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Abstract—Online evolution is adaptation of agents while they
are deployed in their task. The agents adapt autonomously
and continuously to changing environmental conditions and
new challenges. Such changes are also a topic in incremental
evolution, where the difficulty of a task is gradually increased in
an attempt to increase adaptation success. Here we investigate
an online evolutionary process in simulated swarm robots
using recurrent neural networks as controllers. In order to
cope with dynamic environments, we present a distributed
online evolutionary algorithm that uses structural evolution
and adaptive fitness. Using an experiment about incremental
evolution as a test case, we show that our approach is capable of
adapting to a change that requires new recurrent connections.
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I. INTRODUCTION

The design of adaptive robotic systems is a big challenge.
Much research is being done to increase the flexibility of
robot behaviour so they are able to adapt to changes in
the environment. One big approach to solve this problem
is evolutionary robotics, where the design of the robot
controllers is driven by bio-inspired approaches [2], [3], [4].
Many of them are evolved offline on an external computer
where the controller candidates are tested repeatedly with
the same problem and the best solutions advance. After the
controllers are optimized, the best ones are deployed to the
robots in their actual task but the adaptive process is stopped.
However in many environments, the conditions can change
continuously and chaotically and it would be too inefficient
or impossible to manually update the robots’ behaviour.
Such changes can be random or hard to predict and can
make control structures obsolete or inefficient for the task.
To deal with a dynamic environment, where the conditions
of the task or even the task itself can change after the
robotic system has been deployed, a process of continuous
adaptation is needed that is running on the robots. Online
evolution is such a process where the robots continuously
evaluate their behaviour and change it to find improvements.
A lot of research has been done in recent years about

online evolution; it has been used successfully with neural
networks [5] and it is often applied to robots [6], [7], [8].

One major aspect of evolution is that the evolutionary
engine is flexible enough to adapt to a wide variety of
changes. This is particularly important for online evolution
because it would be ideal if our evolutionary algorithm and
genome can adapt to a wide variety of a priori unknown
situations. In offline evolution this is less of an issue as the
entire evolutionary system can be tailored towards the known
problem. Our main motivation is to come closer to the
example given by natural evolution, by being able to create
an evolutionary process in artificial agents that continuously
evolve into increasingly sophisticated solutions. This can be
on the organism level by evolving more complex organisms,
for example multicellular robots, and also on species level
by evolving different, interacting and coevolving robotic
species [9].

In this paper, we investigate how online evolution can deal
with a dynamic, changing environment. Our model system
is swarm robots that are simulated in a 2D environment. We
use artificial neural networks as robot controllers, which is
a state-of-the-art approach for evolving robot behaviour [4].
In Section II, we give an overview of the state of the art in
the evolution of artificial neural networks and incremental
evolution. In Section III, we describe our proposal of an
evolutionary algorithm that allows evolution of the genome
structure. While having state-of-the-art capabilities, it has
the novelty that it also runs online and distributed. Because
there is no other comparable online and distributed approach,
we use an experiment about incremental evolution to test
our algorithm in Section IV. We show that our approach
can effectively deal with a strong environmental change that
requires structural evolution to achieve best performance. In
an experiment that ends in a certain difficult environment,
we compare treatments that have different intermediate steps
and find no differences in the end performance. Section V
provides a conclusion to our findings.
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Figure 1. Experimental setup of our previous work [1] about incremental
evolution with island evolution on a single robot. First populations evolved
for 100 evaluations in two types of arenas, empty and boxes. Then
arenas were changed (treatments empty-boxes and boxes-empty) or kept the
same (empty-empty and boxes-boxes) for a second period of evolutionary
adaptation with 100 evaluations.

II. RELATED WORK

In several approaches, it has been shown that the evolution
of neural networks can be improved by structural evolution
of the networks. One of the early works in this field is the
Generalized Acquisition of Recurrent Links (GNARL) [10].
In this work, they developed algorithms for the evolution
of neural networks with recurrent links. The networks are
randomly initialized (random hidden neurons and links)
and evaluated. Afterwards, fifty percent of the population
are allowed to create offspring (two children) for the next
generation and so on. In the NeuroEvolution of Augment-
ing Topologies (NEAT) [11] the structural evolution starts
with empty neural networks and develops over time. They
also introduced a cross-over mechanism based on historic
information and showed mechanisms for innovation pro-
tection (speciation). The improvements to the Hypercube-
based NeuroEvolution of Augmenting Topologies (Hyper-
NEAT) [12] extend the algorithms with a generative encod-
ing and inclusion of sensors and output geometries [13].

