
Motion Planning of Autonomous Agents Situated in Informed Virtual Geographic
Environments

Mehdi Mekni
Department of Computer Science

Sherbrooke University
Sherbrooke, Canada

Email: mmekni@gmail.com

Abstract—Multi-Agent Geo-Simulation (MAGS) aims to sim-
ulate phenomena involving a large number of autonomous
situated actors (implemented as software agents) evolving and
interacting within a Virtual representation of the Geographic
Environment (VGE). Motion planning is a critical issue since
it corresponds to one of the most important activities of
agents moving in a complex and large-scale VGE. There is
also a need for an accurate representation of the environment
in order to support efficient path planning computation as
well as reactive navigation for the detection and avoidance
of obstacles and other agents. In this paper, we propose a
semantically informed and geometrically precise virtual geo-
graphic environment method which allows to use Geographic
Information System (GIS) data to automatically build an
informed graph structure called Informed Virtual Geographic
Environmnt (IVGE). Furthermore, we propose a topologic
abstraction algorithm which builds a Hierarchical Topologic
Graph (HTG) describing the IVGE and a Hierarchical Path
Planning (HPP) algorithm which uses this graph. In addition,
we propose a graph-based neighborhood structure in order
to support motion planning of autonomous agents taking into
account the characteristics of the IVGE.

Keywords-Informed Virtual Geographic Environment
(IVGE); Hierarchical Path Planning (HPP); Navigation and
Collision Avoidance;

I. INTRODUCTION

During the last decade, the Multi-Agent Geo-Simulation
(MAGS) approach has attracted a growing interest from
researchers and practitioners to simulate phenomena in a
variety of domains including traffic simulation, crowd simu-
lation, urban dynamics, and changes of land use and cover, to
name a few [3]. Such approaches are used to study phenom-
ena (i.e., car traffic, mobile robots, sensor deployment, crowd
behaviours, etc.) involving a large number of simulated
actors (implemented as software agents) of various kinds
evolving in, and interacting with, an explicit description of
the geographic environment called Virtual Geographic Envi-
ronment (VGE). Nevertheless, simulating such autonomous
situated agents remains a particularly difficult issue, since
it involves several different research domains: geographic
environment modelling, spatial cognition and reasoning,
situation-based behaviours, etc. The autonomy of an agent is

defined by its capacity to perceive, act and decide about its
actions without external governance [23]. One of the most
fundamental capacities of a situated autonomous agent is its
ability to navigate inside a VGE while taking into account
both the agent’s and the environment’s characteristics. When
examining situated agents in a VGE, whether for gaming or
simulation purposes, one of the first questions that must be
answered is how to represent the world in which agents
navigate [25]. Since a geographic environment may be
complex and large-scale, the creation of a VGE is difficult
and needs large quantities of geometrical data describing
the environment characteristics (terrain elevation, location of
objects and agents, etc.) [20] as well as semantic information
that qualifies space such as buildings, roads, parks, as
illustrated in Figure 2. Hence, a situated autonomous agent
should consider the semantic information that qualifies the
geographic environment in which and with which it interacts.
Current approaches usually consider the environment as a
monolithic structure, which considerably limits the way that
large-scale, real world geographic environments and agent’s
spatial reasoning capabilities are handled [19].

Path planning is a typical spatial reasoning capability for
situated agents in VGE [22]. The problem of path planning
in MAGS involving complex and large-scale VGEs has to
be solved in real time, often under constraints of limited
memory and CPU resources [6]. Classic path planners pro-
vide agents with obstacle-free paths between two positions
located in the VGE. Such paths do not take into account the
environment’s characteristics (topologic and semantic) nor
different agent categories and capabilities [5]. For example,
classic planners assume that all agents are equally capable
to reach most areas in a given map, and that any terrain
portion which is not traversable by one agent is also not
traversable by the other agents. Such assumptions limit the
applicability of these planners to solve a very narrow set
of problems: path planning of homogeneous agents in a ho-
mogeneous environment. A path planning algorithm should
take into account the semantic information that qualifies the
geographic environment in which agents evolve and with
which they interact. Moreover, in navigation applications

226

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(local path planning) which involve several moving agents
that do not know their respective mobility plans, a scheme
for detection and resolution of collision conflicts between
agents becomes mandatory. In this project, our goal is to
address the issue of navigation and path planning for agents
having different capabilities evolving in complex and large-
scale geographic environments.

In order to achieve such a goal, a geographic environment
model should precisely represent geographic features. It
should also integrate several semantic notions characterising
these geographic features. Since we deal with large-scale
geographic environments, it would be appreciable to have
a VGE organised hierarchically in order to reduce the
search space for path planning. Indeed, hierarchical search
is recognised as being an effective approach to reduce the
complexity of such a problem [10]. There is also a need for
autonomous situated agents which are able to plan paths, to
detect and avoid both static and dynamic obstacles located
in the VGE. Static obstacles correspond to areas that are
not navigable for agents such as walls, fences, trees, rivers,
etc. Static obstacles also include obstructions resulting from
terrain elevation. Dynamic obstacles correspond to other
moving agents which are navigating in the VGE.

In this paper, we propose a novel approach to simulate
motion planning of autonomous situated agents in virtual
geographic environments. This approach is composed of
four parts: 1) a geometrically precise and semantically
enhanced virtual geographic environment called Informed
VGE (IVGE); 2) a topologic abstraction algorithm used to
diminish path planning complexity; 3) a Hierarchical Path
Planning (HPP) algorithm to support motion planning of au-
tonomous agents situated in large-scale geographic environ-
ments; and 4) a graph-based structure called Neighborhood
Graph (NG) to address collisions detection and avoidance
between moving agents in 3D virtual environments.

