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Abstract—In many emerging wireless scenarios, consensus
among nodes represents an important task that must be accom-
plished in a timely and dependable manner. However, the shar-
ing of the radio medium and the typical communication failures
of such environments may seriously hinder this operation. In
the paper, we perform a practical evaluation of an existing
randomized consensus protocol that is resilient to message
collisions and omissions. Then, we provide and analyze an
extension to the protocol that adds an extra message exchange
phase. In spite of the added time complexity, the experiments
confirm that our extension and some other implementation
heuristics non-trivially boost the speed to reach consensus.
Furthermore, we describe an interesting relationship with
a totally different protocol, which explains why the speed-
up holds and improves also under particularly bad network
conditions. As a consequence, our contribution turns out to be a
viable and energy-efficient alternative for critical applications.

Keywords-randomized consensus; wireless networks; mes-
sage omissions; asynchrony

I. INTRODUCTION

Consensus is a generic abstraction for activity coordi-
nation in distributed environments, where nodes propose
some local value and then they all reach the same result.
In several emerging wireless scenarios, the nodes’ ability
to perform coordination tasks is of growing interest due to
various practical applications. Car platooning in vehicular
networks and computing with swarms of agents are just few
examples. The first is aimed at grouping cars and making
them agree on a common speed, in order to improve highway
throughput. The second enables a set of agents to self-
coordinate to take advantage of the collective behavior, and
its usage spreads from the control of unmanned vehicles to
sensor monitoring and actuation. In these settings, since the
presence of faults can neither be disregarded nor prevented,
it becomes necessary to tolerate them using appropriate
protocols.

Fault-tolerant consensus protocols have been matter of
research for decades. Proposals have been made for a range
of timing models, from synchronous to asynchronous. The
asynchronous model allows for the most generic implemen-
tations as it avoids any sort of timing assumptions, increasing
the resilience to unplanned delays (e.g., because of node or
network overloads). However, it is bound by an impossibility

result that prevents the deterministic solution of consensus
in presence of one faulty node (FLP result) [2]. In any case,
even increasing the assumed synchrony is not a panacea,
if the communication among nodes is not reliable. Under
the dynamic omission failure model, a majority of nodes
cannot deterministically reach consensus if more than n− 2
omission faults can occur per communication step, in a
synchronous system with n nodes (SW result) [3]. Due to
this restrictive result, this model has not been used often,
even though it captures well the kind of failures that are
observed in wireless ad hoc networks. For instance, dynamic
and transient faults caused by environmental conditions, and
the temporary disconnection of a node.

Over the years, several extensions to the asynchronous
model have been proposed to evade the FLP result: ran-
domization is one of these [4]. Only recently, has this same
technique been successfully applied to circumvent the SW
impossibility result [5]. Randomization however has always
been considered a significant theoretical achievement, but
much less a practical one. According to many theoretical
studies, randomized consensus protocols are inefficient be-
cause of their expected high time and message complexities.

In this paper, we argue and provide evidence that it is
possible to build randomized protocols smartly, so that they
represent a feasible and practical alternative in wireless
environments. Firstly, we analyze the performance of the
randomized protocol [5], which has been built for the
dynamic omissions failure model. Currently, there is a lack
of experience on the implementation and evaluation of
protocols for this model. The selected protocol has some
nice characteristics, such as ensuring safety despite of an
unrestricted number of omission faults, and liveness when
the number of such faults is less than some bound. Secondly,
we propose an extension to the protocol, in particular the
addition of an extra message exchange phase (a third phase).
Results show that even though our new solution slightly
worsens the best case scenario, it allows significant improve-
ments in all the other cases, even in presence of bad network
conditions. In this last case, the algorithm is sometimes even
faster than under normal network conditions. We explain
such unexpected result by showing a connection between our
protocol and a previously studied other form of consensus. In
the end, the reached speed-up translates not only into lower
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latencies, but also into less broadcasts, less network usage,
thereby enabling our extended protocol to be practical for
both time and energy critical environments.

The rest of this paper is organized as follows: in Section II
we give a roadmap of the research work in the area; in
Section III we describe the system model that underlies our
algorithm; in Section IV we briefly detail the k-consensus
problem; in Section V we present the extended algorithms,
with a detailed explanation of each step; in Section VI
we sketch the proof of correctness of the algorithms; in
Section VII we supply the results of several experiments,
justifying them; in Section VIII we shortly discuss our result
and outline some directions for future research.

II. RELATED WORK

Consensus plays a pivotal role in distributed computing,
particularly when a system needs to cope with accidental
faults (e.g., node crashes). The use of randomization in
this context arose due to the necessity to circumvent the
well know FLP impossibility result [2]. The first seminal
works that used this technique were due to Ben-Or [6]
and Rabin [7]. Both of them provided protocols to deal
with arbitrary node faults, which terminate in an expected
exponential number of rounds. Later, Bracha [8] published
an optimal protocol to cope with fail-stop processes based on
a local coin paradigm. Cachin et al. [9] presented the ABBA
protocol for Byzantine agreement, resorting to the shared
coin paradigm and asymmetric cryptography operations. A
more detailed survey on this class of protocols is available
in [4].

