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Abstract—Adaptive control involves both estimation and con-
trol, which are generally interdependent and partly in conflict.
Yet, the majority of adaptive controllers separate the two ly
assuming that certainty equivalence holds, even if this isat the
case. In contrast adual adaptive controller, based on the idea
postulated by A. Fel'dbaum in the early 1960s, aims to strike
a balance between estimation and control at all times. In ttg
manner, the control law is a function of the estimates’ uncetainty,
besides the estimates themselves, thereby leading to impeal
control performance. Few such controllers have ever been im
plemented and tested in practice, especially within the cdext
of intelligent control, and to the best of our knowledge none
on mobile robots. This paper present two novel dual adaptive
neural control schemes for the dynamic control of mobile rolots
in the presence of functional uncertainty. Furthermore, bymeans
of realistic Monte Carlo simulations and real-life experiments, a
thorough comparative analysis is performed. A notable nove
contribution of this work is the use of the unscented transfom
within the context of dual adaptive control, aimed at improving
further the performance of the system.

Index Terms—Dual adaptive control; nonlinear stochastic con-
trol; neural networks; unscented transform; mobile robots.

I. INTRODUCTION

A major motive for adaptive control is the need to hav
automatic systems that operate satisfactorily in the ancleie
of uncertainty. The uncertainty is typically due to unknow
and/or time-varying structure or parameters pertainingh&o
system or process under control. Hence, in addition to keep
the controlled variable tracking its reference, an adaption-
troller needs to simultaneously estimate the unknown syst
functions or parameters. These two objectives, terowdrol
and estimationrespectively, are generally interdependent a
partly in conflict, in that typically estimation improves tii
perturbing (persistently exciting) input signals, whitadking
performance does not. On the other hand, good tracki
performance still requires good estimates.

Most of the adaptive controllers proposed over the p
fifty-five years, including the well-established modelenefnce
adaptive systems (MRAS) and self-tuning regulators (STR
artificially separate estimation and control via the hdiaris

certainty equivalence (HCE) assumption. In this manner tRe
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parameter estimates are used in the control law as if theg wer
the true values of the unknown parameters, without any due
consideration to their inherent uncertainty. Though saripl
implement, and adequately applied in many applicationsE HC
adaptive control can lead to large tracking errors and ekees
control actions, which can excite unmodelled dynamics enev
lead to instability and possibly physical damage [1]. These
effects are more pronounced in situations characterizéiigty
uncertainty, short control horizon and/or time-varyingteyn
parameters [2], [3].

The issue of simultaneous estimation and control is best
addressed via stochastic adaptive control theory. Unléterd
ministic approaches, in stochastic adaptive control theetn
tainty in the system; be it due to unknown process parameters
noisy measurements, or both; is characterized by probabili
distributions and their associated statistical measutes-
sequently, the whole system is described via a stochastic
dynamic model, and the simultaneous estimation and control
problem boils down to the minimization of the expected value
of a pre-specified cost function. However, this task is sarel
gtraightforward and the general conditions guarantedirg t
existence of an optimal control scheme are yet unknown [2].
A major contribution in the field of stochastic adaptive

nontrol was made by A. A. Fel'dbaum in his seminal work on

c

Ioptimal control [4]-[6]. Fel'dbaum postulated that the toh

signal of an optimal adaptive system should have dual goals,
namely: (i) to ensure that the controlled variable tracks th
desired reference signal, with due consideration giverhéo t
%stimates’ uncertainty, and (ii) to perturb the plant sidfitly

SO as to accelerate estimation, thereby reducing quicldy th
uncertainty in future estimates. These two properties are
l(;]ommonly known ascaution and probing respectively, or

mg Fel'dbaum’s own terminologylirecting and investigating
gpntrollers exhibiting these features are nardadl adaptive

aln contrast to an HCE controller, a dual adaptive controligw

ependent on the estimates’ uncertainty, besides theastm
emselves, and aims to strike a balance between estimation
gd control at all times. Fel'dbaum also showed that thetexac
solution to the optimal adaptive dual control problem can be
derived usingdynamic programmingspecifically by solving
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the Bellman equation. However, in almost all practical aitu such situations, the robot nonlinear dynamics are no longer
tions, with the exception of a few very simple examples [7¢ t negligible and a better approach would be to replace the
Bellman equation is impossible to solve, both analyticalty PID controller by a superior, though generally more complex
numerically, due to the very large dimensions of the undiegly velocity controller whose design is based on a model rajatin
space [2], [3], [8], [9]- the wheel velocities to the input torques. Such a controller
The difficulty in finding the optimal dual adaptive controlwould explicitly account for the vehicle’s dynamic effectse
law in almost every practical case, led to the developmeat ofo mass, friction and inertia. One such example is the well-
number of simplified approaches, that though suboptimilll, sestablisheccomputed-torquapproach [19], [34].
exhibit the dual properties of caution and probing featured However, the dynamic model of a mobile robot is not only
by the optimal dual solution. These suboptimal dual adaptimonlinear but includes parameters or functions; such as,mas
control schemes can be coherently divided into two groudsgctional terms and inertia; that are highly uncertairmet
namely implicit and explicit methods. Implicit solutions try varying or even unknown. Consequently, a number of adaptive
to introduce approximations to render the Bellman equati@ontrol methods for the dynamic control of mobile robots
tractable [10], while explicit solutions reformulate theplem have been proposed. These include both parametric adaptive
via modified cost functions that explicitly include a ternmcontrol [20] and functional adaptive control [22], [25],53
related to parameter estimation, in order to induce a form [&7]. The latter differs from the former in that the uncentsi
probing [8], [9], [11]. As pointed out on several occasio8E [ is not restricted to parametric terms, but covers the dyoami
[9], implicit solutions are typically more complex and mordunctions themselves. We consider functional adaptivearobn
computationally intensive. to be more general and superior in handling higher degrees of
Dual adaptive control has been applied successfully inuacertainty and unmodelled dynamics. Yet, all the mentione
number of practical applications [12]-[15]. However nonadaptive robot controllers rely on the HCE assumption and
of these applications involve mobile robots. Motion cohtreso are prone to suffer from the aforementioned ill effects.
of mobile robots has captured the interest of numerous He- contrast, in our recent works [1], [26], we propose dual
searchers over the past three decades [1], [16]-[26]. This adaptive control techniques, rooted in computationalllinte
terest stems from a vast array of existing and potentiakjpalc gence, to address the problem of mobile robot control with
applications [27]—-[31], as well as from a number of particuincertain/unknown dynamics.
larly interesting theoretical challenges enriching theddfiof In [26] we propose two novel dual control schemes employ-
study. In particular, due to their mechanical configuratitost ing two different kinds of artificial neural networks (ANNS)
wheeled mobile robots (WMRs) manifest restricted mohilithamely Gaussian radial basis functions (GaRBFs) and multi-
giving rise to nonholonomic constraints in their kinemstic layer perceptrons (MLPs) [38], to estimate the WMR dynamic
Moreover, many of these WMRs are also underactuated sirfoactions in real-time. The advantage of GaRBFs over MLPs
they exhibit less control inputs than degrees of freedonm-Cdies in the fact that with GaRBFs the unknown ANN weights
sequently, the linearized kinematic model of these rolaatkd appear linearly in the stochastic state-space model f@tad|
controllability, full-state feedback linearization istoof reach for estimation. This permits the use of the Kalman filter (KF)
[18], and pure smooth time-invariant feedback stabilmaf [39] for the recursive optimal ANN weight-tuning. However
the Cartesian model is unattainable [32]. in the MLP case, this desirable property of linearity in the
Most of the early contributions in the field of WMR motionnetwork parameters is not preserved, and the KF weight-
control focus solely on the kinematic/steering controlipeon tuning algorithm has to be replaced by a suboptimal nontinea
[16]-[18], [33]. In other words they base their designs ostochastic estimator, such as the extended Kalman filteF{EK
a robot model with velocity control inputs, rather than th§t0], which not only complicates the derivation of the cohtr
more realistic model with torque control inputs. In doing staw, but introduces several approximations. On the othedha
the controller is completely ignoring the vehicle dynamicsenlike the activation functions employed in GaRBF ANNS, the
due to mass, inertia and friction. This is known as thsigmoidal functions in MLPs do not have localized receptive
perfect velocity trackingassumption [19]. When it comes tofields. This implies that typically MLP networks require des
the practical implementation of these kinematic contrs|le neurons than GaRBF ANNs to achieve the same degree of
this approach assumes that there is an independent low-leaecuracy. Consequently, MLPs tend to be less computaljonal
velocity control loop (usually implemented via a propontid- demanding, especially in the case of high-order systemesesi
integral-derivative (PID) controller), that ascertaifsatt the the number of neurons need not rise exponentially with the
actual wheel velocities track precisely those requested bymber of states as in the case of GaRBF ANNSs. The latter
the kinematic control law [34]. However, while the use oéffect is known as theurse of dimensionalitj41].
independent PID velocity control loops is convenient ardite  In the light of these arguments, the MLP dual adaptive
to acceptable performance in many applications involvirmgcheme we proposed in [26] uses the EKF to estimate the
slow-moving robots tracking low-acceleration trajeatstiit nonlinearly-appearing ANN optimal parameters in realetim
can lead to high tracking errors, possibly resulting in ltotdfhe EKF approximates the state (in this case parameter)
mission failure, in the face of more challenging tasks cbaradistribution by a Gaussian random variable (GRV) and prop-
terized by high reference velocities and acceleration [h9 agates it analytically through the first-order lineariaatiof
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the nonlinear stochastic model. Moreover, the dual adaptiv 1. PRELIMINARIES