The remainder of this paper starts with a discussion of
related works on geographic environment representation us-
ing data provided by Geographic Information Systems (GIS)
and path planning and navigation in virtual environments. In
Section III, we present our approach to automatically create
an Informed VGE. Section IV outlines a method to enhance
the IVGE description using a topologic abstraction that
reduces the size of the topologic graph and enables building
a hierarchical topologic graph; Section V presents how
we leverage the hierarchical graph structure of the IVGE
model in order to support situated reasoning algorithms such
as hierarchical path planning. Section VI introduces our
model to support navigation in Informed VGE. Finally, we
conclude with a discussion and present future works.

II. RELATED WORKS

In this section we provide a brief overview of prior works
related to environment representation, and path planning and
navigation in virtual environments.

A. Environment Representation

Virtual environments and spatial representations have
been used in several application domains. For example,
Thalmann et al. proposed a virtual scene for virtual hu-
mans representing a part of a city for graphic animation
purposes [8]. Donikian et al. proposed a modelling system
which is able to produce a multi-level data-base of virtual ur-
ban environments devoted to driving simulations [15]. Ali et
al. used a multi-agent geo-simulation approach to simulate
customers’ behaviours in shopping malls [1]. More recently,
Shao et al. proposed a virtual environment representing
New York City’s Pennsylvania Train Station populated by
autonomous virtual pedestrians in order to simulate the
movement of people [20]. Paris et al. also proposed a
virtual environment representing a train station populated
by autonomous virtual passengers, in order to characterise
the levels of services inside exchange areas [17]. However,
since the focus of these approaches is computer animation
and virtual reality, the virtual environment usually plays the
role of a simple background scene in which agents mainly
deal with geometric characteristics. Indeed, the description
of the virtual environment is often limited to the geometric
level, though it should also contain topological and semantic
information for other types of applications. Therefore, most
interactions between agents and the environment are usually
simple, only permitting to plan a path in a 2D or 3D world
with respect to free space and obstacle regions [7].

B. Path Planning and Navigation

An extensive literature exists on agents’ path planning
in robot motion planning and virtual environments [13].
Roughly, these methods can be categorised as: path planning
(global) and navigation (local).

Path Planning: The path planning issue, which consists
of finding an obstacle-free path between two distinct posi-
tions located in a VGE, has been extensively studied. The
computational effort required to plan a path, using a search
algorithm such as A* [16] or Dijkstra [14], increases with
the size of the search space [5]. Consequently, path planning
on large-scale geographic environments can result in serious
performance bottlenecks. However, representing the virtual
environment using a hierarchical approach reduces the size
of the search space as well as the complexity of path plan-
ning algorithms [10]. Two recent hierarchical triangulation-
based path planning approaches are described in [6], namely
Triangulation A* and Triangulation Reduction A*, which

227

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are relevant to our work. TA* makes use of the Delaunay
Triangulation (DT) technique to build a polygonal represen-
tation of the environment without considering the semantic
information. This results in an undirected graph connected
by constrained and unconstrained edges, the former being
traversable and the latter not. TRA* is an extension of TA*
and abstracts the triangle mesh into a structure resembling
a roadmap. Both TA* and TRA* are able to accurately
answer path queries for agents since they make use of the DT
technique. However, the abstraction technique used by TA*
and TRA* aims at maximising triangle size, which does not
reduce the size of the search space. Moreover, both TA* and
TRA* assume a homogeneous flat environment, which con-
siderably reduces the capacity to handle 3D environments
enhanced with semantic information.

Navigation: An agent navigation behavior aims at
predicting local collisions and avoiding the other navigating
agents. Most current models are based on a particle approach
proposed by Helbing [11]. However, this model suffers from
several shortcomings. First, it cannot predict collisions since
it waits for navigating agents to collide before adapting
their behavior. In addition, it produces oscillations when
adapting directions, which affects the quality of the agents’
navigation behavior. Finally, Helbing’s model manages very
basic agents (particles) and it is difficult to adapt it to
more complex simulated actors. Other reactive navigation
models exist, including variants of potential fields [9]. They
can handle dynamic environments, but suffer from "‘local-
minima"’ problems and may not be able to find a collision-
free path, when one exists [13]. Often, these models do not
give any kind of guarantee on their behavior. Other naviga-
tion algorithms are based on path or roadmap modification,
which allows a path to be deformed as a result of obstacle
detection. These methods include Elastic Bands [18], Elastic
Roadmaps [24], and adaptive roadmaps [21]. Alternatively,
Lamarche and Donikian proposed to use a Neighborhood
Graph (NG) based on a Delaunay Triangulation (DT) of
the agents’ positions filtered by visibility [12]. This structure
offers a low computational cost, which enables the simula-
tion of a large number of situated agents [12]. However, this
NG does not take into account the terrain’s elevation since
it is based on a two-dimensional DT. In order to support
moving agents in virtual environments, we claim that an
NG should take into account terrain elevation. Indeed, a
real environment is rarely flat and ignoring this information
would distort the neighboring relationship between moving
agents located in the virtual environment. In Section VI,
we propose an approach which extends Lamarche and
Donikian’s method and enables us to create a 3D NG to
support motion planning of autonomous agents situated in
Informed VGE.

III. COMPUTATION OF IVGE DATA

In this section, we present our automated approach to
computing the IVGE data directly from vector GIS data.
Figure 1) depicts the four stages which compose our ap-
proach: input data selection, spatial decomposition, maps
unification, and finally the informed graph generation.

Figure 1: The five stages to obtain an IVGE from GIS
data.

Input data selection: The first step of our approach
is the only one requiring human intervention. It consists in
selecting the different vector data sets which are used to
build the IVGE. The input data can be organised into two
categories. First, elevation layers containing the geographi-
cal marks that indicate absolute terrain elevations. Second,
semantic layers are used to qualify various types of data
in space. Each layer indicates the physical or virtual limits
of a given set of features with identical semantics in the
geographic environment, such as roads and buildings. The
limits can overlap between two layers, and our model can
merge the information.