The alternative to structural evolution is to use a fixed
amount of structural genetic elements and just evolving con-
nections between those elements. We call this here parameter
evolution because the entire genome is a fixed set of param-
eters whose values are evolved. For example in a neural
network, the neurons can be considered structural elements
and the adjacency matrix of the network as the parameters.
In this conceptual model, structural evolution does not only
evolve the values of the parameters, but also the number
of parameters. Consider that for a given problem a certain
amount of structure is optimal: one that is large enough to
be able to solve the problem but as small as possible to
minimize search space. Thus for a known and static problem,
a fixed approach will likely outperform structural evolution
if the starting structure is optimal for this problem. However
in dynamic environments, the optimal amount of structure
is dynamic as well and possibly unpredictable. Structural

(a) (b)

Figure 2. The collection performance at the end of each evolutionary phase
of our previous experiment [1]. Shown is the summed performance of the
last 10 evaluations (n = 40). (a) After the first phase, the performance is
lower in the arena with boxes (Wilcoxon test z = −5.2 p < 0.0001). (b)
After the second phase, the treatments that evolved first in the empty arena
have a better final performance in the empty arena (Wilcoxon test z = 5.6
p < 0.0001) as well as in the boxes arena (Wilcoxon test z = −3.9
p < 0.0001).

evolution can then adaptively increase structural complexity
to increase computational capabilities or reduce structure to
reduce search space.

Structural evolution has one additional problem com-
pared to parameter evolution; it complicates recombination.
Structural, and functional, elements of two genomes must
roughly match for recombination to be efficient, otherwise
similar elements can be duplicated or omitted completely
in the resulting recombinant genome. This can make re-
combination very disruptive and reduce overall offspring
performance. An outstanding feature of NEAT is that it
uses structural evolution and tackles this problem by track-
ing structural elements with innovation numbers. By com-
paring the innovation numbers of two networks, similar
and dissimilar structural elements can be recognized and
recombined accordingly. Furthermore, the recognition of
similarity is used in forming speciation by only recombining
individuals of certain similarity [11]. However, NEAT uses
a central database that contains all known innovations and
this database is needed for the matching algorithm. Thus
NEAT cannot run truly distributed with a separate instance
of the evolutionary algorithm running in each robot and with
an exchange of genomes between instances. Because each
instance would have its own innovation database, foreign
genomes would contain innovations that are not known to
this instance.

In this work, we propose an evolutionary algorithm that is
comparable in features to NEAT, using structural evolution
of neural networks and recombination based on network
similarity, but it has the notable extension that it can run
fully distributed and it is especially tailored for online
evolution. Because there is no other comparable framework
present that runs both online and distributed, we showcase
the capabilities of our approach in several experiments and
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especially in the context of incremental evolution.
With incremental evolution, the difficulty of an evo-

lutionary challenge is gradually increased by introducing
intermediate steps of relaxed difficulty. The theory is that
evolution works better in smooth fitness landscapes [14].
For a population to evolve towards a challenging task, an
increase in fitness must be possible within the neighbour-
hood of solutions that can be reached with the evolutionary
operators like mutation and recombination. The more likely
it is to reach a fitness increase, the quicker the evolutionary
process can proceed. This is important for artificial evolution
in robotics, where fitness evaluations are particularly costly
on real hardware. An early work that used incremental
evolution on a real robot was in 1994 by Harvey et al. [15].

There has been some work with different kinds of experi-
ments that tried to show advantages of incremental evolution
compared to direct evolution that has no intermediate steps
but results have been mixed. For example, Gomez and Mi-
ikkulainen [16] evolved robots for a capture-prey scenario,
where an agent has to capture a prey in a grid world and
the evasiveness of the prey is gradually increased. They
show that direct evolution could not solve the problem in
the same time as incremental evolution. Similarly, Barlow et
al. [17] found that it increases the chance to find a successful
controller.

In our previous work [1], we have also found a positive
effect of incremental evolution. In the experiment that was
a precursor to the one described later in this work, we
compared a plain empty environment with one with several
large obstacles in a search and collection task. Populations
were first adapted on one arena type and then arenas were
changed as illustrated in Figure 1. In Figure 2, the collection
performance at the end of each evolutionary phase is shown
for 40 replicates. Notable is that the performance of the
treatment empty-boxes is significantly higher than boxes-
boxes. The incremental evolution treatment that first evolved
in the empty arena adapted better to the boxes arena than
the direct evolution treatment that spent the same total time
in the boxes arena.