cpntrol law proposed fqr thf"‘t scheme, is based on anOt,he'in this work we address the trajectory tracking problem of
first-order Taylor approximation of the measurement eguati the differentially driven WMR depicted in Figure 1. Howeyer

in the stochastic model. This adds further to the suboptiynaly, o, -2 mework we adopt in our design is completely modular.
of the proposed approach. Consequently, the dual adaptive dynamic control scheme pro
To lessen the extent of these approximations, in this pape@sed in this paper can be easily adopted to address differen
which extends on our recent preliminary work [1], we propoggavigation problems such as posture stabilization and path
a novel MLP dual adaptive control scheme that uses a spedi@illowing [34], possibly even for different types of roboti
cally devised form of the unscented Kalman filter (UKF) [42]¢onfigurations. In this section we outline the developmént o
[43] as a recursive weight-tuning algorithm, instead offtk@= the dynamic model of the differentially driven WMR and
employed in [26]. In addition, we propose a new dual adaptifermulate the trajectory tracking problem considered iis th
control law that employs the unscented transform (UT) [4afork.
to improve on the first-order Taylor approximation used in .
deriving the EKF-based controller in [26]. A. Modelling
: ... With reference to the WMR configuration in Figure 1,
I Sh.OUId be pointed out that the convergence and Stab”We ignore the passive caster wheels and adopt the following
analysis of dual adaptive control schemes presents a V&tation throughout the article:
difficult challenge, mainly due to the stochastic and adapti '
nature of the problem. The few works that address these,: axle midpoint between the two wheels
issues consider only linear systems of a particular form ang_: centre of mass of the platform without wheels
are characterized by a number of nontrivial assumptions [9]:  distance betweeR, to P.
[44]. Consequently, in contrast to the case of determiistiy:  distance from the centre of each wheelRg
approaches, to prove convergence and stability for a dual: radius of each wheel
adaptive nonlinear controller, is still considered to beogen  1.: mass of the platform without wheels
problem within the research community. Hence in practicey,,,: mass of each wheel
as argued in [9], the stability of dual adaptive controllexs 1.: moment of inertia of the platform aboi.
commonly demonstrated by computer simulations and réal-li 7,: moment of inertia of each wheel about the axle

experiments. I, moment of inertia of each wheel about its diameter

The contribution of this paper comprises a detailed treathe  robot  coordinate  vector is denoted by
ment of the two dual adaptive MLP control schemes mentiongd= [z y ¢ 6. 6", where (z,y) is the Cartesian
previously and a set of verifying and comparative resultspc coordinate ofP,, ¢ is the robot’s orientation with reference
prising realistic Mont Carlo simulations backed by rigouso to the z-axis, andf,, ¢, are the angular displacements about
statistical analysis and real-life experiments. In pattic we the axle of the right and left motorized wheels respectively
show that the proposed UT-based dual adaptive controllBne poseof the robot refers to the vectgr= [z y 4.
brings about significant improvements in tracking perfonoe =~ 1) Kinematic Model:The differential configuration of this
over the EKF-based dual adaptive scheme recently proponsetMR is subject to three kinematic constraints, stemmingifro
[26], while still employing the same computationally-fieHy
MLP architecture. To the best of our knowledge this is the firs
work in which the UT is being used in the context of dual
adaptive control. In addition, one should note that very few Caster wheels
adaptive controllers have ever been implemented and tested 5
on a physical WMR, amongst which one finds [45], [46].
However, none of these address fully the uncertainty in the
WMR dynamic functions nor take a dual adaptive control
approach.

A

The rest of the paper is organized as follows. Section Il
contains preliminary material, including the developmeht
the discrete-time dynamic model of the WMR considered in
this work, and a formulation of the WMR trajectory tracking
control problem. Section Il presents the design of both the
EKF-based and the proposed UT-based dual adaptive MLP

) ) centre P, -
control schemes. Monte Carlo simulation results suppdsted Motorized wheels
statistical hypothesis comparative tests and real-lifpeeix
ments are then presented in Section IV, which is followed
by a brief conclusion in Section V. Fig. 1. Differentially driven wheeled mobile robot.

Centre of
mass P

Sy
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the fact that the translational velocity of the geometrinotoe where:
P, is always in the direction perpendicular to the driving

. ) o m 0 —medsing 0 0
axle, and the two driving wheels roll without slipping. The
former leads to a holonomic constraint while the latter fead 0 m medcosg 00
to two nonholonomic constrains [47]. Mathematically this i M (q) = | —mcdsing medcos ¢ I 0 0 |,
described byA(q)g = 0, where 0 0 0 I, 0
0 0 0 0 I,

—sing cos¢p O 0 0

A(q) = cos¢ sing b —r 0 . —mcdq52 cos ¢ 0 0

cos¢p sing —-b 0 —r —mcdq52 sin ¢ 0 0

These three kinematic constraints, along with a few other V(q,q4) = 0 E=10 0
relationships arising from the geometry of the WMR depicted 0 10
in Figure 1, can be used to show that the kinematic model of 0 0 1

this differentially driven WMR is given by
andt = [7, n]T is the torque vector, with,. andr; denoting
G=S(q, (1) the torques applied to the right and left wheels respegtivel
The kinematic model in (1) and the equations of motion

where in (4) can be used to determine the WMR dynamics relating
3C08¢  5CO8¢ the wheels acceleration to the wheels torque- as follows
5sing gsing [47]. We differentiate (1) with respect to time, substittie
S(q) = x -L , expression forj in (4), and finally pre-multiply the resulting
1 0 expression byST. Noting that:S” AT = 0 (by Remark I1.1),
0 1 STE = I, (where throughout the pap&y denotes arfi x i)

identity matrix), andg = 35 (vr — 1) (by (1)); the resulting
andv denotes a vector composed of the angular veloc:irties dynamic model can be expressed by
the two motorized wheels, that is,= [, 1]" = [9} él} . Mv+V(v)+ F(v) =, 5)

It is important to note that: where
Remark Il.1. The two independent columns §{q) are in  _ T %(me +1)+ 1, %(mbi’ )
the null space ofA(q), that is, A(¢)S(q) = 0. SSMS= T ) B4 L, |

2) Dynamic Model:The equations of motion of this WMR 3 )
can be derived using Lagrangian mechanics. The Euler- () = STMSv + STV = medr” | Vv =V 7
Lagrange equation for the nonholonomic WMR considered in 402 vev — VP
this paper is given by

and F(v) is introduced to account for any wheel velocity-
dependent frictional terms.

d (0K\ 0K & .
dt <5q'i) T g - Qi_z acide, (0=1,2,...,5), (2) Remark 11.2. M is symmetric, positive definite, and is
=t independent of the coordinate vector and/or its derivative
whereK (q, ) is the total kinetic energy of the WMR; is the Remark 11.3
-th . . -th 0.
1" element of the coordinate vectgr Q; is thei" Lagrange
force,a.; is the(c, z‘)th element of the constraints matrik(q)
and)\. is thec" element of the vector of Lagrange multipliers To account for the fact that the controller is to be imple-
. It can be shown that the total kinetic energy of the WMRented on a digital computer, the continuous-time dynamics

In general,V (v) and F(v) are the two terms
that render the WMR dynamics nonlinear.

