. IEEE, 2003, pp. 63–74.

[13] R. Wishart, K. Henricksen, and J. Indulska, “Context privacy and
obfuscation supported by dynamic context source discovery and pro-
cessing in a context management system,” in Ubiquitous Intelligence
and Computing. Springer, 2007, pp. 929–940.

[14] W. Apolinarski, M. Handte, D. Le Phuoc, and P. J. Marrón, “A
peer-based approach to privacy-preserving context management,” in
Proceedings of the 7th international and interdisciplinary conference on
Modeling and using context, ser. CONTEXT’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 18–25, last accessed on 2014-06-16.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2045502.2045505

[15] A. Behrooz and A. Devlic, “A context-aware privacy policy language for
controlling access to context information of mobile users,” in Security
and Privacy in Mobile Information and Communication Systems, ser.
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, R. Prasad et al., Eds. Springer
Berlin Heidelberg, 2012, vol. 94, pp. 25–39.

[16] J. Xie, B. P. Knijnenburg, and H. Jin, “Location sharing
privacy preference: Analysis and personalized recommendation,”
in Proceedings of the 19th International Conference on Intelligent
User Interfaces, ser. IUI ’14. New York, NY, USA: ACM, 2014,
pp. 189–198, last accessed on 2014-06-16. [Online]. Available:
http://doi.acm.org/10.1145/2557500.2557504

[17] W. Bokhove, B. Hulsebosch, B. Van Schoonhoven, M. Sappelli, and
K. Wouters, “User privacy in applications for well-being and well-
working,” in AMBIENT 2012, The Second International Conference
on Ambient Computing, Applications, Services and Technologies, 2012,
pp. 53–59.

[18] K. Sheikh, M. Wegdam, and M. Van Sinderen, “Quality-of-context and
its use for protecting privacy in context aware systems.” Journal of
Software (1796217X), vol. 3, no. 2, 2008.

[19] A. Kofod-Petersen et al., “Implementing privacy as symmetry in
location-aware systems,” in Proceedings of the International Workshop
on Combining Context with Trust, Privacy and Security (CAT 2008),
G. Lenzini, B. Hulsebosch, S. Toivonen, and J.-M. Seigneur, Eds, vol.
371, 2008, pp. 1–10.

[20] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 05, pp. 557–570, 2002.

[21] C. Bettini et al., “A survey of context modelling and reasoning tech-
niques,” Pervasive and Mobile Computing, vol. 6, no. 2, pp. 161–180,
2010.

[22] R. Reichle et al., “A comprehensive context modeling framework for
pervasive computing systems,” in Proceedings of the 8th IFIP WG 6.1
international conference on Distributed applications and interoperable
systems, ser. DAIS’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 281–295, last accessed on 2014-06-16. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1789074.1789105

[23] T. Strang, C. Linnhoff-Popien, and K. Frank, “Cool: A context ontology
language to enable contextual interoperability,” in Distributed applica-
tions and interoperable systems. Springer, 2003, pp. 236–247.

[24] M. Dürr, M. Maier, and F. Dorfmeister, “Vegas – a secure and privacy-
preserving peer-to-peer online social network,” in Privacy, Security,
Risk and Trust (PASSAT), 2012 International Conference on and 2012
International Confernece on Social Computing (SocialCom), Sept 2012,
pp. 868–874.

236

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[25] W. Enck et al., “Taintdroid: An information-flow tracking system
for realtime privacy monitoring on smartphones,” in Proceedings
of the 9th USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 1–6, last accessed on 2014-06-16. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924943.1924971