But there are also contradicting results like the one from
Christensen and Dorigo [18], who experimented with the
task of finding a light source while avoiding holes in the
ground. They gradually increased the challenge by increas-
ing the complexity of the fitness function and by adding
more holes to the arena. They conclude that the incremental
strategies do not perform better than direct evolution when
given equal computational time.

Based on these mixed results, we want to provide more
insight if incremental evolution is beneficial for evolving
robot controllers. Because incremental evolution provides
an environment with explicit changes, it also provides a
dynamic environment to test our framework for distributed
online evolution, which we present in the following section.

Figure 3. Example of a genome and its neural network. The genome is
a set of link genes and node genes that produce the respective elements in
the neural network. Input and output neurons are fixed and not part of the
genome.

III. DISTRIBUTED ONLINE EVOLUTION FRAMEWORK

The genome of our evolutionary framework encodes a
neural network as a set of genes with two types of genes:
node genes and link genes. The neural network model is
similar to NEAT: there are no layers and recurrent con-
nections are allowed. We use a piecewise linear activation
function with a variable bias value (Formula 1). The use
of bias values replaces the bias neuron, common to many
other neural network models. No learning mechanisms are
employed.

ϕpwl(v) =


1 if v ≥ 1 + b

v − b if b < v < 1 + b

0 if v ≤ b

(1)

A node gene contains an id and a bias value for a neuron.
A link gene contains a source and destination neuron id
and a link weight value. The first step of producing a
neural network from the genome is creating the input and
output neurons. These have fixed ids and parameters and
are not part of the genome. Then the hidden neurons are
created and finally the neural links between neurons. Each
node gene produces one hidden neuron, using the id and
bias values stored in each gene. In the same fashion, each
link gene produces one neural link, making a connection
between the source neuron to the destination neuron with
the weight value of the gene. An example of a genome with
the corresponding neural network is displayed in Figure 3.

The template of our online evolutionary algorithm is an
(µ+1) algorithm [19]. On each robot, there is a population
of µ genomes and one extra genome is active, controlling the
robot. One robot is considered an island population and one
such algorithm instance is independent and unaffected by the
other islands except of genome exchange between islands,
called genome migration. An overview of the concepts of
our approach is shown in Figure 4.

The island population of genomes serves as parental gene
pool from which offspring genomes are created. First, one
genome of the population is selected to be a parent (parent
selection). Then, the parent may choose another genome
from the population for recombination (mate selection). This
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Figure 4. Overview of the distributed online evolution algorithm. It is
based on a (µ + 1) algorithm with an island population of genomes in
each robot and one active genome serving as controller. The active genome
is an offspring genome of members of the island population.

selection is based on the similarity of the parent genome
and the potential mates. If a suitable mate is found, a
recombinant genome is produced from the two parents and
the recombinant is mutated. Otherwise, a clone of the single
parent undergoes mutation instead. The parent genomes are
not modified. The resulting offspring genome is set as active
genome and a neural network is produced from the genome,
acting as controller of the robot for a fixed amount of
time. This time is the evaluation period of the offspring
genome and a performance score is accumulated. After the
evaluation period has elapsed, a decision is made whether a
member of the population is replaced or if the evaluatee
is discarded (survivor selection). At this point, the cycle
of online evolution starts anew by picking a parent and
producing an offspring genome to control the robot.

Asynchronously to this cycle, the population of a robot
can change by migration with other robot populations.
For this process, we assume range limited communication
mechanisms of real robots like infrared communication.
When two robots are in close proximity and no migration
has happened within a grace period, one random genome of
each population is exchanged with the other. An overview
of terms of our evolutionary algorithm and their implemen-
tation details is given in Table I.

The fitness score f of a population member x is calculated
as the weighted average between its original performance
score sx and the performance scores of all its offspring O(x)
according to Formula 2. The weight w of an offspring is 0.5
for recombinant offspring and 1.0 otherwise.

f(x) =
2 sx +

∑i∈O(x)
wi si

2 +
∑i∈O(x)

wi

(2)

The combination of offspring performance with original
performance of an individual is a major source of the

Table I
KEY TERMS OF THE EVOLUTIONARY ALGORITHM

Term Description
Island Population Set of genomes within one robot. A population

is initialized fully at start and the size is always
constant.