is given by (5) are discretized through a first-order forward Euler agpr
m . imation with a sampling interval of' seconds. The resulting
K(q,q) = o) (2 + 9°) + medé (j cos ¢ — i sin ¢) nonlinear discrete-time dynamic model is given by
Iy Ly (y2 42 v — Vg1 = fr1+ Gr_17k1, (6)
+56°+ 3 (6.5 +67). 3)

where the subscript integér denotes that the corresponding
where m = m. + 2my, I = (I, +m.d?) + 2(I,, + my,b*). variable is evaluated at timel’ seconds, and vectgf,_; and
Equation (3) can then be used to work out the derivative termmatrix G 1, which together encapsulate the WMR dynamics,
in (2). This leads to the equations of motion of the WMRare given by

given by: foor = —TN (Vioy + Fiy).
M(q)§+V(q.4) = ET — AT(q)A, 4) Gr-1 TM, . )
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The following conditions are assumed to hold: aim is to devise a control law for the robot wheel velocities,
so as to stabilize the pose of the robot as required by
the navigation task at hand; be it trajectory tracking, path
following or posture stabilization. In the case of trajegto
Assumption 11.2. The sampling intervall’ is chosen low tracking, the aim of the kinematic controller is to compute
enough for the Euler approximation error to be negligible. the wheel velocities required to minimize the robot tragkin
errorey. On the other hand, the aim of the dynamic controller
is to compute the wheel torques required in order to ensure
The trajectory tracking task of WMRs is commonly definethat the robot accurately tracks the velocities computed by
via the concept of theirtual vehicle[17]. In this formulation, the kinematic controller. Hence, the two control loops aper
the time-dependent reference trajectory is designated byinacascade; with the kinematic controller's output (a véloc
nonstationary virtual vehicl&inematically identicato the real command) serving as the reference input of the cascaded
vehicle. The control task is for the real vehicle to track théynamic controller, which computes the torque required to
virtual vehicle at all timesjn both pose and velocityt is drive the WMR wheels at the specified velocities. This ap-
important to note that this problem is different and gergralproach renders the overall control architecture moduiaces
more challenging than path-following. This stems from thetf the kinematic controller, which is specific to the navigatio
that in trajectory tracking the reference path is time-kete problem at hand, can be easily replaced while still retagjtime
(hence dictating speed as well as position), while in patekame dynamic controller. In our work we adopt this modular
following the reference contains no temporal informatiol a architecture, depicted in Figure 3, and design the dynamic
the vehicle speed is typically fixed and predetermined [34].controller to be dual adaptive as detailed in the rest of this
The trajectory tracking error in discrete-time is commonlgection.
defined by a tracking error vecten, = [e1;, eay, e3,€]T, ex-
pressed pictorially in Figure 2, and mathematically defibgd

Assumption I.1. The control input vector remains constant
over a sampling interval of’ seconds (zero-order hold).

B. Trajectory Tracking

A. The Kinematic Controller

cosgp  singy 0 As argued earlier, the role of the kinematic controller in
er = | —singr cos¢r 0 | (Prp —Pr), (8) trajectory tracking is to make; converge to zero, so that
0 0 1 Py, converges tg,.,.. To address this well-researched problem
we opt to adopt an established kinematic controller, osiyn
where p., = [z, Yy, ¢r)  denotes the virtual vehicle presented in [17], and convert it to discreet-time so as to
pose vector. Hence, in trajectory tracking the objectivéois integrate it in our formulation. The resulting kinematint|
makee;, converge to zero, so that, converges t@,.. law is given by

IIl. CONTROL DESIGN
Vrp COSes + kre1y ©)

As argued in Section I, the motion control of WMRs is = Vek = c
commonly addressed as two separate tasks, namely kinematic

and dynamic control [19], [34], [37]. Kinematic control iS\yhere ., is the wheel velocity command vector issued by
concerned solely with the steering system (1). Specifiddly ne kinematic controllerks, k2, and ks are positive design

parametersy,., > 0 andw,.;, are the translational and angular
YA virtual vehiclevelocities respectively (assumed to d@ntinu-
. ousfunctions, at least know one sampling interval ahead), and
/‘\63 C is a velocity conversion matrix given by

e-|i &)

Stability analysis and the corresponding necessary dondit
of this controller in continuous-time are detailed in [17].

Wrp + kavrpea + k3 sinegy,

virtual vehicle

S
3o

€2

Trajectory » Kinematic e Dynamic P Wheeled
generator Pr controller ck+1 | controller k Mobile

. Robot

! Pi+1 Vi I
real vehicle Wr Jp =
_ 1°% order
€T hold Pk
Fig. 2. Trajectory tracking via the concept of the virtuahigte. Fig. 3. Dynamic control architecture.
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B. Nonadaptive Dynamic Control
If the nonlinear dynamic functiong, andGy, are perfectly
known, the computed-torque control law
T = G Werr1 — Vi — Fr + ka Wer, — V) (10)

with the design parameterl < k4 < 1, yields the following
closed-loop stable linear dynamics

L1

Vg1 = Vegyr + ka (Wer, — Vi),

when substituted in the dynamic model in (6). This ensures

that |vey, — vi| = 0 @ask — oco. It is important to note that: Fig. 4. Sigmoidal Multilayer Perceptron neural network.

Remark 1ll.1. Control law (10) requires the velocity com-
mand vecton., ., to be available at instank. For this rea-
son, the kinematic control law (9) is advanced by one sargpli
interval. This means that at instait the values ofv, ., 1, o N

wrip1 and ex 1, need to be known. Additionally, from (8) it0i =1/ (1 +exp (—87x)), where 3; is i vec}or element

is clear thatp,,,, andp;, are needed to determing, ;. in the group vectora; i.e. @ =[3] --- 37| where L
Having the values of reference signal;, 1, v,441 andw, denotes the number of neurons. The time index has been
available at instantt is easy, since it simply means that th&ropped for clarity, and throughout the paper thenotation
path-planning algorithm is required to generate the refere indicates that the operand is undergoing estimation.

trajectory one sampling interval ahead. On the ot.her h"?m@)efinition 3. s,
for the non-reference signal,.1, we propose to estimate its
value via the first-order approximatiopy+1 ~ 2py — pr—1.
This is justified in the light of Assumption II.2.

Pefiniton 1I.2.  ¢(,-) is the vector of sigmoidal
activation functions, whose:i™ element is given by

represents the synaptic weight estimate
vector of the connection between the neuron hidden layer and
the ™ output element of the ANN.

. . Assumption Ill.1. The input vectore,_; is contained within
Remark 1Il.2. The case withky = 0 in (10), corresponds 10 5 ynown, arbitrarily large compact seg C R2. This is justi-
deadbeat contrassociated with digital control systems [48].faq since the wheel velocities are inherently bounded.

C. Dual Adaptive Dynamic Control using MLPs Moreover, it is known thatG_; is a state-independent
The computed-torque dynamic control law (10) driven bghatrix with unknown elements (refer to (7)). Hence, its

the kinematic law (9), is a solution to the trajectory tramtki estimation does not require the use of an ANN. In additios it i

problemonly if the WMR dynamic functiong,_; andG,_1 a symmetric matrix, a property which is exploited to constru

in (6) are perfectly known. As emphasized in Section I, this its estimate as follows

rarely the case in real-life robotic applications commosy . .

hibiting: unmodelled dynamics, unknown/time-varyingarar Gi_q = [ Ile-1  92k-1 ] , (12)

eters, and imperfect/noisy sensor measurements. Mostswork 92k-1 Ylg—1

address these issues via some form of HCE adaptive cont{ghere Gi,_, and g», , represent the estimates of the un-

In contrast, the two schemes presented in this paper not ophown elements iGy,_ ;.

consider fy—, and Gix—1 to be completely unknown to the \we formulate the ANN weight-tuning task as a stochastic

controller, but also feature dual adaptive properties todi@ nonjinear estimation problem. The following preliminariere
the issue of uncertainty as explained in Section I. The tWscessary in order to proceed.

dual adaptive schemes, detailed in this section, both gmplo o ]
a stochastically-trained ANN-based algorithm to appreatin Definition IlIl.4. The unknown parameters requmeg estima-
these functions recursively in real-time. tion are grouped in aTsmgIe vecta, = [#{ §gi] , where
- . . . . ) A A ) ) R . T
_ Specifically, a 5|gm0|dal MLP ANN with one hidden Iaye_r,.k = |wi} Wl al| andgy = [Gir1 Gon_r] -
is used to approximate the nonlinear vector-valued functio

fr—1, as depicted in Figure 4. Its output is given by Definition 111.5. The measured output in the dynamic model
is denoted by, = v, — vi_1. In our practical implemen-
. o (6)isd db I ical impl
for = [ ¢ (Tp—1, Gi) W1y, ] (11) tation vy, is acquired from the wheel encoders.
_ - R ,
¢ (@r-1, @r )10z Assumption Il.2. By theUniversal Approximation Theorem

in the light of the following statements: of ANN, inside the compact sgt, the ANN approximation
error is negligibly small when the estimafg is equal to some