To the best of our knowledge, research in randomized
protocols has been mostly theoretical, probably because of
their exponential complexity. Moniz et al. [10] made a
detailed performance comparison between ABBA (for the
shared coin class) and Bracha (for the local coin class)
protocols. According to their results, the local coin proto-
col outperformed the shared coin protocol when there is
high availability of network bandwidth, which is typical
in a LAN. When the bandwidth becomes smaller and the
communication delays increase, as in WANs, the cost of
cryptographic operations is less important and the shared
coin protocols can take advantage of their constant expected
running time. The same authors also did an evaluation of a
speed agreement algorithm in the context of car platooning,
using a stack of intrusion-tolerant protocols [11]. Another
interesting evaluation is conducted in [12]. A deterministic
algorithm for atomic broadcast is tested under high load, in
order to chase (without success) the FLP result.

In this paper, we study a different type of randomized
protocol [5], which was designed to work under the dynamic
omissions failure model. We also propose a set extensions,
including a third phase which, contrarily to intuition, results
in a new version of the protocol much more efficient in many
practical circumstances. The omission failure model was

proposed to show that a reliable asynchronous system is not
so different from an unreliable synchronous one, bounded
by the SW impossibility result [3]. Indeed, [13] provides
a note on their equivalence by simulating one with the
other. Other similar and extended impossibility results can
be found in [14], [15], by reasoning about knowledge [16],
or through a layered analysis of distributed systems [17].
Recently, the work in [5] has been further extended to
accommodate Byzantine failures [18], thus closing the long-
standing open gap in synchronous systems. However, as well
as it happened in any other work that used randomization
against a strong adversary to circumvent an impossibility
result, the complexity of the proposed protocol in the worst-
case scenario is exponential in the number of processes.

III. SYSTEM MODEL

The system is composed by a set of n processes with iden-
tities P = {p0, p1, . . . , pn−1}. It is completely asynchronous
in the sense that there is no upper bound on the delays to
deliver a message and on the relative speeds of processes.
Since our aim is to provide a protocol for wireless networks,
the communication medium is shared among processes and
every transmission turns out to be a message broadcast. It
is assumed that processes are within range of each other.
We consider the dynamic communication failure model [3],
which captures well the nature of communication problems
that may occur, such as dynamic and transient message
omissions. It does not make any assumption about the fault
patterns, it only presupposes that such faults last for a finite
period of time. What may happen is that a process omits a
message broadcast or fails to receive a message. The first
case might be due to a process that crashes or is temporarily
disconnected, and the second case can be related to collisions
or environmental noise.

IV. THE CONSENSUS PROBLEM

The k-consensus problem considers a set of n processes
where each process pi proposes a binary value vi ∈ {0, 1},
and at least k > n

2 of them have to decide on a common
value proposed by one of the processes. The remaining n−k
processes do not necessarily have to decide, but if they do,
they are not allowed to decide on a different value. Our prob-
lem formulation is designed to accommodate a randomized
solution and is formally defined by the properties:
• Validity: If all processes propose the same value v, then

any process that decides, decides v.
• Agreement: No two processes decide differently.
• Termination: At least k processes eventually decide

with probability 1.

V. THE RANDOMIZED CONSENSUS PROTOCOL

The paper studies two versions of a consensus protocol
(see Algorithm 1). The first corresponds to the protocol
of [5], whose authors proved the correctness but did not
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provide an experimental evaluation. This protocol was orig-
inally built for a synchronous environment, but with the right
receive primitive it can also be used in an asynchronous
setting. The second version is an extension that incorporates
a third phase (darker box in Algorithm 1). We also provide a
sketch of its correctness proof, showing how it can be easily
adapted from the one of the former algorithm.

A. Overall Execution

Computation proceeds in asynchronous rounds. In each
one of these, a process performs a message broadcast of its
status (line 6), and after that, it invokes smart-receive() to
get some messages (line 7). Then, based on the collected
messages, it may perform some local computation (lines
9-36). In our context, smart-receive() can have different
implementations that do not compromise correctness and
will be pointed out later.

The state of a process pi defines the current configuration
and it is composed by a set of internal variables: the phase
number φi ≥ 0 (initially set to 0); the proposal vi ∈ {0, 1}
(initially set to the proposal provided as parameter); the
decision status statusi (initially is undecided).

In the protocol execution, there is a difference between the
concepts of round and phase. A round corresponds to a full
iteration of the while loop, starting from line 5 and ending in
line 37. A phase is implemented as a process’ local variable
(φi), whose value increases monotonically as enough good
messages are received, namely when a process is able to
update its state (line 32). Processes do not necessarily have
the same phase while they execute consensus concurrently.
A process may be temporarily outside the communication
range of the others, thereby being unable to make progress
and to increase the phase number (but continues to execute
the loop). However, due to the transitory nature of such
situation, as soon as it is able to receive messages, possibly
carrying a phase higher than its, it can catch up immediately
with the other processes by updating the state (lines 9-13).