Parent Selection Uniform random selection of one genome of the
population.

Mate Selection Parent genome compares similarity with the
other genomes of the population with its desired
mate similarity. If there are genomes within
a desired similarity window, one of those is
randomly picked as mate.

Survivor Selection Evaluated genome replaces the genome of the
population with the lowest fitness score, if the
performance score is better.

Migration If two robots are in close proximity and they
have not had a migration in a delay period, one
random genome of each population is exchanged
with the other.

Evaluation Offspring genome is active and controls the
robot for a fixed period of time. During this time
it accumulates a performance score.

Fitness Score A combination of a genome’s performance score
and the performance scores of its offspring.

adaptiveness of our approach. It can be considered as an
adaptive fitness function because the comparative fitness
of an individual changes as more offspring is produced
and evaluated. If the environment changes and the individ-
ual becomes maladapted, its average offspring performance
drops and so does the individual’s fitness score. In this way,
once dominating individuals can be purged from the system
if they become maladapted in a changing environment. A
second effect of this approach deals with the inherent error
of performance evaluations in online evolution. A single
evaluation can be affected heavily by chance as the current
situation of the dynamic environment can vary heavily in
difficulty. One way to tackle this problem is by performing
repeated evaluations of the same individual to reduce the
error [8]. However, these re-evaluations cost time and in
our approach every genome is only evaluated a single time.
We argue that offspring performance is highly correlated to
parent performance and thus offspring evaluations are in fact
partial re-evaluations of the parent.

The mutation operator is implemented for each gene type.
There is a probability of 0.2 per gene for a point mutation
changing the gene itself and a separate probability of 0.2 for
making a structural mutation. The point mutation of a link
gene changes the link weight by applying a uniform random
change in the range from -0.2 to 0.2. In the same way, the
bias value of a node gene is mutated. Structural mutation
of a link gene cane either delete the gene or produce a new
link gene with random link weight, source and destination
neurons. Structural mutation of a node gene can also either
delete the gene or produce a new node gene with a random
identifier and random bias value. Deleting a node does not
remove link genes that connect to this neuron. Such dangling
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Figure 5. Example of genome recombination. The genes of two genomes
are grouped in a set of similar genes, that are paired up, and a set of
dissimilar genes. Two exemplary results of recombination are shown.

links simply have no effect in the resulting neural network.
Structural mutation for dangling link genes reconnects them
with a random neuron.

An important feature of our genome is that the similarity
can be calculated between any two genomes without the
need for a common gene database. A link gene is similar to
another link gene if it has the same source and destination
neuron ids. A neuron gene is similar to another neuron gene
if it has the same identifier. The similarity s between two
genomes A and B is calculated using the number of similar
genes ns divided by the sum of the number of genes n of
the two genomes as shown in Formula 3. The resulting value
is between 0.0 for no similarity and 1.0 for high similarity.

s(A,B) =
2 ns(A,B)

n(A) + n(B)
(3)

Recombination relies on the similarity mechanism. When
two genomes are recombined, the sets of genes can be split
into similar genes on both genomes and extra genes that
are unique to either one genome. Figure 5 illustrates how
recombination proceeds with the similar and dissimilar genes
of each genome. The similar genes are paired up and of
each pair one random gene is picked for the recombinant.
Of the dissimilar genes, each gene has a probability of 0.5
of being picked. This is a balanced recombination operator
because on average it does not increase or decrease the
amount of genetic material in contrast to other strategies,
for example taking all dissimilar genes. The similar genes
can be seen as homologous genes that are matched and
recombined. Although similar, they can still differ in their
values, link weight or neuron bias, and those differences
are recombined between the parents. The extra genes are
structural differences between the genomes that cannot be
matched and thus an offspring can have any subset of those
genes.

The key to this recombination operator is the use of
random identifiers for the neurons of the neural network. A
detection of homologous structures of the network is actually

not performed but the random neuron identifiers are used as
a heuristic. Identifiers for hidden neurons are random upon
creation of a new hidden neuron in structural mutation of a
neural network. Offspring inherit these identifiers from the
parents and thus, the identifiers are an indication of common
ancestry: Two genomes that share a lot of identifiers are
very likely to have a common ancestor and thus structures
with the same identifiers are likely to have similar functions.
Although it is possible that the same identifier is created in
another context in another genome the probability of such
a collision is so low that the system is overall not disturbed
and colliding identifiers will be sorted out by selection. In
fact, our experiments are performed with a much elevated
identifier collision probability by using only 1000 identifiers.
The problem of false positive matching is further reduced
by restricting recombination to genomes that have a certain
minimal similarity during mate selection.

