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Abstract—In many manufacturing processes it is not possible
to measure on-line the state variable values that describe the
system state and are essential for process control. Instead,
only quantities related to the state variables can be observed.
Machine learning approaches are applied to model the relation
between observed quantities and state variables. The charac-
terization of a process by its state variables at any point in time
can then be used to adequately adjust the process parameters
to obtain a desired final state. This paper proposes a general
method to extract state variables from observable quantities
by modeling their relations from experimental data with data
mining methods. After transforming the data to a space of
de-correlated variables, the relation is estimated via regression
methods. Using Principal Component Analysis and Artificial
Neural Networks we obtain a system capable of estimating
the process state in real time. The general method features a
high flexibility in adjusting the complexity of the regression
relation by an adaptive history and by a variable determinacy
in terms of degrees of freedom in the model parameters.
The universal model is applied to data from numerical deep
drawing simulations to show the feasibility of our approach.
The application to the two sample processes, which are of
different complexity confirms the generalizability of the model.

Keywords-universal statistical process model; state predic-
tion; regression analysis; dimension reduction; deep drawing.

I. INTRODUCTION

In our previous work [1], we have presented a statistical
model for hidden state observation based on data from an
elementary deep drawing process. In this paper, we extend
the observation to a complex deep drawing process with
anisotropic plastic material behavior. It is shown that the
universal statistical process model is capable of generating
model instances for both complexity categories of the deep
drawing process with good prediction results.

Closed-loop controls are capable of reaching desired final
states by compensating disturbances in individual processes
or by adapting to varying input in a process chain. Feedback
about the system state is essential for this purpose. The
measurement of the real state variables usually requires
large efforts and cannot be executed in process real time.
Only few process-related quantities can be measured by
real production machines during process execution. If these
observables can be related to state variables with sufficient
unambiguity and accuracy, a state-based closed-loop control
can be created. The final state can then be estimated as

well and the information be transferred to the control of
the next step in a process chain. Multiple process controls
of a process chain can be linked together using standardized
transfer state variables between the single processes. This
allows the optimization of the entire process chain with
respect to the desired properties of the final workpiece. Some
approaches follow this idea by observing such quantities,
which are directly correlated to the controlled variables. This
holds usually true only for one specific process.

In deep drawing, observables such as forces and displace-
ments in the tools and in the workpiece are accessible with
reasonable measurement effort during process execution.
Mechanical stress distributions reflecting the state of the
sheet material can be used as the controlled variable as
applied in [2] to find optimal values for the blank holder
force of an experimental deep drawing environment. A
control system for deep drawing is presented in [3], based
on the identification of static material properties in [4].

Data mining methods for regression analysis such as
Artificial Neural Networks (ANNs) or Support Vector Re-
gression (SVR) are widely used in material science for
the prediction of time-invariant process quantities. In [5],
thickness strains in different directions of the sheet are
computed from material parameters, and [4] presents a
model to predict material properties from process parameters
and conditions. These both affect the final result, however,
conditions are constant during execution and cannot be used
for on-line closed-loop state control. The texture of cold
rolled steels is predicted from process conditions in [6]. A
general overview for the use of ANNs in material science
is given in [7] considering model uncertainties and noise.

In our approach, a generic state estimator is proposed,
which represents the functional dependence of state vari-
ables on observable quantities, by adapting its structure and
parameters to the specific process under consideration. The
estimator consists of a feedforward, completely connected
ANN, which is used due to its capability of modeling
the nonlinear relation between observable quantities and
the process state. Principal Component Analysis (PCA) is
applied for dimension reduction in observables and state
variables to decrease the complexity of their relations. An
adaptive history of observable quantities allows an additional
adjustment of the complexity of the regression relation.



246

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This paper is structured as follows. In Section II, the
statistical process model and its underlying data mining
methods are introduced. A proof of concept is given by the
application of the universal statistical model to data from
numerical experiments of two deep drawing processes of
different complexity in Section III. Results for predicted
state quantities for both sample processes are presented and
evaluated in Section IV. In particular, the creation of reliable
and robust models is achieved by the assessment of various
modifications of the input history. Section V concludes and
outlines future work.

II. MODELING

Numerical models based on first principles have the ability
to predict results accurately and reliably after they have been
validated by experimental results. However, the high quality
comes along with high computational costs. Phenomeno-
logical models are based on observations of first principles
and normally require less, but still substantial computational
resources. Both model types can be used to describe the
dynamic process behavior during its execution. If it comes
to on-line process control, however, high speed models
are needed to perform fast predictions. Statistical models
provide this property and thus can be used to reproduce the
relation between observable quantities and process states on
the one hand and the relation between state variables and
appropriate process parameters on the other hand.

A. Relating Observables to State Variables

During process execution, the dynamic system moves
along in its state space where each state generates observable
values related to the respective state variable values. In mate-
rials processing, the state variables may be fields of intensive
magnitudes such as strains or stresses that are reflected in
observables like displacements, forces and temperatures.