Definition Ill.1. )y = [vs_1 1] denotes the ANN input. 0\ 0ol vector®. The® notation denotes optimalit
The augmented constant serves as a bias input. This selectio P k: P Y-

of the ANN input stems from the fact thft ; is effectively In view of the stochastic adaptive approach taken in
a function ofv,_. this work, the unknown optimal parameter vectef is
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treated as a random variable, with the initial conditig
p(z5) ~ N (20, Py), meaning that{ is normally distributed
with mean 2, and covarianceP,. This notation is adopted
throughout the article. Effectively, the covariance valBe
reflects the confidence in the initial gue&s

By (11), (12), all previous definitions and assumption
it follows that the model in (6) can be represented in t
following stochastic state-space form

Zht1 2t P (13) |where by (11), (12) and (14), it can be shown that:

yr = h(Tr_1,Tk-1,2}) + €k, - . R .
where the vector-valued functioh (x;_1, 741, z;) is non- e = oT T owsi(gi — p2)aT - |
linear in 2}, and is given by ’

Trk—1  Tlk—1
i o Vi, = , 15

h()=fornri) + Glapmer. a4 | l fer T ] (49

In this model, the unknown optimal parameter vectgris |where:i = 1, ... ,L, uj, denotes the™ element of the

characterized as a stationary process corrupted by artiaitif
process noisg;, which aids convergence and tracking durir
estimation. In addition, observation uncertainty is cadefor

pGiven the previous predictiofiZ, ;_1, Pyx—1); denoted in
short-form by(2;, P;.); the following EKF (prediction mode
algorithm generates the new predictit®)11, Pi+1)-

1) EvaluatingV,, the Jacobian matrix ob (i1, 7x—1, 2})
gyith respect toz; evaluated atzy:
gk] ’

e [3(fk1) I(Gr-17Tp—1)

a(gx)

s _
Vi = [ka VI‘k] - a(rr) s

Tk

4™ output weight vector;,, notation-wise¢y 1 implies
ghat the activation function is evaluated foy._; anday, 0
denotes a zero-vector of the same lengtlpas;, ande; and

by augmenting a random measurement n@is¢o yj,. x both correspond to time instagt — 1).

It is evident, from (14), that the use of the MLP ANN
which brings about certain practical advantages over GaR
as argued in Section |, results inr@nlinear measurement

B Performing the prediction step:

equation in the stochastic state-space model (13) foreulat B = 2t Ky (16)

for estimation. In order to address this issue in a stoahasti Popr = P~ Ky VniPe+Qp

framework, we have to employ a nonlinear recursive estimatwhere the Kalman gain and the innovation vector are respec-
The two dual adaptive schemes presented in this papeely given by:

depart from this point in our formulation and proceed fo 1

tackle the estimation and control problems in different syay K, = PV, (thPth;f + Re)

as detailed next. _ e = Yn—h(Te1,Tho1,28).
1) EKF-based Dual Adaptive Schemé&or the sake of

clarity and completeness, the MLP dual adaptive scheme

proposed in [26] and used for Comparisons in this paper }élgonthm I1.L1: The EKF parameter—pl‘ediction algorithm.
revisited in this section. In this scheme, we employ the EKF

in prediction mode for the recursive real-time estimatidn o ) _
2*  as follows Lemma l1ll.2. On the basis of Lemma IIl.1, it follows
k+1 :

that p(yr.1|I¥) is approximately Gaussian with mean

Definition 11l.6. Theinformation statelenoted by'*, consists p, (), T, Zre1) and COVﬁfiancthkHPkHVh;fH + R..

of all measurements up to instahtand all previous inputs. ) i .
Proof: Expressingyx+1 as a first-order Taylor series

Assumption 111.3. €, and p, are both zero-mean white aroundz;,, = 2,1 yields the following approximation
Gaussian processes with covariandgs and Q,, respectively.
Moreoverey, pr and z; are mutually independenk.

Lemma IIl.1. In the light of (13), Definition 111.6, and As- Noting thatz}, , ande,1 are the only probabilistic terms on
sumption 111.3, it follows tha;z)(z;+1|[’€) ~ N (2r41, Pey1), the right-hand side of this approximation, the expectedeal
where 2,,1 and P,,, are computed at each control stepof y,+1 conditioned on/*, denoted byE {y;1|/*}, can be
according to the EKF Algorithm 1Il.1. Consequentl§;,; expressed as a sum of three terms:

is considered to be the estimate gf , conditioned on/*,
and P, can be viewed as a measure of this estimat
uncertainty.

Yr1 & b (Tr, Th, 2r1) + Vg (Zh1 — 2r11) + €41

(T, Thy Zig1) + Vg (E{zpi1} — 2rs1) + E{ersr}.

SinceE {z;,,} = Zk41, by Lemmalil.1, andE {€;41} = 0,
by Assumption 111.3, the second and third term are both equal
1p zero, leaving the first term as the mean valug(@f.+1|1").
Using the same Taylor series approximation, we note that
the covariance of the right-hand side can be written as

Proof: The proof of this lemma follows directly that of
the EKF in prediction mode, when applied to the nonline
stochastic state-space model in (13). [ ]
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Cov(th+1z,’§+1) + Cov(er+1) which by Lemma Ill.1 and and the elements dV,; are given by:
Assumption 1.3 reduces t&thPkHVth + Re. [ |

Algorithm 1111, in view of Lemma II.L, constitutes the (1,1 = a(l, Dpea(1,1) +6(2,2)pce(2,2)
adaptation law for the EKF-based dual adaptive scheme.n(2,2) = qi(1,1)pca(2,2) + @(2,2)pac(l,1)
Moreover, by Lemma I11.2, this algorithm provides a reahéi

Y g P n(112) = Q4(171)PGG(172)+Q4(171)PGG(2a1)

update of the probability density functigr{yy1|I*), which
is used to develop the dual adaptive control law as follows.

The explicit-type suboptimal innovation-based perforoggn
index.J;,,,,, adopted from [8], and modified to fit our multiple- " 2,1)
input multiple-output (MIMO) nonlinear problem, is gively b

04(2,2)pca(1,2) + q4(2, 2)pca (2, 1))
= n(1,2).

Note that the time index iNy,; indicates that each element

L = E{ (et — varr)” @1 (Yot — yapss) pca(-,-) corresponds taPgay 1
. T ] N Proof: By the approximate Gaussian distribution
+ (7 Q2mk) + (k11 Qstnta) ‘I }7 (17)  p(ypia|I*) in Lemma 11.2, and standard results from linear
algebra involving matrices [49], it follows that within thi
in view of the following definitions: scheme, (17) can be written as

Definition IIl.7. ya;,, is the reference vector @f,; and T T

is given byyq,, = ;er+1 — Vg. Jinn = (hk+1 - del) Ql(hk+1 - ydk+1) + 7, Q27
T

Definition 111.8. Design parameters;, Q- and Qs are T (Q4 (V"’““P’“’le’”+1 +R€)> » (20)

diagonal ande R?*2, Additionally: Q, is positive definite,

Q- is positive semi-definite, and @, < Q3 < 0 (element-

wise).

where hy;q1 denotesh (xy, 7%, 2k4+1). By employing the
relations in (14), (15) and (19) to expaneh i, Vh,.,
and Py, respectively in (20), one is able to factorizg,,,
Remark I11.3. The design paramete€); is introduced to completely in terms ofr. The resulting quadratic expression
penalize tracking errorsR, induces a penalty on large controlis differentiated with respect ter, and then equated to
inputs, andQs affects the innovation vector so as to induc&ero in order to determine its stationary point. This leads
the dual adaptive feature characterizing this stochastictml to (18). Moreover, the resulting Hessian matrix is given
law. by 2 C:‘leék + Q2 + N1 |, which by the statements in
Definitions 111.8 and 111.9 can be shown to be positive defnit
This means that the dual adaptive control law specified in The
Theorem lIl.1. The control law minimizing performanceorem Ill.1, minimizes the selected cost functidy,, uniquely,
index J;n, in (17), subject to the WMR dynamic model (5and the inverse term in (18) exists without exceptions.