In more detail, after broadcasting the state, the process
blocks in smart-receive to obtain some messages (line 7).
This function returns a set M of messages, all of which
are stored in a vector Vi (line 8), if not yet received (this is
implied by the union which avoids storing duplicates). More
than n

2 of these are needed to pass successfully through the
main if and make progress (line 14). Indeed, after the if, no
matter what happens next, the process at least updates its
state by increasing the phase (line 32).

Now, the process executes instructions in the black box,
the extra phase that we call Pre-Prepare Phase, because the
current phase number is φi = 0. This preliminary phase
was added to help processes converge rapidly to a decision.
Basically, a process sets the local proposal value to a (weak)
majority of the proposals carried in the messages (if there
is a tie, the process selects value 0). We will show that
if processes start with divergent proposals (some of them

with 0 and others with 1), this additional step makes most
(possibly all) of them choose an equal value before moving
to the next phase (line 32).

After receiving enough messages, the process executes
the second phase (lines 16-22), that we call Prepare Phase,
because φi = 1. Here, if more than n

2 messages carry the
same proposal value v, then the process updates the local
proposal to this majority value (line 18). Otherwise, the
process chooses the default value ⊥ /∈ {0, 1} (line 20). One
should note that this procedure ensures that if any other
process pk sets vk ∈ {0, 1}, then vk will be equal to vi

because of the strong majority imposed by n
2 (line 17).

Before moving to the next round, the process increases the
phase number (line 32).

In the third phase, φi mod 3 = 2, called Decision Phase,
the process tries to make a decision (lines 22-31). If it re-
ceives more than n

2 messages with the same value (different
from ⊥), then it is allowed to decide on that value (line 24,
27 and then lines 34-36). Moreover, there is the guarantee
that if any other process decides, it will do it for the same
value because of the imposed strong majority of more than
n
2 messages with the same value. If all messages carry as
proposal ⊥, meaning that no process has a preference for
a decision value, then the process sets the proposal to an
unbiased coin that returns 0 or 1 with equal probabilities
(line 29). Eventually, after some rounds, with probability 1
enough processes will get the same coin value that will allow
the protocol to make a decision.

B. Receive Operation

A process pi blocks in the smart-receive() operation to
collect messages in order to make progress in the protocol
execution (either by entering the if in line 9 or 14). However,
as there may be omission failures, the process does not
know how many messages may arrive in a given round,
and therefore a timeout mechanism must be implemented
inside the smart-receive(). When the timeout expires, even
if not enough messages have been delivered, the operation is
required to return (the reader should note that the use of this
timeout does not violate our asynchronous assumption, as it
is local and could be implemented with a simple counter).
This allows the process to initiate a new round, where the
status message is retransmitted (line 6), and then pi can wait
for the reception of a few more messages (line 7). Since this
procedure is carried out by all processes, eventually pi will
get sufficient messages to advance.

Consequently, a careful implementation of this operation
is fundamental to achieve good performance because it
defines the instants when progress can be made and how
often messages are broadcast. We adopted and evaluated two
strategies in our current implementation.

In the first strategy, the operation waits for the arrival
of bn

2 + 1c different messages with the same phase of the
process (or for the timeout to expire). As soon as this amount
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Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}
φi ← 0;1
vi ← proposali;2
statusi ← undecided;3
Vi ← ∅;4

while true do5
broadcast(mi := 〈i, φi, vi, statusi〉);6

M← SMART-RECEIVE(timeout);7
Vi ← Vi ∪M;8

if ∃ 〈∗, φ, v, status〉 ∈ Vi : φ > φi then /* Catch-Up Block */9
φi ← φ;10
vi ← v;11
statusi ← status;12

end13

if |{m ∈ {〈∗, φi, ∗, ∗〉} ⊆ Vi}| > n
2

then14

if φi mod 3 = 0 then
vi ← max

v∈{0,1} |{m ∈ {〈∗, φi, v, ∗〉} ⊆ Vi}|;
else

/* Pre-Prepare Phase φi (mod 3) = 0 */

15

if φi mod 3 = 1 then /* Prepare Phase φi (mod 3) = 1 */16
if ∃ v ∈ {0, 1} : |{m ∈ {〈∗, φi, v, ∗〉} ⊆ Vi}| > n

2
then17

vi ← v;18
else19

vi ← ⊥;20
end21

else /* Decision Phase φi (mod 3) = 2 */22
if ∃ v ∈ {0, 1} : |{m ∈ {〈∗, φi, v, ∗〉} ⊆ Vi}| > n

2
then23

statusi ← decided;24
end25
if ∃ v ∈ {0, 1} : |{m ∈ {〈∗, φi, v, ∗〉} ⊆ Vi}| ≥ 1 then26

vi ← v;27
else28

vi ← coini();29
end30

31

φi ← φi + 1;32
end33

if statusi = decided then34
decisioni ← vi;35

end36
end37

Algorithm 1: The 3-Phase Consensus Protocol.

is received, the function immediately returns. Other mes-
sages received with that phase (in the next rounds) will be
considered old and discarded. To simplify the calculations,
we always set the timeout to 10ms. We call this option
Immediate Progress (ip).