A closed-loop adaptive process control based on hidden
state observation is shown in Figure 1. The dynamic system
is characterized by its state s(t) for each point in time t
and it is subject to a system noise n(t) that has to be

Controller Observer

System

Figure 1. Closed-loop adaptive process control

compensated by the controller to reach a defined final state
s(T ). The observer models the relation between observables
and state variables and delivers estimated state variables
ŝ(t), or ŝ(tc) for one particular observation point in time
tc, respectively. The estimated state variables are then used
by the controller to find appropriate process parameters
c(t) considering the reference s(T ) as a definition for the
final state at time T . If multiple process controls are linked
together in a process chain, the final state of the preceding
process serves as an initial state of the current process
s(t0). This additionally influences the process parameters
determined by the controller during process execution.

The hidden state observer provides state information by
deriving the current estimated state ŝ(tc) at time tc from ob-
servables between a defined starting point at time t0 and the
current time tc. The begin of the process may be chosen as
a starting point for observation, but also a limited history of
preceding time frames is admissible. The consideration of a
sampled history of observable quantities as the basis for state
estimation results in a high dimensionality of the estimator
input. When fields of physical quantities, which are spatially
sampled, represent the state, also the estimator output is high
dimensional. The estimator parameters are determined by
nonlinear regression, which would require a large number of
samples for high dimensional input and output spaces that
are usually not available from experiments. Therefore, we
propose to model the complex relation between observables
and state variables with an ANN applying PCA to input and
output before regression analysis is performed.

B. Regression Analysis

A feedforward, completely connected ANN is used to
model the nonlinear relation between observables (input) and
state variables (output). We choose a three layer network
topology (input, hidden, output), which is sufficient accord-
ing to the theorem of Kolmogorov [8]. Each of the neurons
in the subsequent layer is connected to all neurons of the
current layer, where each connection is assigned a certain
weight value. A logistic activation function is applied to the
superposition of the activations of preceding neurons and
the weights added up with a threshold value. The regression
analysis by means of ANNs consists of minimizing an error
cost function with respect to the weights and thresholds. For
the cost function, the sum of squared errors (SSE) between
the output values of the network and the output values of
the associated input values as given by a sample is selected.
The ANN is trained by the backpropagation algorithm [9].

The number of nodes in the hidden layer is determined
according to

CNt = α(B(A+ C) +B + C), (1)

see [10] for details. The objective is to retrieve an overdeter-
mined approximation, i.e., the number of training samples
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must be greater than the number of degrees of freedom,
namely the number of connection weights.

Equation (1) reveals the relation between
• the number of input nodes (A)
• the number of hidden nodes (B)
• the number of output nodes (C)
• the number of training samples (Nt)
• the grade of determinacy (α),

which is problem dependent. Starting from a minimum of
1.0 (exact determination), the optimal grade of determinacy
α is experimentally identified by the evaluation of the net-
work’s performance function quantified by the mean squared
error (MSE). A first guess for the optimal determinacy
is obtained by comparison of network performance results
between 1.0 and the maximum determinacy resulting from
a network with only one output node by use of a step width
of 10. Successive refinements by step widths of 1.0 and
0.1 are performed around the value of the previous iteration
until the optimal determinacy with respect to the network’s
performance function is reached.

The number of output nodes is on the one hand predefined
by the number of output dimensions of the regression
problem itself, but on the other hand the output nodes do
not necessarily have to belong to one single network. An
extreme configuration is to generate one network per output
dimension to reduce the complexity that has to be described
by the hidden layer. In our approach, we use only one
network since the complexity of the regression problem
has already been reduced by dimension reduction and the
spaces of input and output have been transformed to their de-
correlated counterparts. The Levenberg-Marquardt algorithm
is used to solve the optimization problem of finding optimal
connection weights by a second-order approximation.

C. Dimension Reduction

PCA is applied to reduce the dimensionality of observ-
ables and state variables by removing correlations in space
(between the variables) and time. Here, we do not perform
either regression nor prediction, but a pure dimension reduc-
tion. The reduced observables and state variables are then
used for regression by an ANN as described in Section II-B.

In the following, X is a place holder for a set of sequences
of variables. In our case, X stands for the observable history
o(t0)n, . . . ,o(tc)n or for the current state variables s(tc)n
for all n = 1 . . . N samples. Before executing the PCA
algorithm, the data spanned by the three dimensions

• the number of samples (N )
• the number of variables per time frame (J)
• the number of time frames (K)

have to be arranged in two dimensions. Reference [11] states
that only two of the six possible unfolding techniques have
practical relevance. In A-unfolding (KN × J), the number
of time frames and the number of samples are aggregated

in the first dimension, and the number of variables per
time frame characterizes the second dimension. D-unfolding
(N ×KJ) uses the number of samples as the first dimension
and combines the number of time frames and the number
of variables per time frame in the second dimension. The
latter is therefore more appropriate to remove correlations
between different time frames as well as between individual
variables within the same time frame. In [12], dynamic
process behavior is monitored by Dynamic PCA (DPCA)
considering a limited window of time-lagged observations.