and all the previous definitions, assumptions and lemmas in . . .
this formulation, is given by ﬂeemark IIl.4. Qs which appears in (18) vias,1 acts as

a weighting factor, where at one extreme, wily = —Q1,
~ ~ -1 the controller completely ignores the estimates’ uncetiai
— T
e = (Gk QIG’“+Q2+N’“+1) (18) resulting in HCE control, and at the other extreme, with
X (é}le(ydkH — i) - n,Hl) 7 Qs =0, it gives maximum attention to uncertainty, which
leads to cautious control. For intermediate settings @%,

where f;, and G are computed via (11) and (12) using thdhe cpntroller strik_es a compromise and operates in dual
latest estimate vectog,.. given by Algorithm 1ll.1, and adaptive mode. It is well known that HCE control leads to
ki1 and Ny, are computed as follows. large tracking errors and excessive control actions whes th

estimates’ uncertainty is relatively high. On the other dan

cautious control is notorious for sluggish response &odtrol
Definition 11.9. Let: Q4 £ Q1+Qs, B2 Pay, . Vs, Qa  tumn-off[8], [50]. Consequently, dual control exhibits superior
as(i,7) be used to denote th(epj)th element of any matrix performance by striking a balance between the two extremes.
Ag and the covariance matrif;; in (16) be repartitioned
as

The EKF-based dual adaptive control law is given by:

Remark 11I.5. 1t is interesting to note that in the HCE case,
i.e. when Qs = —Q, if one setsQ; = I, and Q> = 0,
] ’ (19) the control law in (18) is identical to the computed-torque
law in (10), withk; = 0 and the dynamic functiong, and
G, replaced by their estimatef, and G, respectively. This
where Pss, € R%“*%! and Pggyqq € R**2. Then clearly confirms that the HCE approach, which characterizes
the majority of adaptive controllers, treats the estimadssif
Kl — [ b(1,1) +b(2,2) they were exact, which is never the case in real-life sitreti
* b(1,2) +b(2,1)

T
P = Pffk-i—l PGfk+1
Pey., Pecri

as argued in Section |.
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2) UT-based Dual Adaptive Scheniehe EKF-based dual Given the previous prediction(2;_1, Pyjx—1), denoted
adaptive scheme just presented employs the EKF algorittimn short-form by (2, P.); the following UKF algorithm
to address the ANN weight-tuning task. Moreover, the corféprediction mode) generates the new predictidp; 1, Pi+1):
sponding dual adaptive control law in (18) relies on a first-
order Taylor approximation of(yx.1//*), as detailed in|1) Sigma-points sampling and propagation:
Lemma [11.2. In contrast, the novel UT-based dual adaptjve o )
scheme detailed in the following paragraphs uses a spdigifiqa  Zklk—1 [zk 2kt (7\/17’6) 2k~ (7\/1?“)}
devised form of the UKF [42], [43] as a recursive weight- Frpr = @1, Ree1)s Grir_1 = G(Grjp_1)
tuning algorithm, to replace the less accurate EKF algorith
of the previous scheme, and in addition employs a novel dual

Yie-1r = Frp—1 + Grpro17r-1

adaptive law that uses the UT to improve on the first-orger . 2N
Taylor in Lemma I11.2 which leads to the EKF-based contrpl Yk = Z Woni¥i bk (21)
law in (18). =0

As argued in [43] the UKF, originally proposed by Juler |2) Measurement update and estimate prediction:
al. in [42], provides a better alternative to the well estatdish 2N
EKF to address the problem of stochastic nonlinear estimat| Py, = Z Wei [Yinp—1 — k] [Yinp—1 — yk]T + R
Both the EKF and UKF approximate the state (or parameter) i=0
distribution by a GRV. However, while the EKF propagates 2N . 1T
the mean and covariance of this GRV through the first-orgler Pry = Z Wei [Zimip—1 = 2] [Yipin-r — 9]
linearization of the nonlinear system, the UKF uses a mihima =0 1. .
set of deterministically chosen sample points, terrsigna Ki = PoyPyyy, t=yr— Uk
points that capture completely the true mean and covariance 2k+1 = 2k + Kgig
of the GRV, and propagates them through the true nonlinearp, ., = P, — KkuykKkT +Qp

system, yielding a posterior mean and covariance that |are
accurate up to the second order Taylor series expansiomyor|a .
nonlinearity. In contrast, the EKF is accurate only up to th‘@h?re:ZT = [RT gT]T’ v = VN+A, Nis the length
first-order Taylor series expansion [43]. Moreover, the UgF| ©f 2+, the scaling parametex = a®(N + k) — N, constant
a derivative-free algorithm and as shown later in SectioBjVv| @ determines the spread of the sigma-points, constaista
it is still computationally efficient enough to be implemeatt secondarx scaling parameter, thf UT weights are given by:
on available hardware in real-time practical applications Wino = w35 Weo = Wino +1 - +5 a”qwmi =Wei=

Starting from the MLP ANN formulation of Section I1I-Q zivsy (¢ = 1,---,2N), and § includes prior knowledge g
leading to (14), we now proceed to propose the use of an UHte estimate’s distribution.

algorithm in prediction mode for the real-time estimatioh pMoreover, in the UKF framework the linear algebra operaion
=, as follows. of adding a column vector to a matrix is defined as the addijtion

) o of the vector to each column of the matrix. For further detail
Lemma IlI.3. In the light of (13), Definition 1.6, and As-|jncjuding guidelines for selecting the UKF scaling paraeng;
sumption 111.3, it follows thap(z;, | [I*) ~ N'(2x+1, Pe+1): | one is referred to [43].

where 2,1 and P, are computed at each control ste
according to the UKF Algorithm 111.2. Consequentl§, 4
is considered to be the estimate gf , conditioned on/*,

—h

Algorithm 111.2:  The UKF parameter-prediction algorithm.

and P, can be viewed as a measure of this estimate’s ) 2N R B
uncertainty. where, fi => WuFiiar,  Gr=G(Grr1) (23)
=0

Proof: The UKF algorithm in prediction mode, presented )

in Algorithm 111.2, is effectively the standard UKF algdnin and the covariance

as stated in [43] for parameter estimation, with the diffiee P _ 24
- Pyyp (24)

that the measurement-update step precedes that for time-

update. In addition, the time-update step is advanced by one W D Do D Derll + R

sample to obtaing,,; at instantk. Hence, the proof of Z «t [Ds; + Doimi] [Dg; + Daimi]” + Re

Lemma 111.3 follows directly that of the UKF (additive noise . .

version) when applied to the nonlinear stochastic stageesp where, Dy, =F; ;11 — fr., Da; = Gjpq1x — G-

model in (13). . s . . .
Proof: The equation off;, in (23) is derived by applying
Lemma lIl.4. On the basis of Lemma III.3, it follows thatihe UT to estimate the mean of f(mk TZ+1)|Ik The

I*) is approximately Gaussian with me and . A . . NP
ﬁg\l/l;igncgaP PP y i1 equation ofG, in (23) is more straightforward sino&, is

iven by: ; ) .
vk yA ) linear in the unknown parameters. Hence we simply employ
Jrs1 = fr + GpTe, (22) the fact thatE {g} ,} = gr41. To derive the equation of

=0
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Pyy,.,, in (24) one needs to advance the equationffyy, replaced byf. and G}, in the latter; also apply in the context
in Algorithm 111.2 by one sampling instant, and substitute f of this scheme.
Y; g+1)x @and gr41, using the relations leading to (21) in the

same algorithm. - IV. SIMULATION AND EXPERIMENTAL RESULTS

. . As pointed out in Section |, the performance of dual
Remark IIl.6. One should particularly note that in Lemma, . . . -
: : . _adaptive controllers is typically tested by computer sitiohs
[11.4, the evaluation of the approximate mean and covareanc

b . . and real-life experiments. In this section we present a rermb
of p(yr+1|I") are not based on a first-order Taylor approxi- . : .
h . o bothsimulation and experimental results to demonstrate the
mation, as in the case of the EKF-based scheme specifical

in Lemma II1.2, but are generated through the more accurate ectiveness of the novel UT-based adaptive control sehem

L o . ~and to compare it with the EKF-based scheme originally
method for approximating the statistics of random variable roposed in [26] and briefly revisited in this paper.

which undergo a nonlinear transformation, namely the uf
[42]. A. Simulation Results

Algorithm 1112, in the light of Lemma Il.3 constitutes Some of the parameters in our simulations namely; the
the weight adaptation law for the novel UT-based MLP duaheasurement noise and the robot mass, inertia and friction;
adaptive scheme. In addition, Lemma 111.4 provides a reare programmed to change arbitrarily from one simulation
time update of the probability density functigify,,|/%). trial to the other. This renders the simulations more réalis
This information is employed by the UT-based dual adaptiyait also nondeterministic. For this reason we do not base our
control law stated in the theorem below. controller validations and comparisons on a single sinmrdat

