
Sharing Building Information with Smart-M3

Kary Främling

Aalto University

PO Box 15500, Espoo, Finland

e-mail: Kary.Framling@hut.fi

Ian Oliver

Nokia Mobile Solutions - Platforms

Helsinki, Finland.

e-mail: Ian.Oliver@nokia.com

André Kaustell

Åbo Akademi University

Joukahaisenkatu 3-5, FIN-20500 Turku, Finland

e-mail: andre.kaustell@abo.fi

Jan Nyman

Electrical Building Services Centre

Posintra Oy

Kipinätie 1, FIN-06150 Porvoo, Finland.

e-mail: jan.nyman@posintra.fi

Jukka Honkola

Nokia Research

Helsinki, Finland.

e-mail: Jukka.Honkola@nokia.com

Abstract— Semantic nets are a universal information structure

that can be used for representing nearly any kind of

information. This is why the semantic web has also chosen to

use them as the universal format for representing data, usually

using RDF (Resource Description Framework) as the syntax.

Semantic nets are also suitable for sharing information

between different domains, organizations, manufacturers etc.

In this paper, we describe how a semantic net and agent-based

shared storage called Smart-M3 has been implemented and

can be used for such information sharing. The particular

application domain studied is building automation, where

interoperability between equipment made by different

manufacturers is rare. This is a great challenge for

implementing "ubiquitously smart buildings", where building

automation systems, user interfaces and services could

interact. The paper describes how the Smart-M3 concept can

be used as an enabler of interoperability, where an ecosystem

of supplementary services is created through manufacturer-

agnostic agents.

Keywords - Smart Buildings, Smart-M3, semantic net,

ontologies, software agents.

I. INTRODUCTION

Creating smart buildings and smart environments in
general has been a topic of research and development for a
long time. However, such environments are still largely
found only in experimental or pilot environments despite
their potential to make people's lives easier, reduce energy
consumption and environmental footprint, as well as
improve the quality of life in general. In this paper, we
describe a distributed information architecture that makes it
possible to implement such smart environments on a large
scale by integrating information access to and control of
different building automation systems. We also show how

smart buildings can be created as parts of smart
environments.

Building automation is a domain where interoperability is
a challenge due to conflicting interface and communication
standards, e.g. KNX, LON, Modbus etc., in addition to a
great number of prorietary solutions. Solutions to these
interoperability challenges have been developed e.g. in the
ongoing DIEM project (Devices and Interoperability
Ecosystem, http://www.diem.fi) using device and protocol
adapters that enable unified information access to them all on
the Internet Protocol level and notably through Service
Oriented Architecture (SOA) solutions. Such SOA-based
solutions are good in the case where standards (real or de-
facto) exist for the semantic representation of the
information. In practice, there is a lack of universal
standards. Meanwhile there tends to be many potential
interfaces available developed by different organisations and
projects, which are not interoperable. This lack of
compatibility is a major obstacle for creating Smart Spaces
where humans and devices could interact smoothly [1].

The Smart Spaces notation is heavily overloaded and has
been used for describing a wide variety of things. In this
paper, we use it to signify a geographical space where
information is available about the space itself, the devices
and services available in it, the people present in it and about
other potentially useful information or services. Such a
Smart Space concept has been initially proposed in [2] as a
solution to enabling interoperability. As no standards exist
that would cover the information representation needs of
such Smart Spaces, we believe an incremental process will
occur [3]. In the first phase, devices and systems will publish
their available information and services using their current
semantic notations (standardized or not). When the
information becomes available, that makes it possible to

347

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

create new services that use the information, while
augmenting it with information about the services
themselves and information produced by them.

In the Sedvice/M3 architecture, information is expressed
as subject-relation-object Triples that build up labeled,
directed multi-graphs (one or more). In the rest of this paper
we will call such graphs semantic nets even though graph
theory and semantic net theory use partially different
vocabularies and present other potential incompatibilities due
to their background and history. The Triples are represented
using Resource Description Framework (RDF) notations.
Triples are stored and managed by the Semantic Information
Broker (SIB), which can be distributed over many devices.
The Smart Space Access Protocol (SSAP) is used for
performing operations on the semantic net.