We perform a MPCA with D-unfolding where the data
X are arranged in a 2D matrix of dimension N × KJ , in
which blocks of variables for each time frame are aligned
side by side. The history of the time frames t0 . . . tc is
therefore mapped to 1 . . .K. We can apply the complete
history of observables to make use of the entire informa-
tion available to us. Alternatively, we can use a reduced
observable history of selected preceding time frames to
scale down the complexity of the regression relation. In the
case of convoluted regression relations as arising from the
complex sample process, we prefer an adjusted history. In
this case, the number of time frames is reduced to a part of
the complete observable history and at the same time, the
precision requirement for dimension reduction is increased.
This results in a selection of additional principal components
in order to extract more input information to explain more
variance in the target quantity. The current state variables,
which are only extracted at time tc, are of dimension N × J
(K = 1) and do therefore not have to be unfolded.

The data in original dimensions X are subject to a
transformation of the principal axes by finding directions
of maximum variance. The first new axis points in the
direction of largest variance of the data X and is called the
first principal component. The second principal component
is orthogonal to the first one and points in the direction
of second largest variance. Additional components can be
found analogously, while higher ones describe less variance.
The data X can be represented by

X =

W∑
w=1

twp
T
w = TPT , (2)

where W stands for the number of principal components, P
represents the basis vectors of the new coordinate system
and T describes the data in the new coordinate system.
Dimension reduction can be achieved by removing higher
principal components since they do not explain much of the
variance in the data.

Related eigenvectors and eigenvalues can be calculated
from the empirical covariance matrix (notice the division by
N − 1) given by

K =
1

N − 1
XTX, (3)
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where X has been mean-centered before and N corresponds
to the number of samples in X. Pairs of eigenvalues and
eigenvectors are then sorted such that the largest eigenvalue
is associated with the first principal component explaining
the most variance [13]. The covariance matrix can be seen
as a description of the rotation in the transformation of
the principal axes, the data centroid corresponds to the
displacement of the origin of the new coordinate system
with respect to the initial one.

If the number of variables is much higher than the number
of samples, which might apply to observables, [14] advises
to use Singular Value Decomposition (SVD) according to

X = USVT (4)

to determine the eigenvalues and eigenvectors efficiently.
The N eigenvalues of XTX can then be extracted from
the diagonal matrix STS by

λn =
1

N − 1
(STS)nn, (5)

and the orthonormal matrix V contains the associated eigen-
vectors P of XTX. The data in the new coordinate system
T can finally be determined by a matrix multiplication of
U and S.

D. Statistical Process Model

For each requested observation point in time tcd,
the system collects previously sampled observables
o(t0d), . . . ,o(tcd) and current state variables s(tcd) as
shown in Figure 2. Thereby, either the complete history
(t01 = t02) or an adjusted history of selected preceding time
frames (t01 6= t02) is used as a basis for state estimation.

The statistical process model for hidden state observation
at one particular observation point in time tc is divided into a
training and a prediction block as indicated in Figure 3. First,
PCA is applied to both observables o and state variables s,
of which a subset is used to train the ANN as input co and
target cs, respectively. After successful training, the ANN
can predict state variables in reduced dimensions cŝ(tc) from
previously unseen observables o(t0), . . . ,o(tc), reduced to
cõ(t0, . . . , tc), that have not been included in training. The

Figure 2. State observation by observable histories for different observation
points in time tcd (for d = 1, 2)

Observables State variables 

Training

ANN

Prediction

ANN

Sample process On-line process
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PCA
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Figure 3. Architecture of the statistical process model

predicted state quantities cŝ(tc) are subject to an inverse
dimension transformation to obtain their counterparts ŝ(tc)
in the original, high dimensional space for visualization and
validation.

III. APPLICATION TO DEEP DRAWING

The feasibility of the proposed approach is tested with
two sample processes for the cup deep drawing of a metal
sheet. In cup deep drawing, a metal sheet is clamped between
a die and a blank holder. A punch presses the sheet that
undergoes a traction-compression transformation into the die
opening to obtain a cup-shaped workpiece. An axisymmetric
2D deep drawing model (Figure 4 left) represents an ele-
mentary sample process, whereas a 3D deep drawing model
with anisotropic plastic material behavior (Figure 4 right)
describes a complex sample process. Anisotropic plasticity
is expressed by a direction-dependent forming resistance in
the material resulting in an earing profile in deep drawing.
This material behavior might be induced by a preceding
rolling process and is undesired in this context, but may be
compensated by process control. Details about the processes
of deep drawing and rolling are contained in [15].