In the second strategy, which we call No Immediate
Progress (no-ip), the operation waits for all messages that
may arrive in a timeout period, possibly much more than
n
2 . After the timeout expires, the operation returns this

whole set of messages. Here the timeout value is more
critical as we want to wait for a set of messages, such that
bn

2 + 1c ≤ |M| ≤ n, but without wasting too much time if
messages get lost. In our experimental environment, it was
found that timeout = n× 1.25 ms provides good results.

It is clear that having such static timeouts is not the
best option, and things like network load should be taken
into consideration. Therefore it would be useful to devise
mechanisms to adapt the timeouts to the current network
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conditions. However, this topic falls outside the scope of this
paper and will be matter of future investigation. For instance,
the work of [19] could be used as a starting point, since it
is proposed a pro-active method for checking the network
quality of service and estimating the timeout accordingly.

C. Protocol Termination

It is worth to notice that the protocol guarantees termi-
nation, in the sense that consensus is eventually reached,
but it does not (and cannot) stop the execution. Here the
problem is that when a process decides, it must keep on
broadcasting its status to let the others decide. Furthermore,
even if it learns that everyone has decided, the process is
not allowed to terminate because someone else may have
not received its decision status and would never terminate.
Again, even if everyone else had received it, no process
would be sure that any other process knows that they all
reached consensus. In summary, this is the classic prob-
lem that arises in any unreliable message-passing systems,
and which is impossible to solve through a finite number
of message exchanges, without further assumptions. More
precisely, as it has been formally proved in [17], in such
systems the processes are unable to attain the required level
of knowledge (i.e. common knowledge) about consensus
termination, to stop sending messages safely.

One solution to this problem is to use a centralized node
that is informed when any process decides, and then tells
everyone that they should terminate when enough processes
have finished. This approach has several limitations, such
as how to address the failure of the centralized node. In
our implementation, we resorted to a pragmatic solution
that is based on giving sufficient time after decision for the
processes to terminate. In more detail: a process continues to
broadcast up to a certain time after decision (1 second); then,
the process is allowed only to receive messages, to empty its
network buffer; if no message is received for some interval
(2 seconds), then the process terminates the consensus.
Clearly it is a far from being a perfect solution, but it worked
very well in our experimental setting. Additionally, it did
not impact the evaluations because the utilized metric was
the latency (defined in the next section). The same applies
to the case when we count the number of rounds to reach
consensus, because counting is stopped by that time.

VI. CORRECTNESS

As previously underlined, the algorithm is an extension
of the one proposed in [5], hence its correctness follows
almost immediately from it. For this reason, we only sketch
the proofs for the sake of completeness.

Firstly, we give some straightforward hints on why the
asynchronous model does not represent a problem and
why the usage of timeouts does not contrast with it. By
simply looking at the algorithm, it is clear that there is
no time assumption, but the solely presence of a timeout.

The computation of each process is thus message-driven,
and not directed by clock-synchronization, in the sense
that they need either a single message carrying a larger
phase or more than n

2 of them with the same phase to set
some value and go ahead. The algorithm however does not
have any mechanism to detect failures (message dropping).
Therefore, a process cannot determine if a message has not
been delivered because it travels too slowly or because it
was dropped. The use of a timeout is sufficient to solve this
issue, by making the sender broadcast the same message
infinitely often, if it is unable to hear anything from (enough
of) the other processes. The timeout does not violate any
asynchrony assumption because it does not necessitate any
synchronization with global time. As stated in [20], it can be
implemented locally, following just the process’ local clock,
by a simple (instruction) counter. The only drawback of this
implementation is that the rebroadcast operation is static and
timeout-driven, so in practice it could overload the network.
However, there exist ongoing works, aimed at overcoming
such inefficiency by dynamically linking the timeout to the
network conditions (see [19]).

For what concerns the correctness proof, we divide it
into two branches: safety and liveness. The safety part is
straightforward because the algorithm has been designed to
be always safe no matter what the time requirements, the
number of omissions and their patterns are. So, starting from
an initial safe state, either it does not make any progress (it
does not receive enough messages for the computation to
evolve to higher phases), thus remaining in a safe state, or it
does, but without ever executing a step that might bring two
processes to divergent decisions, thereby preserving safety.

The liveness part is a little more complicated because it
must deal directly with the main feature that characterizes
our model: the presence of dynamic and transient mes-
sage omissions. It must be guaranteed that the processes
receive enough messages to make progress despite omis-
sions. The transient aspect ensures that this requirement is
met: processes may be unable to communicate properly for
an arbitrarily long period of time, during which the best
they can do is to avoid taking wrong decisions (perhaps
stubbornly probing the channel’s status), but eventually the
network conditions get better to allow them to complete the
task. The dynamic aspect is instead aimed at generalizing
the particular pattern that the omissions can have (e.g.,
distributed among the processes or concentrated to few
ones). The bound on omissions to ensure progress, no matter
their pattern, is f ≤ dn

2 e(n−k)+k−2 (if all the processes
must decide, then k = n and f ≤ n−2). Since our algorithm
is an extension, such bound holds also in our case, but we
refer to [5] for a more complete and formal explanation of
liveness.
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A. Safety

Theorem 1 (Validity). If all processes propose the same
value v, then any process that decides, decides v.