Spatial decomposition: The second step consists of ob-
taining an exact spatial decomposition of the input data into
cells. This process is entirely automatic, using a Delaunay
Triangulation and can be divided into two parts in relation to
the previous phase. First, an elevation map is computed and
corresponds to the triangulation of the elevation layer. All
the elevation points are injected into a 2D triangulation, the
elevation being considered as an additional attribute. This
process produces an environment subdivision composed of
connected triangles (Figure 3(a)). Such a subdivision pro-
vides information about coplanar areas: the elevation of any
point inside a triangle can be deduced thanks to the elevation

228

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) (b) (c) (d) (e) (f)

Figure 2: Various semantic layers related to Quebec city in Canada: (a) road network; (b) old city wall; (c) marina; (d)
governmental buildings; (e) houses; (f) sidewalk areas.

of the three original points. Second, a merged semantics map
is computed, corresponding to a constrained triangulation
of the semantic layers. Indeed, each segment of a semantic
layer is injected as a constraint which keeps track of the
original semantic data by adding additional attributes. The
obtained map is then a constrained triangulation merging all
input semantics (Figure 3(b)): each constraint represents as
many semantics as the number of input layers containing it.

Maps unification: The third step to obtain our IVGE
data consists of unifying the two maps previously obtained.
This phase can be depicted as the mapping of the 2D merged
semantic map (Figure 3(b)) onto the 2.5D elevation map
(Figure 3(a)) in order to obtain the final 2.5D elevated
merged semantics map (Figure 3(c)). First, preprocessing is
carried out on the merged semantics map in order to preserve
the elevation precision inside the unified map. Indeed, all the
points of the elevation map are injected in the merged se-
mantics triangulation, creating new triangles. Then, a second
process elevates the merged semantics map. The elevation
of each merged semantics point P is computed by retrieving
the corresponding triangle T inside the elevation map, i.e.
the triangle whose 2D projection contains the coordinates of
P. Once T is obtained, the elevation is simply computed by
projecting P on the plane defined by T using the Z axis.

Informed graph generation: The resulting unified map
now contains all the semantic information of the input layers,
along with the elevation information. This map can be used
as a topological graph in which each node corresponds to
the map’s triangles and each arc to the adjacency relations
between these triangles. Then, common graph algorithms
can be applied to this topological graph, especially graph
traversal ones. One of these algorithms retrieves the node,
and so the triangle, corresponding to given 2D coordinates.
Once this node is obtained, it is possible to extract the data
corresponding to the position, such as the elevation, and the
semantic information. Many other algorithms can be applied,
such as path planning and graph abstraction, but they are out
of the scope of this paper and will not be detailed here.

IV. TOPOLOGIC ABSTRACTION

When dealing with large-scale and complex geographic
environments the informed graph becomes very large. The
size of a topologic graph has a direct impact on the computa-
tion time of the agent’s spatial reasoning processes. In order
to optimise such a computation time, we need to reduce the
size of the informed graph representing the IVGE. The aim
of the topologic abstraction is to provide a compact represen-
tation of the informed graph suitable for situated reasoning
of situated agents. To this end, the topologic abstraction
process extends the informed graph with new layers. In each
layer (except for the initial layer which is called level 0),
a node corresponds to a group of nodes of the immediate
lower level. The topologic abstraction simplifies the IVGE
description by combining cells (triangles) in order to obtain
convex groups of cells. Such a hierarchical structure evolves
the concept of Hierarchical Topologic Graph (HTG) in
which cells are fused in groups and edges are abstracted in
boundaries. To do so, convex hulls are computed for every
node of the informed graph. Then, the coverage ratio of the
convex hull is evaluated as the surface of the hull divided
by the actual surface of the node. The topologic abstraction
finally performs groupings of a set of connected nodes if
and only if the group ratio is close to one. Let G be a group
of cells, Convex be the convexity rate, and CH(G) be the
convex hull of the polygon corresponding to G. Convex is
computed as follows:

Convex(G) =
Sur f ace(G)

Sur f ace(CH(G))
and 0 < Convex(G)≤ 1

(1)

Each node c of the informed graph can be topologically
qualified according to the number of connected edges given
by the arity(c) function: if arity(c) = 0 then c is a closed
cell; if arity(c) = 1 then c is a dead end cell; if arity(c)
= 2 then c is a corridor cell; and if arity(c) > 2 then c
is a crossroads cell. The topologic abstraction algorithm
is based on an in-depth exploration of the informed graph
structure. At each step, the algorithm processes cells based
on their topology in order to achieve a specific goal: 1)
Virtual Cells: to characterise the outside of the IVGE; 2)

229

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Triangulated elevation map (2.5D). (b) Merged semantics map (2D). (c) Unified map (2.5D).

Figure 3: The two processed maps (a, b) and the unified map (c). The semantic colours are the same as in figure 2.

Access Cells: to identify access points corresponding to
cells connected to at least one virtual cell (Figure); 3)
Corridor Cells: to filter excessive discretization of space
subdivision in narrow open areas (Figure); 4) Crossroads:
to filter excessive discretization of space subdivision due to
the misalignment of edges in open areas (Figure). 5) Dead
End: Termination of the algorithm.

Let us detail the execution of the topologic abstraction
algorithm which starts by processing the virtual cells and
then their neighboring ones.

• Step 1 (processing of virtual cells): Bring together all
the virtual cells in a virtual group, then merge into this
group all the adjacent dead end cells. Proceed to Step
2.

• Step 2 (processing of access cells): Bring together all
the access cells in a single group, then merge into this
group all the access end cells. Proceed to Step 3, 4, or
5 depending on the type of the neighbooring cell Cn.