Statistical samples are generated by experiments per-
formed in a numerical simulation environment. For this
purpose, two finite element deep drawing models have been
implemented in ABAQUS (finite element analysis software).

sheet

punch

blank

holder

die

radial (1)

axial (2)

sheet

Figure 4. Workpiece and tools in cup deep drawing for the elementary
sample process (left) and the complex sample process (right)
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A. Elementary Sample Process

Observable quantities are displacements and forces, while
temperature behavior is neglected. Displacements in the cup
bottom in direction of the moving punch are recorded as well
as displacements in the sheet edge in orthogonal direction
to reflect the sheet retraction. Additional displacements in
punch and blank holder are acquired. Reaction forces in the
tools are recorded in both radial and axial direction. Arising
partial correlations in observables are removed by PCA. The
state of the deep drawing process is characterized by the von
Mises stress distribution within the entire workpiece.

In the performed parametric study, the blank holder force
has been varied in the range of [70, 100] kN, whereas
process conditions such as drawing height or lubrication
have been kept constant. For each sample, observables and
state variables have been collected for all time frames. A
time frame equalization ensures common time frames for all
samples. 200 samples have been generated, each consisting
of 131 time frames, which in turn contain 9 observables
and 400 state variables. The extracted data are randomly
partitioned into a training set (80%) and a test set (20%).
Dimension reduction is applied to all samples, where the
training data are split again randomly into a training set
(80%) and a validation set (20%) for the following regression
analysis. The test set is used for an overall validation of the
statistical model. Resampling and subsequent remodeling is
performed to select the best model and to prove indepen-
dence of specific data sets.

B. Complex Sample Process

Displacements in the sheet edge in different directions
(0◦, 45◦, 90◦ with reference to the rolling direction) are
selected as observable quantities. Also, reaction forces in the
punch and logarithmic strains reflecting the minimum and
maximum forming grade in selected sheet wall locations are
observed during deep drawing. Altogether, 12 observables
are recorded for each of the common 368 time frames.
The process state is again given by the von Mises stress
distribution, this time in 960 elements. 499 experiments have
been executed under variation of the blank holder force
in the range of [4000, 6000] N with otherwise constant
process conditions. The partition of the data into a training
set, a validation set and a test set is performed as for the
elementary sample process. Again, multiple resampling runs
are accomplished and evaluated by their obtained results.

IV. DISCUSSION OF THE RESULTS

The state prediction results of the statistical model, which
has been applied to the two sample processes are analyzed.
The common underlying prediction characteristics are de-
fined in Section IV-A. Results for the particular instances
are given in Section IV-B for the elementary sample process
and in Section IV-C for the complex sample process.

A. Prediction Characteristics

The prediction characteristics are computed over all sam-
ples from the test set for multiple resampling runs with
different random initial conditions to show the independence
of specific data sets. Random initial conditions appear in the
selection of data (training, validation and test sets) and in
the initialization of the ANN weights before training starts.
The best results are then presented in the following sections.

The quality of the statistical model is quantified by the
coefficient of determination by

R2 = 1− SSE

SST
, (6)

which can be applied to nonlinear regression analysis [16].
The sum of squared errors given by

SSE =

N∑
n=1

L∑
l=1

(yl − ŷl)n2 (7)

describes the sum of the squared deviations between the
original data in the test set yl and the associated predicted
results ŷl. The SSE is calculated over all dimensions in the
predicted quantity l, i.e., the number of state variables, and
all samples n. It is divided by the SST , which quantifies
the total variation in the test set calculated by the summed
squared deviations of the original data from their means. The
R2 lies between 0.0 and 1.0, where a high value indicates
a good model fit and and a low value reveals a poor fit.

The root mean square error according to

RMSE =
√
MSE =

√
SSE

N
(8)

is a further measure of model quality, where MSE stands
for the mean squared error, and N corresponds to the
number of samples in the test data set. The RMSE can be
used to compare different models in the same complexity
category, i.e.., in order to select the best model from multiple
resampling runs.

The relative prediction error for each variable dimension
l defined by

REl =

∣∣∣∣Targetl − Predictionl
Target l

∣∣∣∣ for l = 1 . . . L, (9)

quantifies the error percentage, where L is the number
of variable dimensions in the predicted quantity and the
target quantity comes from the training data. The resulting
distribution can be characterized by the mean relative error
REµ and the maximum relative error REmax with respect
to L and the number of samples N.

In order to compare the variation of the predicted results
to the variance of the generated data, we have defined the
model uncertainty by

U =
1

L

L∑
l=1

MSE l

Var l
, (10)
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which corresponds to the mean value of the MSE of each
variable l in relation to its variance Var . In (10), L stands for
the number of variable dimensions. A low model uncertainty
is characterized by a U value close to zero, whereas values
approaching 1.0 indicate a high uncertainty. The objective
is to show that the variation of the predicted results is
substantially smaller than the variance of the generated data.