L trial, but opt to perform a Monte Carlo exercise that invelve
Theorem 1Il.2. The control law minimizing performance500 simulation trials instead. To strengthen our analysgne

:gdfe;x_gmn Ilrlll (717)’ dsllljlbéecé to thE I\I/IVC';AR gyLnamm ml(l) Idglm(&f‘urther, we employ a statistical hypothesis test using thia d
etinitions L. 7 an -6, Remark fll.s and Lemmas 1il. s@n acquired from the Monte Carlo simulations as detailed later

lll.4, s given by in this section.
A A -1 The differential WMR under study is simulated via the
_ T
e = (GkAQleJer +]YGG’“+1) (25) continuous-time dynamic model given by (1) and (5). As
X (G;{Ql(ydkH — fk) — ntk+1) , indicated previously, a number of parameters in this model
namelyd, m., I. and F(v), are programmed to vary from
where N one simulation trial to the other. These variations adhere t
NgGip = Z WciDGiTinDGi (26) the ph_ysjcs of qrbitrarily but realisticf';llly ggneratedmm_iaog,
= comprising various robot load configurations and frictiona
. conditions. Specifically, in the initialization stage ofcka

simulation trial the modelled WMR is virtually loaded with
NGfpt1 = ZW”DGZ'TQ‘*D“ and Qi =Q1+Qs. a point mass, ranging from to 10 kg, placed on the axis
=0 perpendicular to the driving axle at a distance, rangingnfro
Proof: Given the approximate Gaussian distribution of ¢ 5 to 0.5 m, away fromP,. Effectively this yields a new set
p(yk+1/1%) specified in Lemma I11.4, and standard resultsf arbitrary but realistic values fof, m,. and I,. Moreover,
from linear algebra involving matrices [49], it follows thawheel viscous friction is included in the simulation by Beit
within this scheme, (17) can be rewritten as F(v) = F.v, where F, is a diagonal matrix of coefficients
7 _ (A _ )T Q (A _ ) whose values are randomly generated afresh from a uniform
inn Ykttt = Ydjet 1 \Ykt1 ™ Ydjet1 distribution ranging fron®.001 to 0.5, prior to each simulation
+ 7 Qo + tr (Q4Pyyk+l). (27) trial. All the other WMR parameters are held constant for
o _ _ all simulations and are tabulated in Table I, along with the
By substituting for g1 and Py, ., in (27), using the yaiyes ford, m. andI, that correspond to the specific case
relations in (22) and (24) respectively, it is possible tiéize  of the unloaded WMR. These parameters are based on actual
Jinn completely in terms ofr,. The resulting quadratic heasyrements taken from Neurobot, the experimental WMR
expression is differentiated with respectfpand then equated designed and built by the authors for the purpose of this
to zero in order to determine its stationary point. This &agesearch.
to (25). Moreover, the resulting Hessian matrix is given by gach simulation trial consists of eight consecutive cdrero
2 (GngGk + Q2 +NGGk+1)y which by Definition 111.8 simulations. The first six of these correspond to the three
and (26) can be shown to be positive definite. This mean®des of operationi,e. HCE mode Qs = —Q;), cautious
that the UT-based dual adaptive control law specified in (26)ode Qs = 0) and dual mode @3 = —0.8Q,); for each
minimizes (17) uniquely, and the inverse term in (25) existsf the two adaptive schemes being compared. The remaining
without exceptions. B two correspond to: (1) a nominally-tuned nonadaptive (NJNA
Remark Il1.4 and 111.5; with (18) replaced by (25) arg 1  controller, which is effectively the computed-torque cotier
replaced byngy, , in the former, and withf, and G in (10) with k; = 0, pre-tuned with the mean values of the
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TABLE | . . . . . -
WMR PHYSICAL PARAMETERS(NEUROBOT WITH NO LOAD). single simulation trials, and since the nature of the sitta
is stochastic, it is inappropriate to draw general conolsi
Parameter]  Value based solely on the result of one or two simulation trials.
d om The Monte Carlo analysis that follows later in this section
b 22.95 cm is designed to address this issue and leads to a more fair
T 6.25 cm and scientifically sound comparison of the proposed schemes
me 21.0 kg However, the single trial results presented in Figure 5 de gi
M 1.5 kg a number of important indications on the relative perforogan
I 0.55 kgn¥ of the HCE, cautious and dual adaptive control modes, which
Tw 0.0006 kgt we have found to be highly consistent and independent on the
Im 0.01 kgr number of trials and even the scheme itself.

In Figure 5, the plots labelled (.i) correspond to the pregbs

robot dynamic parameters, specifically:= 0 m, 1, = 26 kg UT-based scheme while those marked (.ii) correspond to the
I. = 0.87 kgm? and the diagonal values &, both set ta).25. EKF-based scheme. The following comments and observations
It is important to appreciate that this is the bestamadaptive PPl to both schemes. Plots (a.i) and (a.ii) depict the WMR,
controller can do when the exact robot parameters are entrolied by the respective adaptive controller in duatigo
known to the controller, as in the case of these simulations alfacking a demanding reference trajectory with nonzerieini
typical real-life applications; (2) a perfectly-tuned mokaptive tracking error. It is .clear that the robot converges .qU|c!<Iy
(PTNA) controller, which is effectively the computed-torg © th_e. reference trajectory and kgeps tracking it with high
control law (10) withk, = 0, pre-tuned with the exact valuesPrecision, even when it reaches high speeds of ardumds.

of the robot parameters. The latter is the best theoretiddPts (b) to (e) focus on the transient of another simulation
controller since it perfectly cancels the nonlinearitiasd a trial that uses the same reference trajectory, but purposel
yields deadbeatontrol. Naturally this controller is unrealisticinitiated with zero tracking error conditions. In this mann
since the exact robot parameter values are never known@fy transient errors can be attributed to the capabilityhef t
practice and are generally prone to change. Hence we use fRigPective controller to cope with the initially high lesesf
controller solely to provide an ideal reference for quaie Uncertainty in the estimates. Plots (b.i) and (b.ii) corepar
comparisons. In contrast, the HCE, cautious and dual agaptin® Euclidean norm (denoted b/ throughout the paper)
controllers assume no preliminary information about theoto Of the = — y position 2err0r vecto;. This is computed via
dynamics whatsoever, since closed-loop control is aeiiatl#¥errorll = /(@ — )2+ (y. —y)*. Plots (c.i) and (c.ii)
immediately with the initial parameter estimate vecty show the magnitude of the WMR orientation error for the three
generated randomly from a zero-mean, Gaussian distributfePntrol modes. Plots (d.i) and (d.ii) show the error in thieaio
with variance0.025. pose while Plots (e.i) and (e.ii) compare the corresponding
antrol inputs, more specifically the Euclidian norm of the

For the sake of fair comparison the same control sampliff

interval (' = 50 ms), velocity measurement noise sequen(’f@rq”e vector. As can be seen in Plots (e.i) and (e.ii), th&HC

pler) ~ N(0,0.0001Lz), reference trajectory, initial condi- cpntroller leads .to very high transi(_ant control inputs.s'l’i.sia
tions, initial filter covariance matrix®, = 0.517), artificial direct results of its aggressive and incautious natureyrsieg
process noise covarianc€f = 10~Iyy), tracking error from the fact that it completely ignores the high uncertaint
penalty @1 = L), and control input penalty@s = 0), are the initial estimates._PIots (b)_ to (d) clea_rly indicatet_t_this
used in each controller simulation in a particular simaiati '€2ds t0 relatively high transient errors in both positiord a
trial. In addition, the sigmoidal MLP ANN used in each oforientation. The cautious mode, which leads to lower teamtsi
the two schemes under test contains five neurdns-(5 = errors relative to the HCE, is slightly more sluggish thae th

N = 27). Our experiments indicated that adding more neuroffy@l mode. This can be seen in Plots (e), where the initial
did not improve the control performance significantly. Ire thCoNtrol input issued by the cautious controller is the lawes

UT-based scheme, the UKF scaling parameters are set T}ys leads to a slower (relative to the dual mode) decay of the
a=1,k=0ands=2. pose error as indicated in Plots (d.i) and (d.ii). It is cldzat

the dual mode manages to strike a balance between these two

1) Single Trial Analysis:A number of simulation results i d leads 1o the best t ient perf in both
typifying the performance of the three control modes of thgiremes and ‘eads to the best transient performance in bo
hemes. All these observations are in accordance with the

proposed UT-based adaptive scheme as well as the ERE-.". ™" . .
based adaptive scheme revisited in this paper are depic:?‘(g'(ti'c'pat'onS of Remark Ill.4. In addition, the three adapt

in Figure 5. It should be emphasized at the outset that théggggs_!:af:c?h.sshse?; cggve;%?eté)dthg tSo atr;:g f[;i;f?hr;:)ncte at
results are only included to depict the typical performan y - IS unexp u y

of each adaptive control mode (HCE, cautious and dual) € stea(:_y -sﬁate IS reacgeéd ttf:]e p?rarlneter es?mates WO.UId
each scheme, and not to be used to compare the two sche VS practically converged to the actual parameters, maan

(the UT-based and the EKF-based) themselves. The reald 1€ fobot would have adapted well to its own current
for this is that the results shown in Figure 5 correspond namics.
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Fig. 5. Simulation results for the (i) UT-based and (ii) EK&sed schemes: (a) reference (greenand actual (red)) trajectories, (b) position error
|zyerror|| = +/(zr — )2 + (yr — y)2, (c) orientation error, (d) pose error, (e) control inputBN(a) controller in dual mode with non-zero initial error,

(b) to (e) transients for zero initial error.