Proof Sketch: Each process has its proposal initialized
to the same value v. After the (perhaps repeated) message
exchange, as all the messages contain the same value v,
processes get the same (weak) majority in the pre-prepare
phase, thus setting their local proposal to the same majority
value (value set in the box). Then, they wait to receive more
than n

2 messages for the prepare phase (line 14), where they
get the same strong majority thus setting the same value
(line 18). Subsequently, they again wait for more than n

2
messages, all of them with the same value v, and they decide
on v (lines 24, 27 and 35).

Theorem 2 (Agreement). No two processes decide differ-
ently.

Proof Sketch: By contradiction, suppose they take
different decisions, respectively on v0 and v1. This cannot
happen when a process catches up with another one that is
executing a later phase, by copying its state (line 9). So,
there are two cases.

1) They decide in the same phase. Then it must be that
they received a strong majority of messages (line 23) for the
decided values with the same phase number φ. So, it must be
that at least one process broadcast two messages with two
different proposals. As all processes follow the algorithm
faithfully, this is clearly a contradiction.

2) They decide in different phases. In this case, one
should notice that in the prepare phase each process sets
its proposal either to a value contained in a strong majority
of the received messages (in that phase), or to a default
value ⊥. So, in the decision phase, the only values allowed
are the default ⊥ and a single binary value, either 0 or 1
(but not both of them). The first process that decides on
a value, receives a strong majority for that value in the
decision phase. Therefore, all the other processes in the same
phase receive at least one message with that value. As a
consequence, any other process can either decide that value
in that phase, or can just set its proposal to that value (line
27, without tossing a coin). The decision of a process thus
locks a particular value, which is the only one that can be
proposed and decided by all processes in subsequent phases.
For this reason, the process supposed to take a different
decision is a clear contradiction.

B. Liveness

In the next, we say that a process can make progress, each
time it is able to execute either line 10 or line 32, a new
phase. In the first case, the process makes progress when
it receives at least one message carrying a phase number
higher than its, by copying all the information to its state.

In the second, it receives a set of messages from more than
half of the processes carrying the same phase number of its.

Lemma 1. If a process has phase φ, then there are more
than n

2 processes with phase at least φ− 1.

Proof Sketch: Consider the first process that sets its
phase to value φ. Then it must have received more than n

2
messages with phase φ − 1. Hence there are more than n

2
processes with phase at least φ− 1

Lemma 2. If a process has phase φ, then there will be at
least k > n

2 processes with phase at least φ− 1.

Proof Sketch: By lemma 1 more than n
2 processes (call

their set A) have phase at least φ− 1, we have to show that
eventually also k−|A| other processes reach that phase. Sup-
pose by contradiction that they cannot. Then all messages
from A to all the other processes must be dropped. In this
setting, we can rewrite the number of processes as composed
by the following groups: n = |A| + (k − |A|) + (n − k).
Therefore the number of omissions should be

|A|(n−k)+|A|(k−|A|) > n

2
(n−k)+|A|(k−|A|) (1)

for k−|A|,|A|>0 ≥ n

2
(n−k)+(|A|+k−|A|−1) (2)

=
n

2
(n−k)+k−1 (3)

> f (4)

As the number of omissions exceeds the bound given above,
this is a contradiction, so eventually k processes have phase
at least φ− 1.

Lemma 3. If at least k > n
2 processes have phase at least

φ, then some process in the system must eventually increase
its phase value.

Proof Sketch: Our system can be described by three
sets. A is the set of processes with phase greater than φ, B
is the set of those with phase φ, and C is the set of those
with phase smaller than φ. The cardinality of each set is
a, b, c respectively, such that: a + b = k. By contradiction,
suppose that no process ever increases its phase. Therefore:
1) no message from A must reach either B or C; 2) no
message from B must reach C; 3) if there are more than
n
2 processes in either A or B, they must be prevented from
exchanging enough messages among themselves. For what
concerns 1) and 2), the number of omissions that must
be imposed is at least ab + ac + bc = c(a + b) + ab =
(n − k)k + ab > n

2 (n − k) + ab. Now, let us compute a
bound for ab. If either A or B is empty, then ab = 0, but
the other set contains k > n

2 processes that, by exchanging
messages among themselves can still make progress. So, in
this case, at least k omissions (one for each process when
k is minimal) are necessary. If otherwise none of them is
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empty, then a, b > 0 so ab > a+b−2 = k−2. In either case,
the total number of omissions required exceeds the bound
f given above. This is a contradiction, so eventually some
process increases its phase value.

Lemma 4 (Progress). If φ is the highest phase reached in
the system, then eventually some process sets its phase to
φ+ 1.

Proof Sketch: As there is at least one process with
phase φ, according to lemma 2, there will eventually be
k > n

2 processes with phase at least φ− 1. Our system can
thus be described by three sets. A is the set of processes
with phase φ, B is the set of those with phase φ − 1, and
C is the rest of the system. The cardinality of each set is
a, b, c respectively, such that: a > 0, a+b = k. According to
lemma 3, since there are k processes with phase at least φ−
1, some process must increase its phase value. In the worst-
case, by applying the lemma repeatedly, we have that C gets
empty, so processes in B must necessarily start increasing
their phase value. When B gets too small, |B| < k, we can
apply lemma 3 to processes in A, that all have phase φ.
Again, in the worst-case, we have to wait for B to become
empty. Anyway, as soon as all processes have phase φ, at
least one of them must eventually set its phase value to φ+1.