IV. EXPERIMENTS

To show the capabilities of our online evolutionary al-
gorithm, we tested it in two related experiments. The first
focuses on comparing the features of the algorithm itself and
to understand the complexity of the scenario. The second
experiment uses the results from the first one and a similar
setup to make an experimental comparison of incremental
evolution.

The experiments are run in a simulation environment
based on an open source 2D physics engine (Farseer
Physics [20]). The robot model approximates the capabilities
of a small swarm robot like Jasmine [21] or Wanda [22] and
50 time steps (ticks) in the simulation approximates one real
time second.

Both experiments use an exploration and foraging sce-
nario, using a small group of four robots in an arena with
ten power stations that can supply energy to the robots.
When a robot is in close proximity to a power station it
is charged and gains one performance score point every
25 ticks. However, a power station has only limited supply
of 20 power units and runs dry while charging a robot. It
does recharge its power supply slowly at one power unit
every 125 ticks but only when no robot is nearby. This
prevents a sessile behaviour that robots just stay close to
one power station. When multiple robots are near the same
power station only the one that approached it first is charged.

The robots are equipped with a virtual vision sensor
that lets them detect colours and distance sensors to detect
obstacles in a forward facing arc. Robots appear blue while
charged power stations blink between red and black, de-
pleted power stations are constant black. Walls of the arena
have black and green colours to make navigation potentially
possible for the robots. Figure 6 illustrates a snapshot of the
arena of this experiment.

For statistical analysis we use JMP [23], Version 9.0.0,
and for model fitting we use R [24], Version 2.13.1.
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Figure 6. Snapshot of the simulation experiment. In the arena are four blue
coloured robots with the view area of their sensors shown and ten power
stations. The colour of the power stations is alternating between black and
either red or blue. At this point, half the power stations blink in red, the
other half in blue. The arena is also occupied by some larger obstacles with
walls in different shades of green.

A. Structural Evolution

In this experiment, there is one large change in the
environment that requires a complex adaptation and we
compare different mechanisms of the evolutionary algorithm.
Our hypothesis is that in face of a complex adaptation
challenge, structural evolution and recombination are ben-
eficial. We define here a complex challenge as one where
hidden neurons and recurrent connections are needed and,
thus, a perceptron without hidden neurons should perform
significantly worse.

The evolutionary challenge for the robots is a change in
the appearance of the power stations. The experiment starts
with a genome population that is adapted to collecting power
stations that blink in red (the colour alternates between black
for 5 ticks and red for 5 ticks). The ten power stations start
with red blinking and every 100.000 ticks, one power station
changes its appearance to blinking in blue (same frequency).
During the blue phase such power stations appear identical
to other robots to the colour vision sensors of a robot and
during the black phase they appear like walls and depleted
power stations. Neural networks must perform temporal
sensor fusion to detect the alternation between black and
blue. They must infer the blinking to recognize a blue
blinking power stations and distinguish them from the robots
and walls. After one million ticks, all power stations blink
in blue. The experiment continues for another one million
ticks without further changes for a total of two million ticks.

Each robot is controlled by an artificial neural network
produced by our evolutionary framework described in Sec-
tion III. The neural network performs five update steps at

Figure 7. Sensor model of the simulated robot. In the 2D simulation
environment, a 2D-to-1D perspective projection is used to create an array
of nine RGB colour values. These values are combined into three averaged
values for left, middle and right view area. Each RGB channel of those
three colour values is fed into one input neuron of the neural network in
addition to three proximity values of simulated distance sensors.

each simulation time tick. There are twelve input neurons
(three colour sensors each with a red green and blue channel
and three proximity sensors) and two output neurons to
control the differential drive of the robot. All inputs are
mapped to values from 0 to 1, the output neurons provide
values from -1 to 1.