2) Monte Carlo Analysis:To quantify the controllers’ per- formance measure for each of the eight controllers operatin
formance objectively, a Monte Carlo simulation involving® under the same conditions, where lower value§ @f.,.4) are
simulation trials was performed. For each of the eight comaturally preferred.
troller simulations in a trial, the reference trajectonypiited  The salient statistical features of the resulting eightt cos
in Figure 5a, but with zero initial tracking error, is usediahe distributions resulting from this Monte Carlo simulaticare
simulation settings and conditions specified earlier apfty depicted in the boxplot of Figure 6. Additionally, the metia
the end of each trial, the fOIIOWing accumulated cost fuorcti interquart"e range (|QR), mean and variance of each ofethes

C(kena) is calculated: distributions are given in Table IIl. Due to the skewness of
. these distributions and .the .high number of outliers in some
Ckona) = 2”ka TS of the cases, the median is preferred over the mean as a

— measure of central tendency while the IQR is preferred over

the variance as a measure of dispersion (spread). Thegesult

This cost function, based on the robot pose error over thre Figure 6 and Table Il provide the first indications how
whole time horizon £.,,q sampling instants), serves as a peene would rank the general performance of the controllers
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Fig. 6. Boxplot of the cost distributions.
TABLE I . . .
STATISTICAL MEASURES OF THE COST DISTRIBUTIONS why in Table Il the mean .and varlance Qor.reSp_OHd.'ng to
these controllers are exceptionally high. This impliest fha
Controller | Median [ IQR | Mean | Variance || Rank ] a number of trials the HCE mode led to very high transient
EKF-HCE | 120 | 416 | 7.24 | 47112 6 errors. Again, this implies that the complete lack of sevigjt

EKF-CAU | 037 | 087 | 118 | 14.07 4 exhibited by HCE adaptive controllers in the face of the high

EKF-DUA | 027 | 0.85 | 0.91 5.06 3 uncertain estimates characterizing the startup phaseleean

UT-HCE 044 | 122 | 465 | 30379 S to excessively high control inputs and tracking errors \whic

UT-CAU | 012 | 013 | 019 | 0.14 2 can potentially result in mission failure and possibly heace

UTDUA | 009 | 011 | 015 | 008 L damage in a practical situation. This strengthens our pusvi

Emﬁ (?'03(?3 0763(?4 ;f& zg'ggo na- results in Section IV-Al and again consolidates the argusen

: : : < ha- in Remark 111.4. The results in Table Il also indicate that

within each scheme the dual mode outperforms the cautious
and HCE modes. In addition, it is evident that each mode

under investigation, where lower values of the median afd the UT-based scheme outperforms its counterpart in the
IQR are obviously preferred. From the outset one can easfyF-based scheme. The latter implies that the proposed UT-
notice that the NTNA controller yields the highest mediaR@sed scheme brings by a considerable improvement over the
and IQR, implying that in general it leads to the highest po§&<F-based scheme, originally proposed in [26]. However, in
error and deviation in performance. This is not unexpectéfider to strengthen these claims further and to ascertain th
since this controller is not adaptive and so unable to cofft€ observed differences in the performance of each céetrol
well with the robot parameters that are constantly changittflicated by the results in Table II, are statistically sigant

from one simulation trial to another. In fact, its perforraan @nd cannot be attributed to chance, we employed a stalistica
could be much worse if the nominal parameters, to whidAference procedure via the following hypothesis test.

it is tuned, are unknown or the model variations are higher.The One-Way Analysis of Variance (ANOVA) is a powerful
For this reason there is no scope in comparing it further Qagistical procedure used to make inferences on the piopula
the other adaptive controllers, and so it is withdrawn frém t means of several independent samples. Like all other para-
following comparative analysis. Consequently in the feiltg  metric tests it relies on a number of assumptions [51]. Most
comparative treatment we focus solely on the remaining Siportantly, the samples should be independent, normally
adaptive controllers since the PTNA results are includeyl oryjstributed and exhibit fairly similar variances. It is alsnown
for reference. that ANOVA is quite robust in the face of violations to its
Focusing back on the six adaptive controllers, one noticassumptions, mostly so when the sample sizes are large and
that the two HCE controllers yielded a relatively high numbeequal. However, the cost distributions corresponding ® th
of extreme outliers (refer to Figure 6). This is the reasasix adaptive controllers left for investigation are all pioely
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skewed, and therefore cannot be closely approximated tke transformed distributions, namely the Kruskal-Wetiéist
normal distributions. Hence, the original cost observatio [51] was also employed to test the set hypothesis. The final
were all transformed using the natural logarithm functibine result of this analysis fully confirms that of the ANOVA.
transformed samples were found to be fairly Gaussian (skew-The results from this Monte Carlo comparative analysis
ness and kurtosis in the range #fl). This was verified by fully support those derived from Table Il and Figure 5. Hence
investigating the histogram and the normal quantile-gientwe can confidently claim that:
(Q-Q) plots of each transformed sample [51]. However, tf}g
Levene’s test for homogeneity of variance [51] indicatealt th €
equal variances among the six transformed samples stiltico
not be assumed. In such cases it is suggested that the Bro
ForsytheF statistic or the Welch's statistic are used instead
of thi standardr statistic in the ANOVA test [51]. of th_e UKF over those of the EKF in the ANN '_train?ng
Based on these results, the log transformed cost values W%I orithm, and to the better (second-order) approximasion
, g

used in the ANOVA test, aimed to compare the populatio% the UT-based control law as opposed to the first-order

means of the six cost distributions. The null and alterreati\?/l%pr;o:\;rgrat\:;?hsir:ng:éin;éﬂgrr%eeEﬁg'gjzfi]gzgtrg slljgc;":itgr to
hypotheses for this two-tailed test are: ' P

. i both the cautious and HCE modes. This complies with the

Hy: In general the six adapuvg COﬂt_r0|_|§fS perfornyal control philosophy that a balance between caution and
equally well. In other words: in an infinite numberyohing yields the best performance in adaptive control. It
of Monte Carlo simulation trials the six controllersis aiso not surprising that the performance of the adaptive
would yield the same mean cost. controllers is generally better than that of the computedttie

H, : Some controllers perform better than the others. lpnadaptive controller which assumes nominal values fer th
other words: in an infinite number of Monte Carlggpot dynamic parameters, when these are prone to change.
simulation trials two or more controllers would yield

a different mean cost. B. Experimental Results

The resultingp-values [51], corresponding to the Brown- the UT-based and EKF-based dual adaptive neuro-
Forsythe and the Welch tests, were both approximately zefngjlers presented in this article were both implemente
Hence, since the-value is smaller than the chosen level 0f,ccessfully on a physical WMR, named Neurobot, which was
significancen = 0.05, the null hypothesigdiy is rejected. This yegjgned and built by the authors as an experimental résearc
implies thatat leastone of the six controllers is significantly iasthed. This section introduces Neurobot and reports daum

better (cost-wise) than the others. In order to investigalg experimental results that compliment those acquired by
the underlying differences further and be able to rank the,, 1ation and reported in the previous section.