B. Elementary Sample Process

Two use cases are identified for the state estimation based
on the data from the elementary sample process. The first
use case refers to the prediction of the final process state
based on the collected observables during process execution.
This provides a subsequent process with detailed information
about its input, allowing it to optimally adjust its parameters.
The individual controls of a process chain can be linked
by the state information in a standardized way, resulting in
an overall quality improvement. This use case is described
in Section IV-B1. On the other hand the prediction of the
state evolution during process execution can be applied to
process control as discussed in Section IV-B2. The latter can
be considered as a generalization of the former use case.

1) Prediction of the Final Process State: The statistical
model for hidden state observation of the elementary sam-
ple process is validated by a test set of 40 samples (see
Section III-A). The relative prediction error of the 400 state
variables never exceeds 0.0110 for all samples, the resulting
distribution is shown in Figure 5. The absolute frequency of
the number of state variables is high for small errors and
drops rapidly with increasing error. Different colors stand
for individual samples. The quality of the results shows the
feasibility of the method in principle. One must be aware that
this might be partly due to the simplicity of the experiments:
the variance in observables and state variables is not very
large since only the blank holder force has been varied.

The prediction quality was further analyzed as follows.
The model uncertainty U amounts to 0.0045, which indicates
a high accuracy and a low uncertainty of the predicted
results. A resulting R2 value of 0.9991 and a corresponding
RMSE value of 0.2726 confirm the good quality of the
statistical model. The MSE of the predicted state variables
serves as a base to determine a confidence interval for the
prediction error. The precision of the estimation amounts to
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Figure 5. Relative error distribution for predicted state variables of the
elementary sample process

a mean value of 0.0440, which has been calculated over all
predicted state variables for a 95% confidence interval.

The overall error of the statistical model is composed of
a time frame equalization error, the error resulting from
dimension reduction and the ANN prediction error. The
MSE of the ANN amounts to 0.0019 at a typical range of
[400, 800] MPa of the predicted von Mises stresses. The
observables are reduced from 1179 (9 observables per time
frame × 131 time frames) to 9 dimensions with a predefined
precision of 99.999% and thus a relative error of 0.001%.
The state variables are reduced from 400 to 7 dimensions
with a precision of 99.900%, i.e., a relative error of 0.1%. On
the one hand dimension reduction implies information loss
that cannot be recovered, but on the other hand it enables the
ANN to find correlations in the reduced and de-correlated
data in a more reliable and robust way. A worse result might
have been obtained without dimension reduction due to the
huge number of additional degrees of freedom of the ANN.

Some results for a representative of the test set visualized
in ABAQUS are depicted in Figure 6. It displays the absolute
von Mises stress values in MegaPascal units predicted by
the statistical model in Figure 6b, which are in very good
agreement with the results of the finite element model
illustrated in Figure 6a. To outline the deviation of the
predictions from the original data, the relative error in the
range of [0, 0.0024] is presented in Figure 6c. Errors are low
in regions with small deformations, while higher but still
small errors occur in areas with high deformation gradients.

Robust predictions are characterized by bounded predic-
tion errors despite of model uncertainties and disturbances.
In our work, we have first applied a white noise of 5% to
the observables to model a measurement error. The state
variables have then been predicted with a relative error in
the range of [0.0, 0.0581] and a corresponding mean value
of 0.0029. The model uncertainty U amounts to 0.1610,
while the model quality is characterized by a R2 value of
0.9128 and a RMSE value of 2.8156. Increasing the noise
to 10% results in a relative error range of [0.0, 0.0943]
with a mean of 0.0038, a model uncertainty U of 0.2379,
a R2 value of 0.7830 and a RMSE value of 4.1761. The
size of the error range does not solely represent the quality
of the prediction, also the model uncertainty affecting the
distribution within this range has to be considered. The
results indicate that our model is robust to small disturbances
and still delivers satisfactory results for small manipulations
in the observables. However, with increasing noise, the
model quality decreases as the uncertainty increases.

2) State Prediction During Process Execution: Process
execution time determines the timespan in which process
parameters can be adjusted to control the process state. State
information is not necessarily needed for each single time
frame, since controllers are usually liable to a certain delay
in their impact. The statistical model offers the selection of
time frames that are crucial for control. In this work, some
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Figure 6. Comparison of results of the finite element model and the statistical model for the elementary sample process

representatives are chosen to demonstrate the feasibility of
the prediction of the state evolution for the elementary
sample process. The time frame numbers 1, 45, 90 and 131
are selected, the results are outlined in Table I.