The colour vision sensors are simulated using a 2D-to-
1D perspective projection in the 2D simulation environment
with an opening angle of 72◦ which returns an array of nine
colour pixels. Every three of these nine pixels are averaged
into three colour values. Each RGB colour channel of these
values is fed into one input neuron of the neural network.
A visual example of this procedure is given in Figure 7.
The result is a simple colour vision input for the neural
network with three virtual colour sensors, fanned out in a
forward facing arc. A comparable sensor is feasible on actual
robots using RGB sensors or downsampling a camera image.
The simulated robot is also equipped with three proximity
sensors, one facing ahead, one 24◦ to the right and one 24◦ to
the left. These sensors behave similar to infrared proximity
sensors.

Three factors of the evolutionary process are investigated:
• Network type: A perceptron with no hidden layer (P)

and a recurrent network with hidden neurons (H).
• Structural evolution: Enables mutation to delete and

create genes for both links and neurons of the network.
Note that here, the perceptrons never evolve hidden
neurons but can still add an remove links with struc-
tural evolution. Without structural evolution, only link
weights and bias values of existing genes are mutated.
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Figure 8. The development of foraging performance over time for each treatment. Shown is the average of 50 replicates, standard
error is omitted for clarity. Dashed lines belong to the perceptron treatments (P), solid lines to the treatments with hidden neurons
(H). The performance overall drops until 1 million ticks as the power stations change to blue blinking appearance. Some treatments
are better able to adapt and recover from this change than others.

• Recombination: Enables mate selection and recombi-
nation in the evolutionary algorithm. Genomes try to
find another genome that falls within a certain similarity
window for producing a recombinant offspring. Without
recombination, all offspring is mutated clones.

With these three factors, each with two levels, we did
a full factorial setup for a total of eight treatments with
50 replicates. For preparation, initial populations of random
perceptrons and random recurrent networks with five hidden
neurons were evolved for three million ticks to adapt to the
red blinking power stations. Of those runs, one population of
recurrent networks and one population of perceptrons were
selected for the experiment proper. Both populations have
the same performance and the highest performing pair was
selected out of 10 runs.

The response variable of the experiment is the total
foraging performance of all four robots over a time period
of 100.000 ticks. This foraging performance is the sum
of all performance score points dispensed by all power
stations in that period. With an evaluation time of the
evolutionary algorithm of 2.500 ticks per individual, 160
individual evaluations contribute to this value. This measure
represents the effective system performance and underlines
the online nature of the scenario because every single
evaluation contributes to the system performance rather than
few peak performing individuals.

B. Results

The development over time of the average performance
of the replicates is shown in Figure 8. Every treatment is

affected by the environmental change and the performance
drops. The perceptron treatments without structural evolu-
tion drop the lowest and are unable adapt much to the
change. The treatments with hidden neurons and structural
evolution do not drop as low, show a clear recovery and
adapt better to the new situation.

Figure 9 presents the performance of each treatment at
the end of the experiment. Confirming our expecetations,
the treatments with perceptrons (P) perform worse than the
ones with hidden neurons at every treatment. The treatment
with the highest final performance uses hidden neurons, re-
combination and structural mutation (H-Rec-Struct), though
the difference to the next best treatment H-Rec is slim and
the statistical difference only borderline significant. Though,
these two treatments are significantly different and superior
to all others.

We fitted a general linear model to the endpoint per-
formance results. After data exploration, we used log-
transformed performance values to equalize distributions of
residuals and two outliers with a value of 0.0 were excluded.
Starting with a full-factorial model, the three-way interaction
was removed, lowering the AIC value. Our final model can
be seen in Table II. The residuals of this model appear linear
in a Q-Q plot and can be considered normal distributed. The
biggest influencing factors are network type and structural
evolution (estimates of 0.754 and 1.07 respectively) with
smaller interactions between all factors. Recombination as
primary factor has no influence but in interaction with the
hidden network type it acts positively (0.317) and slightly
negatively together with structural evolution (-0.186).
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Figure 9. The performance endpoints for each treatment shown as boxplots
with the median as centreline, the box ranging from the 25% to the 75%
percentile and the whiskers marking minimum and maximum values of the
replicates (n = 50). Treatment H-Rec-Struct has the highest performance,
being slightly better than H-Struct (Wilcoxon test z = 2.0 p = 0.045) and
significantly better than H-Rec (Wilcoxon test z = 5.0 p < 0.0001) and H
(Wilcoxon test z = 7.6 p < 0.0001).