• Step 3 (processing of corridor cells): If the current cell
Cc and its neighboor cell Cn are of type corridor, and
if the current group is of type crossroad, proceed to
Step 3-1, else proceed to Step 3-2.

– Step 3-1: If Convex(Gc ∪ Cc) > Convex(Cc ∪
Cn), then merge Cc into Gc and continue with Cn.

– Step 3-2: Build a new group Gp of type corridor
and assign Cc and Cn to it.
∗ If Gp = Gn, where Gn corresponds to the group

to which belongs Cn, then merge Gc with Gp
and Gn

∗ Else if Gc and Gs are of type corridor and if
Convex(Gc ∪ Gp∪ Gn) > max (Convex(Gc);
Convex(Gp); Convex(Gn)), then merge together
Gc, Gp, and Gn.

∗ Else if Gc and Gn are of type crossroads
and If Convex(Gp ∪ Gn) > max(Convex(Gp);
Convex(Gn)) then merge together Gp and Gn.

• Step 4 (processing crossroads cells): Build a group of
type crossroads Gc and assign the current cell Cc to it
as well as its neighbooring cells of type crossroads or
dead end. Proceed to Step 3 for cells of type corridor.

– If Gc has only one neighboor, turn it into a dead
end group.

– Else, if Gc has exactly two neighbours, transform
it into corridor and apply the tests of Step 3;

– Else, if Convex(Gc ∪ Gn) > max (Convex(Gc);
Convex(Gn)) for any Gs in dead end neighboring
groups, then merge Gn and Gc. Repeat the test of
Step 4.

• Step 5 (processing dead end cells): Build a new group
of type dead end and assign the current cell to it. This
group will further be merged with its neighbour of type
corridor or crossroads because of the tests in Steps 3
and 4.

(a) (b)

Figure 4: Illustration of the topologic abstraction
process with a strict convex property (C(gr) = 1); (a)
the exact space decomposition using CDT techniques
(63 triangular cells) ; (b) the topologic abstraction (28
convex polygons)

Results: As an illustration, our IVGE generation model
has been applied to an urban area representing the center part
of Quebec City, with one elevation map and five semantic

230

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

layers. The creation of the IVGE takes less than five seconds
on a typical computer (Intel Core 2 Duo processor 2.13Ghz,
1Go RAM). The resulting unified map approximately con-
tains 122,000 triangles covering an area of 30km2. The
necessary time to retrieve the triangle corresponding to a
given coordinate is negligible (less than 10−4 seconds).
We applied the topologic abstraction algorithm in order to
build a three-level hierarchical and topologic graph. Level
0 corresponds to the informed graph resulting from the
exact spatial subdivision. Level 1 of the topologic graph
resulting from the topologic abstraction (with soft convex
constraint, i.e. Convex(c) = 1) reduces the total number of
cells (122,000) by merging them into 73,000 convex poly-
gons (called groups) in 2.8 seconds. Level 2 of the topologic
graph resulting from the topologic abstraction (with relaxed
convex constraint, i.e. Convex(c) = 0.9) reduces the total
number of groups by merging them into 12,000 convex
polygons (called zones) in 1.9 seconds.

V. HIERARCHICAL PATH PLANNING

In this section, we present our hierarchical path planning
algorithm (HPP for short). We then provide a computation
analysis of the algorithm complexity which aims to point
out the contribution of our algorithm. Finally, we propose a
path enhancement method in order to optimise the computed
paths for more realistic moving agents.

A. Algorithm

Let us consider the topologic graph extracted from the
exact spatial decomposition before highlighting the useful-
ness of the topologic and semantic abstractions. Since cells
are convex, it is possible to build an obstacle-free path by
linearly connecting positions located at two different borders
belonging to a given cell. Thus, it is also possible to use bor-
ders, represented by edges in the graph, to compute obstacle-
free paths between different locations in the environment.
Since the topologic graph structure is hierarchical, each node
at a given level i (except at level 0) represents a group of
convex cells or abstract cells of a lower level i−1. Hence,
our approach can be used to compute a path linking two
abstract nodes at any level.

Let us consider a hierarchical topologic graph G com-
posed of i levels. Nodes belonging to level 0 are called leaves
and represent convex cells produced by the exact spatial
decomposition. Nodes belonging to higher levels (i > 0) are
called abstract nodes and are composed of groups. Given
a starting position, a final destination, and a hierarchical
topologic graph G composed of i levels, the objective of
our algorithm is to plan a path from the current position
to the destination using G. The algorithm starts from the
highest level of the hierarchy and proceeds as follows:

• Step 1: Identify the abstract nodes to which the starting
position and the final destination belong.
Two cases need to be considered:

– Case 1: Both are in the same abstract node k at
level i.
Proceed to step 1 with the groups (at level i− 1)
belonging to node k.

– Case 2: They are in different abstract nodes k and
j at level i. Proceed to step 2.

• Step 2: Compute the path from the abstract node k to
the abstract node j.
For each pair of consecutive nodes (s, t) belonging to
this path, two cases are possible :

– Case 1: Both are leaves. Proceed to step 4.
– Case 2: Both are abstract nodes. Proceed to step

3.
• Step 3:

– If the starting position belongs to s then identify to
which group gs of s it belongs and proceed to step
2, in order to compute the path from the abstract
node gs to the closest common boundary with the
abstract node t. Else proceed to step 2 in order to
compute the path from the center of the abstract
node s to the closest common boundary with the
abstract node t.

– If the final destination position belongs to t then
identify to which group gd of t it belongs and
proceed to step 2, in order to compute the path
from the closest common boundary with the ab-
stract node s to gd. Else proceed to step 2 in
order to compute the path from the closest common
boundary with the abstract node s to the centre of
the abstract node t.

• Step 4: Once in a leaf, apply a path planner algorithm
(we used the Djkstra and A* algorithms) from the
starting position to the final goal using the convex cells
which belong to the informed graph.