After this introduction, the paper gives a state of the art
overview of building automation systems, semantic nets and
Smart Spaces. In Section III we describe the whole system
architecture and in Section IV we show the current level of
implementation, followed by conclusions.

II. BACKGROUND

Building automation systems and Smart Spaces are
currently two distinct domains with different technological
and scientific backgrounds, which is the reason for splitting
this section. We will provide an overview of the state-of-the-
art for both domains, as well as some background for the
work reported in this paper.

A. Building Automation Systems

Systems integration in buildings has traditionally been
about physical dimensions, voltage, plug dimensions etc.
Control mechanisms usually control either one device only
(e.g. a lamp, a refrigerator etc.) or power supply for security
reasons (e.g. fuses, main switch etc.). Implementing
integrated functions such as switching the power off from
certain appliances, cutting off water supply and activating
the burglar alarm with one single "leaving home" command
has required a lot of dedicated cabling and custom devices,
installed by professionals.

Different communication standards have been defined in
order to provide more feasible solutions, such as LON
(http://www.lonmark.org/), KNX (http://www.knx.org/) and
ModBus (http://www.modbus.org/). However, none of these
has become a global standard that all manufacturers would
support. Many solutions based on these protocols also tend
to be expensive to install, maintain and upgrade.
Furthermore, they are not conceived in a way that would
allow for easy integration between them; in fact, they may
even on purpose be designed in a way that makes
interoperability more difficult due to commercial reasons.

Meanwhile, remote monitoring and control of buildings
has become a common functionality at least for bigger
buildings such as shopping centers, office buildings, libraries
etc. Remote monitoring services are becoming an
increasingly important part of the business of traditional
building companies as well as other companies. These
systems tend to use internet as the information channel
because it is cheap to set up and use. As people become

increasingly connected to the internet from their homes,
internet and the communication protocols associated with it
have become an interesting option also for building
automation solutions. The fact that many multimedia devices
(including mobile phones) integrate internet connectivity by
default, makes it possible to take systems integration and
usability to levels that are not possible with "classical"
building automation systems.

Figure 1 illustrates how different devices can be
connected to a "protocol converter" that makes device
information available through internet protocols. The
"protocol converter" can be an ordinary computer or a
cheaper and more energy-efficient solution, such as the
Home Control Center
(http://smarthomepartnering.com/cms/) initially proposed by
Nokia. Device connectivity is implemented through adapters
that convert the underlying protocols into a generic internet
interface.

In practice, a generic internet interface nowadays
signifies a browser-compatible format (HTML and others)
for user interfaces and XML messages for machine-readable
information. For successful machine-to-machine
communication, the semantics of the XML messages have to
be understood in the same way by both parties. The currently
most used method for describing message semantics is XML
Schemas. In building automation, the oBIX (Open Building
Information Xchange, http://www.obix.org/) is an example
of such a protocol. Devices Profile for Web Services
(DPWS) is another initiative with similar goals. In addition
to these, more generic messaging protocols exist that are
intended for communication with any kind of devices (not
only related to building automation). The PROMISE
Messaging Interface (PMI) [4] is an example of such an
interface. The IP for Smart Objects (IPSO) alliance
(www.ipso-alliance.org) has similar objectives but it is
unclear whether they have yet specified any messaging
protocols. In practice, none of these has obtained global
acceptance.

There are still technical and functional differences
between the protocols. Currently, oBIX and PMI are the
easiest protocols to compare because their specifications are
readily available. For the moment, oBIX does not support
real-time events due to the lack of callback functionality,
which is included in PMI. On the other hand, oBIX is more
well-known. oBIX is also REST-compliant [5], whereas PMI
currently lacks the functionality of accessing resources (e.g.
devices, sensor values etc.) directly via a URL. The lacking
features would be easy to add both for oBIX and PMI but for
the moment especially the lacking features in oBIX make it
hard or impossible to implement some functionality that is
essential in real-life applications. As a conclusion, no
universal standard currently exists for representing
information neither about smart objects in general, nor about
building automation systems.