The respective grade of determinacy of the ANN is
identified incrementally by evaluating the network’s per-
formance function (see Section II-B), the precision for
dimension reduction is chosen as 99.999% for observables
and 99.900% for state variables. The number of observables
and state variables in reduced dimensions each grows with
increasing time since their inner relations become more
complex. The number of hidden nodes increases as well
due to the more complex relation between observables and
state variables. Between time frame number 45 and 90,
the number of hidden nodes however decreases. At this
point, the number of input nodes of the ANN given by
the number of observables in reduced dimensions is for the
first time higher than the number of output nodes given by
the number of state variables in reduced dimensions. The
MSE caused by dimension reduction in observables and
state variables rises with increasing time and thus increasing
complexity. The performance of the ANN evaluated by its
MSE decreases between time frame number 1 and 45 and
then increases. This behavior is also reflected in the relative

Table I
PREDICTION CHARACTERISTICS DURING EXECUTION OF THE

ELEMENTARY SAMPLE PROCESS

Time frame number 001 045 090 131
# PCA observables 1 1 6 9
# PCA state variables 1 2 3 7
# ANN hidden nodes 33 36 26 38
ANN grade of determinacy 1.3 1.8 1.5 1.4
MSE PCA observables 1.2453 1.3612 51.8063 80.0205
MSE PCA state variables 4 · 10−5 4 · 10−4 0.0026 0.0667
MSE ANN 2 · 10−5 7 · 10−6 3 · 10−4 0.0019
R2 statistical model 0.9999 0.9999 0.9998 0.9991
RMSE statistical model 0.0061 0.0186 0.0469 0.2726
U statistical model 0.1452 0.0003 0.0028 0.0045
REµ statistical model 0.0047 8 · 10−6 3 · 10−5 2 · 10−4

REmax statistical model 0.1071 0.0021 0.0020 0.0110

error distribution specified by its mean and maximum value.
The explanation is composed of two opposed effects. The
model uncertainty U is on the one hand very high at the
beginning of the process, since not much process knowledge
by means of observables is available. On the other hand,
there is not much variance in the state variables at this
point, because the impact of different applied blank holder
forces is not yet strong, but will play a more important
role with increasing time. Although the model uncertainty
is very high for time frame number 1, the prediction result
is still characterized by a high quality index due to the low
variance in the process state. The uncertainty decreases with
increasing time, but then also the complexity grows and has a
stronger impact on the prediction. The overall model quality
expressed by the R2, the RSME and the RE shows that the
predictions are in good agreement with the original data.

C. Complex Sample Process

The validation of the statistical model for hidden state
observation of the complex sample process is performed by
a test set of 99 samples (see Section III-B). We have learnt
from the elementary sample process that the observation of
early process states can be neglected. In this time, there is
only a very short history of observables available and the
prediction of the current process state is characterized by a
high model uncertainty. The cause is a low variation in the
process state, since the impact of different applied values for
the process parameters is not yet strong at the very beginning
and therefore not crucial for process control. Thus, the time
frame numbers 92, 184, 276 and 368 are selected for the
state prediction based on a history of observable quantities.

In a first step, the complete history is chosen as for the
elementary sample process. This use case is described in
Section IV-C1. In order to further reduce the complexity
of the regression relation, the history is limited by a fixed
number of time frames in terms of a sliding window. In
addition, the precision of dimension reduction performed on
the observables is increased to explain more variance in the
state variables as the result. Details about this use case are



252

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

outlined in Section IV-C2. In Section IV-C3, the results of
the two history variants are compared to each other with
respect to the sensitivity to random initial conditions.

1) State Prediction with Complete History: For the state
prediction based on the complete history of observables, the
predefined precision of dimension reduction in observables
and state variables is chosen as 99.90% and 99.00%, re-
spectively. The results are presented in Table II. The MSE
induced by PCA in observables and state variables grows
with increasing time. In the case of time frame number 276,
both values are greater than the ones of the last time frame
with number 368. The number of reduced dimensions in
observables does not change between time frame number
276 and 368. This means that a longer history leads to a
smaller MSE with the same number of reduced dimensions.
The complete history of 368 time frames in fact entirely
contains the selected history for the prediction of time frame
number 276. As a consequence, the MSE proportion in the
remaining 92 time frames must be smaller than the ones of
the common history interval. The increasing confidence in
the prediction is also indicated by a lower model uncertainty
U for time frame number 368. Compared to the elementary
sample process, the MSE induced by PCA in observables
is much smaller, which is the result of a generally smaller
variance in the observables of the complex sample process.
The complexity of the regression relation in terms of the
hidden ANN nodes increases with time. Time frame number
184 represents an exception, since the number of reduced
dimensions in observables is smaller than the number of
reduced dimensions in state variables.

The model quality expressed by the R2 is lower compared
to the predictions performed on data from the elementary
sample process. Additionally, the upper bounds of the rela-
tive error distribution are much higher for predictions based
on the complex sample process. A possible reason might be
the high complexity of the regression relation in terms of
ANN nodes. On the one hand, a more sophisticated model
is necessary to describe complex material behavior as plastic
anisotropy. But on the other hand, the high complexity