The strategy adopted in this algorithm is to refine the
path planning when getting closer to the destination. The
algorithm starts by planning a global path between the start
and the destination abstract nodes (step 1). Then, for each
pair of successive abstract nodes, it recursively plans paths
between groups (of lower levels) until reaching leaves (steps
2 and 3). Once at leaves (convex cells at level 0), the
algorithm proceeds by applying a path planning algorithm
such as Dijkstra and A* (step 4). Hence, at level i, the path
planner exploration is constrained by the nodes belonging
to the path computed at level i+1.

Moving agents can use this algorithm in order to plan
paths within the IVGE. The path computed in step 2 is
actually a coarse-grained path whose direction is only in-
dicative. Since the path is refined in a depth-first way, agents

231

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) (b) (c) (d)

Figure 5: HPP in the IVGE (the computed path is coloured in yellow). (a) path computed with no regard for the terrain
shape; (b) path computed with regard for the terrain shape; (c) and (d) Search paths to get to a place (marina) in the IVGE
(place described by semantics) without and with regard to terrain respectively.

can perform local and accurate navigation inside an abstract
node without requiring a complete and fine-grained path
computation towards the final destination. The lower levels’
sub-paths (related to other abstract nodes) are computed only
when needed, as the agent moves. Such a just in time path
planning approach is particularly relevant when dealing with
dynamic environments. Classic path planning approaches
use the entire set of cells representing the environment
and compute the complete path between a start and a
final positions. These classical approaches suffer from two
major drawbacks : 1) the computation time of a path is
considerable since it involves all the cells composing the
environment; 2) the planned path may become invalid as a
consequence of changes in the environment. An interesting
property of our hierarchical path planning approach is the
optimization of calculation costs over time. Indeed, the entire
path is only computed for the most abstracted graph, which
contains a small number of abstract nodes compared to
the informed graph (convex cells at level 0). In addition,
our approach provides a just in time path planning which
can accommodate a dynamic environment. Furthermore, this
hierarchical path planning is adapted to any type of agents,
whenever we are able to generate the abstracted graphs
taking into account both the geographic environment and
the agents’ characteristics.

B. Complexity Analysis

In order to highlight the outcomes of our approach, let
us compare the computation cost of our hierarchical path
planning with the standard path planning. Let G0(V0,E0) be
the graph representing the virtual environment at level 0,
which corresponds to cells produced by the spatial decom-
position process. Let V0 correspond to the set of vertices and
E0 correspond to the set of edges at level 0. Let |V0| = N
be the number of nodes of the graph G0. Let us consider

a starting position s and a destination position d located in
the virtual environment. The computation cost of the shortest
path between s and d at level 0 (represented by the graph G0)
is denoted by C0(N) and is given by the following equation:

C0(N) = O(N ∗ ln(N)) (2)

Let us now compare C0(N) with the computation cost
of our hierarchical path planning algorithm which relies on
the hierarchical topologic graph with k levels. To this end,
we need to raise some assumptions for the sake of simpli-
fication. First, let us assume that the topologic abstraction
process may be thought of as a function h which abstracts a
topologic graph Gi−1 and builds a new topologic graph Gi.
The function h can be written as follows:

h(Gi−1(Vi−1,Ei−1)) = Gi(Vi,Ei) with 0≤ i≤ k−1 (3)

Let li be the abstraction rate between two successive levels
i−1 and i (with 0≤ i≤ k−1). Since the abstraction process
aims at reducing the number of nodes at each new level, we
have li > 1+ε (with 0≤ i≤ k−1) as illustrated in equation 4.

li =
|Vi−1|
|Vi|

with li > 1+ ε and ε > 0 (4)

Second, let us suppose that the kth level of our
hierarchical topologic graph is composed of m nodes. N
which corresponds to the number of nodes of the graph G0
can be expressed using equations 3 and 4 as follows:

N = m∗ lk−1 ∗ ...∗ l0 (5)
N ≥ m∗ (1+ ε)k with k > 0 and ε > 0 (6)

N = m∗
k−1

∏
i=0

(li) with k > 0 and m > 0 (7)

232

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Let lAvg be the average value of li (with 0≤ i≤ k−1). Using
lAvg, equation 7 becomes:

N = m∗ lk
avg with k > 0 and m > 0 (8)

Let us replace the term N in equation 2 by its value in
equation 8:

C0(m) = O(m∗ lk
avg ∗ ln(m∗ lk

avg)) (9)

Equation 9 can be developed as follows:

C0(m) = O(m∗ ln(m)∗ lk
avg +m∗ lk

avg ∗ ln(lk
avg)) (10)

Let Nbk be the number of nodes composing the computed
path at level k. The computation cost of Nbk is given by the
following equation:

Nbk = O(m∗ ln(m)) with k > 0 and m > 0 (11)

The hierarchical path planning algorithm involves the com-
putation of the shortest path at level k and the refinement of
the path linking each pair of successive nodes at lower levels.
Therefore, the shortest path from s to d corresponds to the
computation of Nbk at level k and its refinement through the
lowest levels. Such a shortest path is denoted Ck and has a
computation cost which can be computed by the following
equations:

Ck(m) = Nbk ∗
k−1

∑
j=0

l j
avg (12)

Ck(m) = Nbk ∗
lk
avg−1

lavg−1
(13)

The term Nbk in equation 13 is replaced by its value
expressed in the equation 11 as follows:

Ck(m) = O(m∗ ln(m)+m∗
lk
avg−1

lavg−1
) (14)

Let us compare the computation costs of standard path
planning approaches (equation 10) and our hierarchical path
planning approach (equation 14). First, it is obvious that the
first term m ∗ ln(m) in equation 10 is inferior to the first
term m ∗ ln(m) ∗ lk

avg in equation 14 since the abstraction
rate lk

avg > 1. Second, in a similar way, the second term
m∗(lk

avg−1/lavg−1) in equation 10 is inferior to the second
term m∗ lk

avg∗ ln(lk
avg) in equation 14. In conclusion, the hier-

archical path planning algorithm along with the hierarchical
topologic graph that we propose is at least ln(lk

avg) orders of
magnitude faster than standard path planning approaches.