This lemma is very important because it proves that,
as soon as the bound on the omissions is respected, the
processes are guaranteed to be able to make progress,
thereby reaching an arbitrarily high phase. However, it is
important to recall from the impossibility results in [2],
[3] that making progress is not a sufficient condition for
the processes to reach consensus. Indeed, they demonstrate
that processes can make progress infinitely often, by touring
across bivalent system states, in which no safe decision
can ever be taken. What makes consensus possible (i.e.
terminate) is randomization, and the termination property
is sketched in the following theorem.

Theorem 3 (Termination). At least k processes eventually
decide with probability 1.

Proof Sketch: By contradiction, suppose that no pro-
cess ever takes a decision, but everyone can make progress
(see lemma 4) infinitely often. In the decision phase, each
process can either set its proposal to a binary value present
in some message or to a random one, by tossing a coin. By
means of arguments provided in previous proofs in relation
to the quorum of messages received, even if no decision
takes place, it is only one (if any) the binary value that each
process is allowed to set in the decision phase. So, we can
partition the processes into two groups: (A) processes that
set the same value, (B) processes that toss a coin. If B
is empty, then the processes set the same value v. Since v
becomes the only value proposed, it is the only one that

can be decided in the next phases. By lemma 2, 3 and
4, there are at least k processes able to make progress,
so at least k that reach a decision. If B is not empty,
then there is a non-zero probability that these processes get
the same binary value of the processes in A, after tossing
a coin, with p = 2−|B|. Since processes make progress
infinitely often, if (by assumption) they do not decide, they
eventually have to toss a coin infinitely often. However, the
probability of not setting the same value is asymptotically
limphase→∞(1 − p)phase = 0. Hence eventually at least k
processes decide.

VII. PERFORMANCE EVALUATION

In this section we evaluate the two versions of the
protocol, stressing how little modifications may produce so
different and perhaps unexpected results.

A. Testbed and Implementation

The experiments were carried out in the Emulab
testbed [21]. All the nodes, located few meters away from
each other, were equipped with a 600 MHz Pentium III
processor, 256 MB of RAM, and the 802.11g D-Link DWL-
AG530 WLAN interface card. The nodes run Fedora Core
4 Linux, with the 2.6.18.6 kernel version.

The protocol versions were implemented in C, and they
used UDP for lower level communication to take advantage
of the broadcast medium. During the evaluations, we ob-
served some omission failures, which in part were due to
collisions caused by our own traffic (the testbed is shared
with other researchers, and therefore, their experiments also
created collisions). Nevertheless, in order to evaluate the
protocols in presence of omissions, we decided to develop
a layer to emulate network losses. Such layer represents
our adversary. The adversary is able to delete a complete
message broadcast and to prevent specific processes from
successfully receiving a message. The decision of which
messages should be discarded is made randomly. The user
can specify different percentages of messages to be removed
at the source and at the destination.

The main metric we use to compare the different ap-
proaches is latency. The latency at process pi is defined
as the interval between the moment the protocol starts and
the instant when the local decision is reached. The latency
of an experiment is the average value of the latencies of
all processes. In the graphs, we present average values of
several experiments to increase the confidence on the results.

B. Experimental Results

1) Uniform proposal distribution: We evaluate the best
scenario in which all processes start with the same (uni-
form) proposal value. As by the consensus specification (see
Section IV), this value is the only one that can be decided.
The two protocol versions reach a decision after 2 phases
in the original version, and after 3 phases in our version. In
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Figure 1: Latency with uniform proposal values.

the experiments, we observed that processes always receive
enough messages to make progress in every round, allowing
termination to be reached in these minimum number of
phases (and with the minimum number of rounds). Fig. 1
shows clearly the increase in delay that the new phase
adds. The slopes of the lines reflect the difference between
executions that require respectively 2n and 3n broadcasts.

2) Divergent proposal distribution: In the rest of the
experiments, we will always consider a divergent initial
proposal distribution among processes (half of them propose
0 while the others propose 1). Before highlighting the dif-
ference in execution speeds between the protocol versions,
we supply some results related to the introduction of the no
immediate progress (no-ip) concept in the smart-receive()
operation. Fig. 2 shows that the concept is important in
enhancing performance (smaller latency is better).

In a context where initial proposals differ from each
other, even though the ip strategy allows a process to make
progress as soon as possible, this will (very probably) lead
to nowhere. In order to make progress towards a decision, a
process needs more than n

2 messages with the same value to
avoid default values (line 20) and random choices (line 29).
Therefore, with ip, the process needs to be lucky with the
order of the messages it receives to converge to a decision.
On the other hand, with no-ip, waiting for more messages
allows one to exploit the power of random choice to bias
the proposals toward a particular value.

Let us clarify this issue with an example in a fault-
free scenario. Suppose that n is even, n ≥ 4 and pro-
cesses have divergent proposals. Since there is no strong
majority, all of them will be compelled to toss a coin
(line 29, with or without immediate progress) after run-
ning the first two or three phases, depending on the
protocol version. Now, let V [i], 0 ≤ i ≤ n − 1 be
a vector with the new proposals and consider the event
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Figure 2: Evaluation of the smart-receive() strategies.