Table II
PREDICTION CHARACTERISTICS DURING EXECUTION OF THE COMPLEX

SAMPLE PROCESS WITH COMPLETE HISTORY OF OBSERVABLES

Time frame numbers 001-092 001-184 001-276 001-368
# PCA observables 7 6 11 11
# PCA state variables 3 7 7 10
# ANN hidden nodes 73 114 98 121
ANN grade of determinacy 1.2 1.4 1.2 1.2
MSE PCA observables 0.0337 0.1103 0.5211 0.4539
MSE PCA state variables 0.0066 0.0213 0.0802 0.0713
MSE ANN 8 · 10−6 0.0049 0.0044 0.0076
R2 statistical model 0.9918 0.9914 0.9844 0.9822
RMSE statistical model 0.0829 0.1455 0.3694 0.3699
U statistical model 0.0781 0.0319 0.0656 0.0409
REµ statistical model 0.0001 0.0003 0.0013 0.0021
REmax statistical model 0.0130 0.0338 0.3295 0.4194

needs to be reduced to the crucial characteristics to obtain a
generalizable model. This can be achieved by adapting the
history of observables by use of the following procedure.

2) State Prediction with Adjusted History: In this use
case, we adjust the history of observables by limiting the
number of time frames in terms of a sliding window. A
variable history length makes the approach very flexible.
At the same time, the question arises what might be the
minimum history length to describe the current process
state unambiguously? Further efforts may be investigated to
realize a self-adaptive history with reference to performance
and accuracy criteria. The sliding window is set to a fixed
length of 92 times frames, which is one quarter of the
complete history length and seems to be sufficient for state
prediction in this case. That means that the process state for
the currently selected time frame is predicted by a history
of the preceding 92 time frames. This adaptation indeed
reduces the complexity, but does not yield better prediction
results. Furthermore, this reduced history approach is sen-
sitive to random initial conditions as it is also observed for
predictions based on the complete history in Section IV-C1.

In order to explain more variance in the state variables
as the regression output, the precision of the dimension
reduction procedure performed on the observables is in-
creased to 99.99%. The combination of reducing the number
of time frames in the history and inflating the remaining
observables by a higher precision represents the adjusted
history approach. This procedure yields similar or even
better prediction results with a lower complexity in terms
of number of ANN nodes. It also reduces the sensitivity to
random initial conditions as demonstrated in Section IV-C3.

The prediction results with adjusted history and data from
the complex sample process are summarized in Table III.
Note that the history is not adjusted for early predictions up
to time frame number 92. Despite of a shorter history, the
number of dimensions in the reduced observable space is
about twice the size of the number of principal components
with lower precision in the complete history variant. The
increase in the precision seems to have a stronger effect

Table III
PREDICTION CHARACTERISTICS DURING EXECUTION OF THE COMPLEX

SAMPLE PROCESS WITH ADJUSTED HISTORY OF OBSERVABLES

Time frame numbers 001-092 092-184 184-276 276-368
# PCA observables 7 10 20 24
# PCA state variables 3 7 7 10
# ANN hidden nodes 73 89 62 76
ANN grade of determinacy 1.2 1.4 1.3 1.2
MSE PCA observables 0.0337 0.0220 0.1472 0.0126
MSE PCA state variables 0.0066 0.0213 0.0802 0.0713
MSE ANN 8 · 10−6 0.0004 0.0068 0.0036
R2 statistical model 0.9918 0.9911 0.9882 0.9840
RMSE statistical model 0.0829 0.1554 0.3524 0.3395
U statistical model 0.0781 0.0350 0.0519 0.0458
REµ statistical model 0.0001 0.0003 0.0012 0.0025
REmax statistical model 0.0130 0.0350 0.1342 0.2860
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on the number of reduced dimensions than the decrease in
the history to one quarter of its entire length. The MSE
induced by dimension reduction in observables is much
smaller due to the higher requested precision. For time
frame number 276, this quantity is still higher compared
to the other time frames, even though 20 components are
extracted to describe the reduced space. There might be
some nonlinear behavior in dominant observables around
this point, which cannot be explained adequately by linear
dimension reduction methods. The adjustment in the history
leads to a kind of linearization by limiting the number of
time frames and thus yields more reliable prediction results.

The prediction characteristics of the statistical model,
namely the R2, the RMSE and the uncertainty U are similar
to the results of the complete history variant. Indeed, the
maximum of the relative prediction error REmax is reduced
substantially by the adjusted history variant. The relative
error distribution based on 960 state variables and 99 test
samples with an upper bound of 0.2860 is depicted in
Figure 7. The absolute frequency is high for small errors and
decreases rapidly for higher errors. The individual samples
can be distinguished by the different colors in the histogram.

A representative is selected from the test set for predicted
state variables at the end of the complex sample process
with an adjusted history of observables. The obtained results
are visualized in ABAQUS as presented in Figure 8. The
absolute von Mises stress values at a typical range of
[1, 300] MPa, which are calculated by the finite element
model are depicted in Figure 8a. The predicted von Mises
stresses are displayed in 8b. They are in good agreement
with the original results. The relative error in the range of [0,
0.0449] is illustrated in Figure 8c to compare the prediction
with the original results. As also observed for the elementary
sample process, the largest errors occur in the area of high
deformation gradients as in the rounding of the sheet wall.