C. Path Optimisation

The topological abstraction only groups together adjacent
cells or groups of cells with respect to the convexity crite-
rion. While this approach is efficient to reduce the size of the
topologic graph, it gives up the optimality of the computed

path. Indeed, paths are optimal in the abstract graph but
not necessarily in the initial problem graph (informed graph
at level 0). In order to improve the quality of the computed
path (i.e., length and visual optimisation), we perform a post-
processing phase called path optinmisation (Figure 6). Our
strategy for path optimisation is simple, but produces good
results. The main idea is to replace local sub-optimal parts
of the computed paths by straight lines. We start from one
end of the path (Figure 6(a)) and for each node part of the
computed path, we check whether we can reach a subsequent
node in the path in a straight line. If this is possible, then
the linear path between the two nodes replaces the initial
sub-optimal sequence between these nodes (Figure 6(b)).

(a) (b)

Figure 6: (a) The original computed path ; (b) The
computed path after optimisation.

Results: The HTG resulting from the topologic ab-
straction process is particularly suitable to support HPP in
IVGE. Two types of HPP have been implemented: 1) a
path linking two positions located in the IVGE using the
A* algorithm (Figures 5(a) and 5(b)); and 2) a search path
linking a position to a qualified area within the IVGE using
the Dijkstra algorithm (Figures 5(c) and 5 (d)). Figure 5(a)
shows a path planning which avoids obstacles such as
buildings, walls, but does not take into account the terrain
characteristics. Therefore, this path crosses areas coloured
in red which represent steep slopes. However, Figure 5(b)
respects both the terrain and the obstacles in the IVGE. To
illustrate path planning towards a target area qualified by
one or several semantics, Figure 5(c) shows the computed
path to reach the marina (the marina is coloured in blue at
the top of the figure). This path avoids obstacles such as
buildings, walls, but does not take into account the terrain
characteristics. Figure 5(d) avoids steep slopes (coloured in
red) as well as obstacles situated in the IVGE and reaches
a place identified by the semantic information (marina).
Finally, in order to highlight the outcomes of the path
optimisation process, we randomly selected 19 starting and
destination positions in the IVGE. For each pair of positions,
we compared the original computed path length with the
optimised path length. Figure 7 depicts the comparison of
the non optimised computed path length and the optimised

233

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

path length. It shows how the optimisation process reduces
the computed path length by an average of 16%.

Figure 7: Optimised versus non-optimised paths
lengths.

VI. NAVIGATION

The geometrically precise spatial subdivision along with
the topologic abstraction of the virtual geographic environ-
ment are not sufficient to handle the navigation of several
moving agents populating the same IVGE. A structure and
a mechanism allowing for dynamic collisions detection and
avoidance is necessary to achieve consistent motion planning
of moving agents in IVGE. In this section, we first introduce
the concept of neighborhood graph (NG) for the support
of agent navigation. Next, we detail the algorithm that we
propose to build an NG while taking into account obstacles
such as walls and fences as well as terrain elevation.

Neighborhood Graph: A neighborhood graph (NG)
consists of a data structure reflecting the relative positions of
moving agents while taking into account obstacles located
in the IVGE. Two entities are considered neighbors if they
are not separated by any obstacle. Since the NG is based on
moving agents’ positions, it should be updated as rapidly
as the movement of agents. Therefore, its computation
complexity must be optimised. Moreover, if we make no
assumption about the perception distance and the angle of
the agent’s field of view, the complexity of building the
NG should only depend on the number of agents rather
than on their relative distances. Based on these assumptions,
we define our NG using a 3D Delaunay Triangulation
(3D-DT) of moving agents (dynamic information) filtered
using both the description of static obstacles situated in
the IVGE such as walls and obstructions resulting for the
terrain’s elevation (static information). Figure 8 shows an
example of construction of an NG considering obstacles and
obstructions within the IVGE. In the following sud-section,
we propose an algorithm to build NGs and we analyse its
complexity.

Algorithm: In this section, we present a step-by-step
description of our algorithm to build NGs. In a first step, the

spatial positions of the moving agents are collected and con-
stitute the set of points to triangulate. Let n points be given
by their Cartesian coordinates p1(x1,y1,z1), p2(x2,y2,z2), ...,
pn(xn,yn,zn). The algorithm is based on three steps. Step 1:
Compute the 3D-DT; Step 2: For each edge Ei, j of the DT
linking a pair of points (Pi, Pj), verify if this edge crosses
an area defined as an obstacle in the IVGE. If yes, remove
Ei, j. Step 3: For each edge Ei, j of the DT linking a pair of
points (Pi, Pj), verify if Pi and Pj are obstructed as a result
of the terrain’s elevation. If yes, remove Ei, j.

The complexity of construction of the 3D-DT for n
moving agents is of the order of O(n ln n), making it usable
for a large number of moving agents (Figure 8(a)). In the
second step, for each edge Ei, j of the 3D-DT, a verification
is computed to ensure the visibility (free of environment
obstacles) between the moving agents (Figure 8(b)). In the
third step, for each edge Ei, j of the 3D-DT, a verification
is computed to ensure the visibility (free of environment
obstructions resulting from terrain elevation) between the
moving agents (Figure 8(c)). If Ei, j is not free of obsta-
cles and obstructions, the edge is deleted from the 3D-
DT (Figure 8(d)). Let us now analyse the complexity of
our algorithm. The 3D-DT (Step 1) can be computed in
O(nlogn) running time [2]. In Step 2, for each edge Ei, j
considered, O(n) verifications are computed to ensure that
Ei, j is free of environment obstacles. These verifications
have a linear complexity which only depends on the number
of vertices (corresponding to the moving agents). Step 2
runs in O(n) time. In Step 3, for each edge Ei, j considered,
O(n) verifications are computed to ensure that Ei, j is free of
obstructions due to the terrain elevation. Step 3 also runs in
O(n) time. Since Step 1 is O(nlogn), the complexity of our
NG algorithm is dominated by Step 1 and thus of O(nlogn).