These results show that our distributed online evolutionary
algorithm is capable of adapting to a different environ-
ment. The selection mechanisms tolerated a general drop
in population performance induced by the change. When
offspring was produced that pioneered in dealing with the
new environment, it could spread in the population and
replace former champions although the performance level
was lower than earlier in the evolutionary run.

Furthermore, we can deduce that the evolutionary chal-
lenge of the experiment is complex as indicated by the
worse performance of the perceptrons. They had the same
performance in the starting environment, foraging red blink-
ing power stations, but are worse than the other treatments
after the power stations changed to blue blinking. Thus, new
neural interconnections and neural structures are required to
adapt. This is also confirmed by our general linear model
where structural evolution is the biggest factor to achieve
high performance.

Regarding our recombination mechanism, our expecta-
tions were not fully met though we have weak empirical
evidence for a small benefit in the best performing treatment.
Some observations can be drawn from our results and our
general linear model. The perceptrons did not benefit from
recombination unlike the recurrent networks. P-Rec has the
same performance as P and P-Rec-Struct is even worse than
P-Struct while H-Rec is much better than H and H-Rec-
Struct is slightly better than H-Struct. We think that the
recurrent networks can use recombination as a makeshift
structural mutation — by recombining their structural di-
versities into new solutions. This structural diversity can
come from junk genes: genes for neural structures that were

Table II
GENERAL LINEAR MODEL

Estimate SE t p
(Intercept) 5.521 0.056 97.82 < 0.001
Network 0.754 0.074 10.16 < 0.001
Struct 1.07 0.074 14.47 < 0.001
Rec 0.012 0.074 0.872 0.16
Network:Struct -0.374 0.086 -4.37 < 0.001
Network:Rec 0.317 0.086 3.70 < 0.001
Struct:Rec -0.186 0.086 -2.17 0.03
Adj. R2 0.627
F -statistic 112.2 on 6 and 391 DF
p < 0.001
AIC 460.19

disconnected and then later reintegrated by recombination.
The perceptrons do not have such junk genes because
without hidden neurons all link genes are connected to
output neurons and thus active.

C. Incremental Evolution

The previous experiment showed that the scenario has
a certain complexity and our evolutionary framework can
solve it using its features of structural evolution. With those
findings, we performed a second experiment with the same
scenario where the evolutionary algorithm is fixed and the
change of the environment is varied instead. This serves to
illustrate how our framework deals with different changes
and is also an experiment about incremental evolution. The
hypothesis is that intermediate steps towards an adaptive
challenge lead to faster evolution than direct evolution.

In this experiment, the algorithm uses hidden neurons,
structural evolution and recombination. Each run begins with
an initial population of random networks with five hidden
neurons and every possible neural connection is present.
Neural connections have a random weight, hidden neurons
a random bias value. The end conditions of the scenario are
the same as in the previous experiment, blue blinking power
stations. However, the conditions during the run are different
among the treatments.

We decomposed the task of detecting a blue blinking
signal into intermediate steps with different appearances of
the power stations.

1) Red shining: A constant red colour. This is a unique
sensor signal in the arena because nothing else gives
a signal on the red colour channel. Simple neural
networks can detect this.

2) Red blinking: An alternation of colour between five
ticks of black and five ticks of red. Still a unique signal
but the blinking requires some compensation in the
network.

3) Blue blinking: Same as red blinking but with the
colour blue instead of red. Blue is not a unique
colour signal. The robots have the same blue colour
appearance but do not blink.
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Figure 10. The four treatments of the incremental evolution experiment.
A: Starting with red shining, gradual transition to red blinking, followed
by another gradual transition to blue blinking. B: Same as A but the
transitions happen instantly. C: Starting with red blinking and only one
instant transition to blue blinking. D: Starting with blue blinking directly
without any transitions.

This experiment has four treatments that are illustrated in
Figure 10. Each treatment has a total of five million ticks to
adapt from a random starting population to harvest the blue
blinking power stations at the end.

• A: Starting with red shining, after 1 million ticks the
power stations change one after the other to red blink-
ing. The transition is complete after 2 million ticks. At
3 million ticks, there is another gradual transition from
red blinking to blue blinking, which is finished after
4 million ticks. This is the treatment with the most
increments.

• B: This starts similar to A with red shining but all
power stations change to red blinking at 1.5 million
ticks simultaneously. At 3.5 million ticks happens the
simultaneous change to blue blinking.