E := {
∑n−1

i=0 V [i] equals
∑n−1

i=0 1 − V [i]}. After one coin
tossing we have that P (¬E) > P (E), hence: (1) proposals
tend to be equally distributed between the values, but (2) the
chances to get a strong majority overtake the others (more
and more as n increases). Therefore, with no-ip processes
will probably progress toward consensus because of (2),
while with ip it would be very difficult for processes to
notice a strong majority (among only bn

2 + 1c messages
received) in the first phase because of (1).

3) The addition of the third phase: The addition of an
extra phase has potentially several drawbacks. Namely, it
increases the network usage because consensus can only
be reached in phases that are multiple of 3 rather than 2.
The results in Fig. 3 show instead that the 3-phase protocol
overwhelms the 2-phase one in both strategies.

Actually, the third phase represents a smart algorithm
design that at first might escape our (theoretical) analysis.
Without this phase, a process needs to receive more than n

2
messages with the same value to set its proposal (line 18)
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Figure 3: The impact of the third phase.

and eventually decide (line 24). However, according to all
possible configurations, it is unlikely that such strong major-
ity occurs, even more with a divergent proposal distribution.
This situation forces a lot of processes to set default (line 20)
and random values (line 29), preventing them from deciding
and making them start all over again. The problem here is
that messages end up being discarded too easily and with
little consideration, without exploring as much as possible
the information being transmitted.

This is what the third phase does – it uses better the
data carried in the messages, to allow progress towards
a decision much sooner. In the original protocol, the first
prepare phase was intended to make the processes set the
same value (lines 16-22), while the second decision phase
was to let them learn and decide on this value (lines 22-31).
Our third phase is executed just before these two (resulting
in an extra pre-prepare phase), and it relaxes the need of a
strong majority. Although more than n

2 messages are always
needed to make progress, here there is no other requirement:

a process sets its proposal to the majority value received
(and in case of a tie selects value 0). Clearly, it is not
true that the processes will always set their proposal to the
same value, since this depends on the ordering of message
arrival. Nevertheless, since processes share the same wireless
medium, reordering is expected to be small and all processes
should receive approximately the same set of messages.
Hence, if there is a value that is predominant in the set, this
enables lots of processes (if not all of them, in expectation)
to pre-set that value. Therefore, this has a positive influence
on the subsequent phases, improving convergence. Indeed,
our experiments show that most of the times consensus is
reached in few rounds.

4) Performance under failure scenarios: The three-phase
version outperforms the original protocol in presence of an
adversary that creates various sorts of omission failures.
Such adversary may make a process discard an entire broad-
cast (causing n receive events to be lost), with probability
Ps, or may cause a single message omission at a specific re-
ceiver, with probability Pr. The probabilities that were used
in the experiments are: Ps = 0.1 and Pr = 0.3, abbreviated
as adversary adv-1-3; and P ′s = 0.3 and P ′r = 0.6, abbrevi-
ated as adversary adv-3-6. According to these probability,
defining the event E := {message reaches destination},
P[E ] = (1 − Ps)(1 − Pr) = 0.63 and P ′[E ] = (1 −
P ′s)(1 − P ′r) = 0.28. Adding up to these failures, we
should not forget that there is already some packet loss due
to wireless links and the (unreliable) UDP protocol. The
experiments show that these omissions are almost null with
a few processes but they can increase up to 30% of the traffic
with 16 nodes. The results with such severe conditions are
visible in Fig. 4 and Fig. 5.

A curious latency trend is visible in the figures, where
often it decreases when the number of nodes is raised from 4
to 7 and from 10 to 13. This is due to the majority threshold
of bn

2 + 1c. While the number of processes is always
increased by 3 units, the majority threshold increases less
regularly. More specifically, it increases in 1 unit in those
previous cases, and in 2 units in the others. Furthermore, the
ratio between majority and number of processes turns out to
decrease in those cases and to increase in the others.

It is also possible to notice that the 4 nodes configuration
in the 2ph-ip-adv-3-6 experiment has particularly high la-
tency. This setting is very sensitive to packet dropping, and
therefore, nodes need to perform more broadcasts, most of
which are duplicates (retransmissions of their status).

It is noteworthy to consider something unexpected –
the adversary adv-1-3 can make the 2-phase protocol with
immediate progress go faster (compare Fig. 3 with Fig. 4).
This is not (only) due to the entire broadcasts that are
discarded, thereby reducing wireless medium contention,
and therefore improving message delivery. According to the
test data retrieved in those cases: less phases and less broad-
casts are needed to reach consensus; less status information
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Figure 4: Immediate Progress in presence of an adversary.

is sent and received for every phase; more phase jumps
occur due to the arrival of messages with higher phase;
few processes reach decision by themselves. Therefore, what
happens is that, in every phase, fewer processes are able
to make progress and, as soon as they update their status
and broadcast it, other processes that were left behind can
immediately catch up with them, learning by copying their
status (lines 9-13). It is this copy that boosts the decision
procedure because processes use it as a sort of pre-prepare
phase, avoiding setting default and random values.