VII. DISCUSSION

In order to reduce the search space, we proposed an HTG
that groups convex cells and groups of cells. Hence, each
abstract node at level i contains a subset of this graph at
level i−1, composed by at least one node or abstract node.
The extraction of this HTG only requires an acceptable one-
time computation cost and a low memory overhead. Despite
the reduction of the number of nodes, this technique raises
two application-dependent issues that must be addressed:
hierarchical traversal cost and information richness.

First, the hierarchical traversal cost increases with each
grouping, which might limit the performance of the search
space reduction brought by the hierarchical representation.
Indeed, despite the number of levels of the HTG, the path
planning process provides moving agents with a set of
convex cells (belonging to level 0) to pass through in order to
reach the final destination. This means that the path planning
process must inevitably traverse the HTG from top to bottom

234

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) (b) (c) (d)

Figure 8: Generation of the neighborhood graph (NG): (a) initial 3D-DT using the moving agents positions (green circles);
(b) filter of 3D-DT considering obstacles (red shapes) in the IVGE; (c) filter of 3D-DT considering terrain elevation (yellow
shapes) in the IVGE.

in order to compute such a set of cells.

Second, the information richness decreases with each
grouping level, which could lead to useless additional ab-
straction levels that may not improve the decision-making
of the HPP algorithm. Indeed, the more potential sub-paths
an abstract node contains, the less its choice influences the
path planning process. Therefore, the determination of the
number of topologic abstraction levels must be carefully
analyzed with respect to these two critical issues in addition
to the application requirements.

Another important aspect of our IVGE is its capability
to represent geographic environments which are distributed
in space. By using the HTG, our model is capable of
representing portions of geographic environments which are
not adjacent in space. For example, consider the problem
of traveling by car from Quebec city (QC, Canada) to
New York (NY, USA). We need to compute the shortest
(minimum distance) path from a given address in Quebec
city, such as 312 Marie-Louise, to a given address in New
York city, let us say 1213 4th Avenue, Brooklyn. Given a
detailed description of the geographic environment showing
all roads annotated with driving distances, a classic planner
can compute such a travel route. However, this might be an
expensive computation, given the large size of the descrip-
tion of the geographic environment. This problem may be
solved in a three-step process. First, we compute the path
from 312 Marie-Louise to a major highway leading out of
Quebec city. Second, we compute the path from Quebec to
the boundaries of New York. Third, we compute the path
from the incoming highway to 1213 4th Avenue, Brooklyn.
Assuming that the second path is mostly composed of
highways and can be quantified (distance and travel time),
it is easy to model this path using a conceptual node in
our hierarchical topologic graph. A conceptual node allows
for linking spatially distributed geographic environments and
hence allows us to accurately compute optimal paths with
respect to these environment characteristics.

In contrast to Lamarche and Donikian’s NG [12] which
only takes into account static obstacles such as walls and
fences (Figure 8(b)), our NG model also includes obstruc-
tions resulting from the terrain’s elevation (Figure 8(c)).
Lamarche and Donikian’s NG is based on a 2D-DT im-
plementing the algorithm proposed in [4] whose compu-
tation cost is of O(nlogn) [12]. However, Attali et al.
proposed an optimised algorithm to build a 3D-DT which
also runs in O(nlogn) [2]. Our NG extends Lamarche and
Donikian’s approach with respect to the algorithm’s com-
plexity (O(nlogn)). Our NG takes into account the terrain’s
elevation and uses Attali’s optimised 3D-DT and thus runs
in O(nlogn). In addition to its good properties in terms of
computation complexity, the DT also has good topological
properties. Indeed, it ensures that each point is connected
to its nearest neighbor. An NG inherits from this property
by adding the concept of filtering visibility. We define the
k− direct neighborhood Vk(E) of an agent E as all agents
related to E by k arcs in the NG. This set contains the
nearest visible neighbors to an agent within k hops from
E, considering the NG. This property shows that for the
collision detection purposes, only agents belonging to V1(E)
(also called immediate neighbors) need to be tested. On the
other hand, according to the method of construction, the
k− direct neighborhood adapts to the density of popula-
tion. For example, in a dense environment, the k− direct
neighborhood contains a set of agents which are visible and
close to the agent E, and in environment of low density,
it contains a set of remote visible agents. The k parameter
allows to specify the number of hops while accessing the
agent neighbors by agent type.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an accurate and automated
approach for the generation of semantically enhanced and
geometrically precise virtual geographic environments using
GIS data. This novel approach offers several advantages.
First, the description of the IVGE is realistic since it is based

235

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on standard GIS data and accurate because it is produced
by an exact spatial decomposition technique which uses
data in a vector format. Hence, this description preserves
both the geometric and the topological characteristics of
the geographic environment and enables a graph-based de-
scription of the virtual environment enhanced with seman-
tics. The main outcome of such a semantically enhanced
and geometrically precise virtual geographic environment
concerns agents’ situated reasoning capabilities such as
path planning and navigation in large-scale and complex
geographic environments. We proposed a hierarchical path
planning algorithm (using Dijkstra and A*) which takes ad-
vantage of our IVGE model to provide paths which take into
account the agents’ and environment’s characteristics. We
also proposed an algorithm to build neighborhood graphs,
a graph-based structure used by moving agents to support
navigation (collision detection and avoidance).