• C: Here the phase of red shining is omitted and it
starts with red blinking right away. The change to blue
blinking happens at 3.5 million ticks like in B. This
treatment serves also as comparison to direct evolution
to the red blinking environment.

• D: The appearance of the power stations is blue blink-
ing from the start with no changes in the environment.
This is the direct evolution treatment for the blue
blinking environment.

It is expected that the final performance is higher in the
treatments with more increments: treatment A having highest
performance and D lowest. For the treatments A, B and C
we can make a similar comparison at 3 million ticks for
adaptation to the red blinking environment.

(a) (b)

Figure 11. The performance of the incremental evolution experiment at
3 million ticks and 5 million ticks (n = 50). Treatment D is omitted
at 3 million ticks because it is not comparable. (a) At 3 million ticks,
treatments A and B have the same performance (Wilcoxon test z = 0.6
p = 0.556) but C is significantly lower than A (Wilcoxon test z = −2.1
p = 0.036) and than B (Wilcoxon test z = −2.5 p = 0.011). (b) At
5 million ticks there are not differences between the treatments (Kruskal-
Wallis test χ2 = 3.1 p = 0.380).

D. Results

Surprisingly, the performance at the end of the 5 million
ticks is the same across all treatments (Figure 11(b)). There
are no significant differences between the direct evolution
treatment D and the the incremental evolution treatments.
However, a slightly different picture can be seen for the
red blinking environment at 3 million ticks (Figure 11(a)).
Here, treatment C is the direct evolution treatment with
significantly lower performance than treatments A and B,
though there is no difference between them.

An overview of the development of mean performance
over time of all four treatments is displayed in Figure 12.
The treatments with intermediate steps climb to high values
during their relaxed conditions but then drop back when the
environment changes. When comparing treatment A and B,
we see that the gradual transitions of A carry no benefit and
the instant transitions of B result in the same performance
at 2 and 4 million ticks respectively. However, we see in
comparison with C that they are able to leverage some
advantage of first evolving with red shining power stations
to the next phase of red blinking power stations, resulting in
an increased performance at 3 million ticks. The transition
around 4 million ticks to blue blinking affects treatments
A, B and C equally hard. They all drop below the baseline
of the direct evolution treatment D but recover quickly and
reach the same performance level of D by the end of the
experiment.

These results show that incremental evolution is not
universally beneficial and give support to the conclusion
of Christensen and Dorigo [18]. Each previous works on
incremental evolution uses different experimental scenarios
with a different approach to realizing the increments, which
is a likely explanation for the mixed results. In our own
previous experiment [1], we used different arenas and found
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Figure 12. Development over time of the foraging performance of each treatment. Shown is the mean performance of 50 replicates.
Treatments with relaxed intermediate steps reach temporarily higher values but are mostly unable to carry this advantage through
when the environment changes. The transitions cause large drops in performance but it catches up quickly with the baseline of
direct evolution.

benefits. Whereas here, we changed the appearance of the
targets instead and could not see benefits. From this, we infer
that incremental evolution is only beneficial in certain cases,
depending on the design of the evolutionary increments.

V. CONCLUSION

We have presented a new framework for artificial evolu-
tion which has an unprecedented combination of features. It
does state-of-the-art structural evolution of neural networks,
including recombination of related neural structures and it
adds the capability for online and distributed operation. One
key element to achieve this is to use random, inheritable
identifiers in the genome structure, making it possible to
match structures of common ancestry.

The described experiments illustrate these features. Using
our framework, we have shown that a simulated swarm of
robots evolved online to solve a complex task. The evolved
networks are able to distinguish an alternating signal from a
constant signal, which is a form of sensor fusion over time
that requires recurrent connections. It was also demonstrated
that our approach can effectively evolve online in dynamic
environments. In particular, drops in overall fitness levels
due to changed conditions are tolerated by updating the
fitness score of former champions with new evaluations of
their offspring.

Our work has provided an effective solution for enabling
artificial agents to adapt in a dynamic environment. While
our approach deals well with differences in the environment
over time, more work can be done with a varied environment
where different solutions are possible at the same time. In a

complex environment, there are multiple ways to approach
a problem and there are even several different problems at
the same time. Future work in artificial evolution needs
to better support niching of the population so solutions
can branch out to adapt to different problems in different
ways. This brings us closer to our vision of developing
artificial evolutionary processes that can produce a diversity,
complexity and flexibility like natural evolution.
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