In any case, though more onerous in theory, our phase
extension enables the processes to complete the task even
more quickly in all the cases and, above all, provides results
much more stable, less subject to relevant changes due to
the lower number of coin flips induced.

C. An interesting relationship

In [22], a deterministic version of a randomized wait-
free shared-memory consensus algorithm is proposed and
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Figure 5: No Immediate Progress in presence of an adver-
sary.

analyzed. The intention of the paper is to show that random-
ization helps even if it is not present inside the algorithm but
rather in the environment itself. More precisely, the system
is not asynchronous but each process takes a random time
(characterized by a random variable X , different for each
process) to complete each operation. The result holds also
if these random variables do not have a finite expectation.

As for every binary consensus algorithm, each process
prefers either 0 or 1. The decision is settled by means
of a race. There are two arrays (each one representing
a binary proposal 0 or 1) of atomic read/write registers,
accessible to all processes, starting from their first position.
The computation of each process proceeds in rounds, whose
number is used as offset to address the correct register
position in the array. At every round, a process computes
the location of the registers in the two arrays. If one of these
registers has a bit raised, the process updates its proposal to
the value that the array represents. Otherwise it raises a bit
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TABLE I: AVERAGE NUMBER OF ROUNDS IN WHICH 16 PROCESSES
REACH CONSENSUS IN A 802.11B NETWORK AND CONFIDENCE LEVEL
OF 95%.

Group Average Termination Round
Size = 16 ± Confidence Interval

2ph-ip 17.80± 1.48
2ph-no-ip 8.99± 0.49

2ph-ip-adv-1-3 10.23± 0.63
2ph-ip-adv-3-6 7.21± 0.35

2ph-no-ip-adv-1-3 6.60± 0.23
2ph-no-ip-adv-3-6 6.00± 0.15

3ph-ip 6.85± 0.28
3ph-no-ip 4.60± 0.16

3ph-ip-adv-1-3 5.50± 0.23
3ph-ip-adv-3-6 4.90± 0.21

3ph-no-ip-adv-1-3 4.60± 0.18
3ph-no-ip-adv-3-6 4.30± 0.13

in the register of the array corresponding to its proposal. At
this point, of the two registers localized at the same position
p (indicated by the round/offset) in each array, only one has
a bit raised, and the process has its proposal set to the array
to which this register belongs. Then the process checks if
the register in position p − 1 of the array representing the
other proposal is not set. If it is not, it can safely infer that its
computation has fallen ahead the one of the other processes,
and can safely decide on its own proposal. Otherwise it
increases the round number and repeats the procedure.

This algorithm obviously does not work if processes run
in lock-step (synchronized) execution, because none of them
may eventually be able to impose its proposal to the others.
However, by leveraging on the random execution time of the
operations, it is likely that the computation of the processes
gets dispersed in time and space. In particular, as proven
in [22], there is one process (the leader) that emerges faster
than the others, decides on its proposal, and makes the others
(learners) set and decide on the same value.

Our model and algorithm are clearly very different from
the ones just presented. Yet we can provide evidence of a
very simple relationship. The crucial part in our algorithm is
due to the lines 9-13, where a process, once it has received
a message carrying a later phase, just copies (learns) the
sender’s state and possibly also its decision. Therefore, if
a particular process is allowed to get/send messages and
to make progress immediately, it would (unconsciously)
rise to a leader position, dictating its proposal to the other
processes. In our practical situation, the more processes start
a phase with the same proposal, the more likely is for them
to get good quorums and decide immediately.

This relationship is evidenced in the evaluation section,
particularly in presence of an adversary. By dropping mes-
sages, the adversary indeed worsen the network situation,
but makes more probable that few lucky processes come up
being faster. By looking at the latency results, it can be seen
that the 2-phase algorithm turns out to be quicker under bad

network conditions. This may not be noticed for the 3-phase
version, because of its added time complexity and the need
to rebroadcast messages. Nevertheless, it is observable by
dealing with a different notion of speed, namely the number
of rounds needed to reach consensus. In this case, it is clear
(see Table I) that this relationship indeed exists, and that
message dropping can be leveraged either to make a leader
rise quickly, or at least to reduce the number of processes
involved in the decision process, and so its complexity.

VIII. CONCLUSIONS

The paper provides evidence of the practicality of ran-
domized consensus protocols. Even though such protocols
have a high theoretical complexity, the experiments show
that performance can be significant even with high failure
rates. This is particularly true in realistic scenarios where a
small number of processes is being used and if algorithms
are carefully engineered to be as efficient as possible. A
protocol previously presented in the literature, which aimed
at solving consensus in wireless environments, has been
analyzed and extended. We show how these extensions
can exploit the available information about the state of the
system in order to increase performance. The result is a
protocol that is much faster in terms of latency, more thrifty
in terms of messages and hence of network usage, properties
that make if effective for time and energy constrained
environments. Also, we discuss an interesting connection
with a different protocol, which was formally proved to be
fast. In the future we plan to carry out extensive comparisons
with other consensus protocols under the unreliable network
communication model.
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