We are currently working on further improvements of
the IVGE description by integrating enriched knowledge
representations (called the environment knowledge) using
Conceptual Graphs aimed at assisting situated agents’ in-
teractions with the IVGE and helping them achieve their
goals. The goal of the environment knowledge integration
is to extend the agents’ knowledge about their surrounding
environment. We are also working on the extension of the
neighborhood graph concept to support agents’ perception
capabilities within the IVGE. The above-mentioned con-
tributions of our model offer new opportunities for many
applications in a variety of application domains including
the entertainment industry (games and movies), security
planning and crowd management (planning events involv-
ing large crowds), and environment monitoring in natural
environments.

ACKNOWLEDGEMENT

Mehdi Mekni benefited from a PDF scholarship granted
by FQRNT (Fonds Québécois de la Recherche sur la Nature
et les Technologies).

REFERENCES

[1] W. Ali and B. Moulin. 2D-3D multiagent geosimulation with
knowledge-based agents of customers’ shopping behavior in
a shopping mall. In Spatial Information Theory, pages 445–
458. Elsevier, 2005.

[2] D. Attali, J.-D. Boissonnat, and A. Lieutier. Complexity
of the Delaunay triangulation of points on surfaces: the
smooth case. In SCG ’03: Proceedings of the Nineteenth
Annual Symposium on Computational Geometry, pages 201–
210, New York, NY, USA, 2003. ACM.

[3] I. Benenson and P. Torrens. Geosimulation: Automata-Based
Modeling of Urban Phenomena. John Wiley and Sons Inc.,
2004.

[4] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry.
Cambridge University Press, New York, NY, USA, 1998.

[5] A. Botea, M. Müller, and J. Schaeffer. Near optimal hierar-
chical path-finding. Journal of Game Development, 1:7–28,
2004.

[6] D. Demyen and M. Buro. Efficient triangulation-based
pathfinding. In Proceedings of the Twenty-First National
Conference on Artificial Intelligence and the Eighteenth In-
novative Applications of Artificial Intelligence Conference
(AAAI’06), Boston, Massachusetts, USA, July 16-20 2006.

[7] S. Donikian and S. Paris. Towards embodied and situated
virtual humans. In Motion in Games, pages 51–62, 2008.

[8] N. Farenc, R. Boulic, and D. Thalmann. An informed
environment dedicated to the simulation of virtual humans
in urban context. In P. Brunet and R. Scopigno, editors,
Computer Graphics Forum (Eurographics ’99), volume 18(3),
pages 309–318. The Eurographics Association and Blackwell
Publishers, 1999.

[9] H. Haddad, M. Khatib, S. Lacroix, and R. Chatila. Reactive
navigation in outdoor environments using potential fields. In
Proceedings of the International Conference on Robotics and
Automation, pages 1232–1237, Leuven, Belgium, May 1998.
IEEE.

[10] D. Harabor and A. Botea. Hierarchical path planning for
multi-size agents in heterogenous environments. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling (ICAPS’08), Sydney, Australia, September
14-18 2008.

[11] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical
features of escape panic. Nature, 407:487, 2000.

[12] F. Lamarche and S. Donikian. Crowds of virtual humans:
a new approach for real time navigation in complex and
structured environments. Computer Graphics Forum, Euro-
graphics’04, 2004.

[13] S. LaValle. Planning Algorithms. Cambridge University
Press., Cambridge, 2006.

[14] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg.
Real-time robot motion planning using rasterizing computer
graphics hardware. In SIGGRAPH ’90: Proceedings of the
17th Annual Conference on Computer Graphics and Interac-
tive Techniques, pages 327–335, New York, NY, USA, 1990.
ACM.

[15] J.-E. Marvie, J. Perret, and K. Bouatouch. Remote interactive
walkthrough of city models. In Proceedings of the 11th
Pacific Conference on Computer Graphics and Applications
(PG’03), pages 389–393, Oct. 2003.

[16] N. Nilsson. Principles of Artificial Intelligence. Springer-
Verlag, Berlin ; Heidelberg ; New York, third edition, 1982.

[17] S. Paris. Characterisation of the levels of services and
modeling of the movement of people inside exchange areas.
PhD thesis, Université de Rennes 1, October 2007.

236

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] S. Quinlan and O. Khatib. Elastic bands: Connecting path
planning and control. In ICRA (2), pages 802–807, 1993.

[19] S. Rodriguez, V. Hilaire, S. Galland, and A. Koukam. Holonic
modeling of environments for situated multi-agent systems. In
Environments for Multi-Agent Systems II, pages 18–31. 2006.

[20] W. Shao and D. Terzopoulos. Environmental modeling for
autonomous virtual pedestrians. Digital Human Modeling for
Design and Engineering Symposium, 2005.

[21] A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin, and
D. Manocha. Real-time navigation of independent agents us-
ing adaptive roadmaps. In SIGGRAPH ’08: ACM SIGGRAPH
2008 classes, pages 1–10, New York, NY, USA, 2008. ACM.

[22] G. Thomas and S. Donikian. Virtual humans animation in
informed urban environments. Computer Animation 2000,
pages 112–119, 2000.

[23] M. Wooldridge. Introduction to Multiagent Systems. John
Wiley and Sons Inc., London, UK, 2001.

[24] Y. Yang and O. Brock. Elastic roadmaps: Globally task-
consistent motion for autonomous mobile manipulation in
dynamic environments. In Robotics: Science and Systems,
2006.

[25] J. Zhu, J. Gong, H. Lin, W. Li, J. Zhang, and X. Wu. Spatial
analysis services in virtual geographic environment based on
grid technologies. MIPPR 2005: Geospatial Information,
Data Mining, and Applications, 6045(1):604–615, 2005.

237

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