controllers according to their performance we employed theNeurobot, pictured in Figure 8, is a differentially driven
Games-Howelpost-hodest, which is highly recommended inWMR. Each of the two 125 mm diameter, solid-rubber, mo-
the case of unequal variances [51]. The result was constpm;uqorized wheels, is independently driven by a 70 W, 24 V per-
since all thep-values resulting from all pair—w_ise_c.ombinaFion%ament magnet dc motor (from maxon motor [52]), equipped
were much lower than the chosen level of significanc@his _ with a 113:1 planetary reduction gearbox and a 500 pulses per
implies that the means of the transformed samples, depm}%@olution incremental optical encoder. Each of the twoarmt

in Figure 7, areall significantly differentand can be used 105 jrjyen via the LMD18200 H-Bridge IC which is controlled
rank_the general performance of the six adapti_v_e contmlle‘gy a 20 kHz pulse-width modulation (PWM) reference signal.
as given in the Ia§t column (_)f Table ”', In_ ad?"“ong @ NOMrhe instantaneous current in each motor is measured usng th
parametric test using the original cost distributionseastof | £\ Hx-03-P/SP2 Hall effect current transducer, and filtere
by a 4th-order continuous-time Bessel low-pass antidalips
filter, tuned for a corner frequency of 2 kHz, and implemented
via the MAX275 filter IC. Neurobot is powered by four 12 V,

9 Ah sealed lead acid (SLA) batteries.

The algorithms controlling Neurobot were all implemented
on aMicroAutoBoxembedded computer system fralSPACE
[53]. TheMicroAutoBoxis a compact stand-alone prototyping
unit designed specifically for rapid-prototyping of comgut
tionally demanding real-time control systems, typicalb r
quiring a number of general and specialized analogue#digit
input and output channels. A digital pole-placement torque

mark IV.1. The proposed UT-based scheme brings about
significant improvement in tracking performance over the

%gf-based scheme, independent of the controller mode (HCE,

cautious or dual). We associate this to the better estimatio

o
n

(=)
T

1
o
T

J
=
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{ |
N} =

|
N
2]

UT-DUA  UT-CAU  EKF-DUA  EKF-CAU  UT-HCE  EKF-HCE controller with integral action, was designed and impletadn
completely in software to account for the motor electrical d
Fig. 7. Means plot of the log transformed cost distributions namics. This inner torque control loop uses the motor cairren
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A number of experimental results, validating the proposed
schemes and confirming the simulation results of this sectio
are presented in Figure 9. Plots (a) and (b) correspond to
a challenging trajectory tracking experiment that tests th
overall performance of the UT-based and EKF-based dual
adaptive controllers in a real-life application. Plotsi)(@nd
(a.ii) show that in both cases Neurobot swiftly adapts to
its own dynamics (with no preliminary offline training) and
simultaneously converges smoothly to the reference t@jgc
which it keeps tracking at very high precision for the rest of
the experiment. Plots (b.i) and (b.ii) focus on the posererro
vector norm||p,, — pr| measured during this experiment.
In each case, the red trace corresponds to the dual adaptive
controller while the black trace corresponds to a nonadepti

MABKEOWER  oTORS POWER ' computed-torque controller subjected to the same expatime
L _ = ‘ This nonadaptive controller employs the control law in (10)
LI S R 3 with k; = 0 and is tuned for Neurobot’s physical parameters

reported earlier in Table I. It is clear that the two dual dtlap
schemes performed much better than the nonadaptive con-
troller in steady-state. We attribute this results to thet that
the nonadaptive controller is based on a theoretical dymami
model (6), which like any other of its sort, is imperfect
and relies on several physical parameters, such as friction
and inertia, which are very difficult to measure precisely in
practice. On the other hand, the adaptive controllers assiom
preliminary information about the robot dynamics but acgui
this knowledge autonomously in real-time. In addition, if
Fig. 8. Neurobot: the WMR built for the purpose of this reskar one compares the pose error of the UT-based dual adaptive
controller in Plot (b.i) to that of its EKF-based countetpar
Plot (b.ii), it is easy to notice that the steady-state pennce
measurement as feedback and issues voltage commands totitbe former is relatively better than that of the latter.isTh
motors. This ascertains that the actual torques at the whe@sult is in accordance to Remark IV.1 derived from our
track those issued by the outer loop control law (the robsimulation results.
dynamic controller) and that motor current never exceeds aPlots (c) and (d) correspond to a different experiment with
predefined safe value. This cascade approach imposes ¢hatNaurobot. This experiment was designed specifically to test
inner loop operates at a much faster rate than the outer loapd compare the transient performance of the two adaptive
The sampling rates for the inner and outer loops were chossmhemes and their HCE, cautious and dual modes on a real
to be 10 kHz and 200 Hz respectively. WMR. In this experiment the reference trajectory follows a
A desktop computer was used to implement the contrsiraight line along ther-axis, with a speed of 0.1 m/s. At
algorithms in Simulink® using the system blocks provided:t = 5 s, well after the robot has reached steady-state operation,
by the dSpace Real-Time InterfacReal-Time Workshdpis the estimate vectog;,, is instantaneously reset to some
then used to automatically generate the required code whieimdomly generated values, hence erasing all the knowledge
is then downloaded to thilicroAutoBoxvia thedSpace Link acquired by the ANN estimator up to that point in time. In
Boardinstalled in the desktop computer. The system states amddition, the covariance matri¥,; is reset to its initial
parameters along with other information about the reaktimelatively high value, to reflect the high uncertainty in the
execution of each task running on thecroAutoBox such as new set of random network parameters. In this manner one
sampling times, priorities and execution times, could d&lso can objectively compare the transient performance of treeth
monitored in real time viaControlDesk also fromdSPACE  control modes when faced with extremely high uncertainty in
The initial network parameter vecto?, was generated the robot dynamics. In practice, similar scenarios mayearis
randomly. In addition, the MLP ANN contained five neuronsluring faults and jump variations in the robot dynamics. The
(L =5 = N = 27) and the UKF scaling parameters wergjuestion in these cases is not simply whether or not the robot
set toa = 1073,k = 3 — N and B = 2. The initial covari- adapts to the new situation, but also how smoothly and guickl
ance matrixPy, = 0.5I27 and the process and measuremeiitt will do so. In Plots (c.i) and (c.ii), it is evident that the
noise covariance matrices were setl@ ®I,; and 10~*I, HCE mode (blue trace) by far yields the highest transient
respectively. In addition@?; and Q- were fixed tol, and0 pose error, as a result of the sudden estimator disturbance
respectively in all cases. att =5 s. As argued previously, this is clearly the result of
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Fig. 9. Experimental results for the (i) UT-based and (ii) EBased schemes: (a) reference (gregnand actual (red)) trajectories, (b) pose error
(corresponding to the trajectory in (a)), (c) pose erroe (the test), (d) control input (the line test). N.B. In (agtbontroller is in dual mode (red trace) with
non-zero initial error, (c) and (d) depict the line test f&su

the relatively persistently aggressive and sudden coirtpait can be clearly seen when one compares the magnitude of the
issued by the HCE mode, which can be seen in Plots (dodse errors depicted in Plot (c.i) with that of the errorsliot P
and (d.ii) (blue trace). Specifically, these two plots defiie (c.ii). One should particularly note the different scalesd
Euclidean norm of thectual torque vector developed by thefor the y-axes.

motors and not that requested by the adaptive controller. InThe experimental results presented in this section styong|
theory these are equal, but in our physical implementatien wndorse the simulation results, including those from thetdo
had to limit the requested torque via a saturation function €arlo analysis, reported previously in Section IV-A. Conse
as not to damage the electronic circuitry driving the matorquently they extend the arguments expressed in Remark V.1
If it were not for this safety feature, the situation would béo the case of a real-life robotic application.

closer to that depicted in Plots (e.i) and (e.ii) of Figure 5.

These results also indicate that out of the three adaptivdesio V. CONCLUSION

in each scheme, the dual mode (red traces) by far exhibity, {his paper we have presented a novel MLP dual adaptive
the best transient performance, due to the very low trabsieQyntro| scheme for the dynamic control of WMRs. The design
errors and the very quick recovery exhibited in this experim employs the UKF and the UT to improve on the EKF-based
Moreover, it is also evident that the three controller moides \y p qual adaptive scheme we recently proposed in [26].
the UT-based scheme yielded lower pose errors, and heRgg presented designs are validated and compared extgnsive
better performance than their EKF-based counterpartss Thja poth realistic Mont-Carlo simulations, backed by rigas
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statistical analysis and real-life experiments with Néuato

[19]

the WMR designed and built by the authors for the purpose
of this research. All the results conspicuously show that:

1) The proposed UT-based scheme outperforms the EKPFY

based scheme.

2) In both schemes, the dual mode is superior (in transigpt)

performance) to both the cautious and the HCE con-
troller modes.

3) The steady-state performance of the adaptive contsoller

is generally better than that of the computed-torqu22]
nonadaptive controller.

To the best of our knowledge this is the first time that thig3]
UT is being used in the context of dual adaptive control and
where a dual adaptive controller is implemented and tested 941
a real mobile robot.
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