3) Sensitivity to Random Initial Conditions: The two
variants with complete and adjusted history are compared
with reference to their sensitivity to random initial condi-
tions. Random initial conditions appear in the selection of
training, validation and test data and in the initialization
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Figure 7. Relative error distribution for predicted state variables of the
complex sample process with adjusted history of observables

of the ANN weights before training. Figure 9 visualizes
the sensitivity to random initial conditions observed on the
RMSE over 10 resampling runs for both history variants.
On the left, the error intervals are illustrated for the com-
plete history, whereas the ones for the adjusted history
are depicted on the right. The intervals are the same for
the predicted state variables up to time frame number 92,
since the history has not been adjusted at the early stage
of prediction. For all other time frames, the error intervals
decrease substantially in case of the adjusted history variant.
This means that the sensitivity to random conditions is much
less and yields a higher reliability in the prediction.

The distribution characteristics RMSEµ,RMSEσ and
RMSEmax for the corresponding time frame numbers 184,
276 and 368 are compared in Table IV for the complete
and the adjusted history. The RMSEµ is minimized up to
one half with an adjusted history. An improvement is also
achieved in a reduced variation RMSEσ (≈ up to one forth)
and a reduced maximum RMSEmax (≈ up to one forth).
In particular, the RMSE for the prediction of time frame
number 276 is characterized by much lower error bounds.
The adjusted history of observables used for prediction at
this point in time has already attracted attention by higher
errors in context of its reduced space in Section IV-C2.
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Figure 9. RMSE sensitivity w.r.t. random initial conditions for different
time frames with complete history (left) and adjusted history (right)

Table IV
DISTRIBUTION CHARACTERISTICS OF RMSE SENSITIVITY W.R.T.

RANDOM INITIAL CONDITIONS FOR DIFFERENT TIME FRAMES

Distribution characteristics RMSEµ RMSEσ RMSEmax

Time frames 001-092 0.1156 0.0419 0.1983
Time frames 001-184 (complete) 0.3313 0.2851 0.8845
Time frames 092-184 (adjusted) 0.1727 0.0168 0.2032
Time frames 001-276 (complete) 0.9129 0.5572 2.3296
Time frames 184-276 (adjusted) 0.5034 0.0966 0.6631
Time frames 001-368 (complete) 0.4948 0.1282 0.7395
Time frames 276-368 (adjusted) 0.3857 0.0362 0.4722
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(a) Finite element model (original) (b) Statistical model (prediction)

(Avg: 75%)

Relative errors
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+3.742e−03
+7.483e−03
+1.123e−02
+1.497e−02
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+3.742e−02
+4.116e−02
+4.490e−02

(c) Relative prediction errors

Figure 8. Comparison of results of the finite element model and the statistical model for the complex sample process with adjusted history of observables

V. CONCLUSION AND FUTURE WORK

A universal statistical process model for hidden state
observation based on the nonlinear regression analysis of
a history of observables and the current state by means
of an ANN has been created. PCA as a linear dimension
reduction method is applied to input and output separately
before performing the regression analysis. The complexity
of the relation between observables and state variables can
be adjusted by the grade of determinacy of the ANN and by
an adaptive history of observables. This makes the approach
very flexible with reference to performance and accuracy.

The presented statistical process model has been applied
to two deep drawing processes of different complexity. It
has been shown that the universal model adapts well to
the specific data of the different sample processes. The
resulting model instances can be successfully used for state
prediction based on observations. For the complex sample
process, the sensitivity to random initial conditions has been
reduced by an adjusted history of observables, such that
more reliable prediction results are achieved. The results
outlined in Section IV are very promising and can therefore
be taken as a solid base for process control. Process param-
eters can thereon be adjusted by observing the evolution of
the process state implementing a suitable control law. The
control of one single process can be extended to process
chain optimization by multiple linked process controls. For
this purpose, workpiece properties are to be deduced from
the final state of the final process. The predefined state can
then serve as set value for the optimization procedure.

One drawback of the statistical process model for hidden
state observation is the high uncertainty in state prediction
at the beginning of the process. This can be overcome by
not considering those early predictions with high uncertainty
in process control. By observing an entire process chain,
the final state information of the preceding process can
be used as reliable characterization at the begin of the
current process. Significant time frames for the observation
of the process state evolution have to be identified to enable
process control. The proposed universal approach for the

observation of hidden states in adaptive process controls may
be transferred to any process characterized by state variables
that can be derived from related observable quantities.

Future work includes the extension of the statistical pro-
cess model for hidden state observation to a local process
control based on extracted features. For this purpose, dimen-
sion reduction shall be integrated into the regression analy-
sis, such that the resulting compact feature space represents
the relation between observables and state variables. The
extracted features may then serve as a base for an efficient
process control. Therefore, nonlinear dimension reduction
methods are taken into account to obtain a more general
description with a feature space as small as possible.
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