348

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Connecting devices to the Internet.

B. Semantic nets for describing Thing-related information

Buildings are per definition complex products for which
an extensive amount of documentation is produced both
during the design and the manufacturing phases. CAD
models and other technical information produced during the
design phase are some of the most essential parts of the
product information available when the building is taken into
use. CAD models are a form of semantic networks that
explicitly model "part-of", "depends-on" and similar
relationships. The bill-of-materials (BOM) used during
manufacturing is another important piece of product
information that can be represented as a semantic network.
However, the BOM is usually representing product
information on a product-type or product-variant level rather
than on a product-item level. The classical BOM is not
sufficient for managing building product information, where
each building is an individual product-item, where even the
parts of the building have individual properties and where
parts can be changed during the product lifecycle [6].

Semantic networks represent sets of named relationships
between different nodes (or objects) in a network. Using a
collection of pair-wise relations between nodes, where every
relation may also have an associated "strength", can
represent a semantic network. Relation strengths are
particularly useful when semantic networks are used for
reasoning, e.g. for diagnostic or prognostic purposes as those
needed in many middle-of-life (MOL), i.e. in-usage
applications of product items [7].

Solutions for managing semantic networks in a multi-
organizational context are being developed under the name
"semantic web". RDF and Web Ontology Language (OWL)
are examples of standards being developed for the semantic
web. Software frameworks also exist that use these
standards, e.g. Jena (http://jena.sourceforge.net/), OpenRDF

(http://openrdf.org/) and the Redland RDF Application
Framework (http://librdf.org/).

However, RDF and OWL are mainly focused on
describing web content rather than on describing product
information. Furthermore, the related software tools are not,
as such, designed to be used for implementing distributed
applications. Therefore agent frameworks could be more
suitable for this purpose. Examples of such agent
frameworks are ABLE
(http://www.alphaworks.ibm.com/tech/able) and JADE
(\http://jade.tilab.com/) that integrate inter-organizational
communication. In a multi-agent framework, agent
references correspond to links between nodes of a semantic
network. Therefore agent frameworks could be used as
building blocks for a distributed implementation of semantic
networks for describing product information.

When using an agent framework with support for data
analysis and decision support, the nodes themselves can also
be "intelligent". Especially the data analysis methods
included in the ABLE framework could be applicable as
decision support systems. ABLE data analysis and decision
support agents provide support for many different data
analysis methods, e.g. naïve Bayes, decision trees and neural
networks. In addition to these, ABLE agents exist for both
crisp and fuzzy rules that are useful for explicitly expressing
expert knowledge. This portfolio of methods is particularly
interesting for MOL scenarios that include diagnostics,
prognostics and condition-based maintenance. ABLE agents
can be trained both on- and offline and included in different
software components to perform filtering or decision-making
on different levels.

The Design Pattern [8] concept developed in the context
of Object-Oriented Programming is an example of how
object relationships, which are conceptually quite identical to
semantic relations, can be combined with processing in well-
documented ways that are known to be "good" from a
program design point of view. In the DIALOG software
platform [9], semantic relations have been used as a way of
storing product-related information structures, while agents
implemented the needed information processing in order to
apply some major Design Patterns to the domain of product
lifecycle information management [10].

DIALOG has been used for real-life applications in many
application domains, such as shipment tracking (inventory
management, detecting delays, project management),
building automation (intelligent refrigerator, remote
monitoring, condition-based maintenance), automotive
(online tracking and collection of sensor and other data,
condition-based maintenance) and telecommunications
(configuration management). There are also ongoing projects
in the same and new domains. Semantic nets have proven
their value for storing Thing-related information, while the
agent concept is a flexible and efficient paradigm for the
processing of that information. However, DIALOG is
implemented using "traditional" database and networking
technologies, which are not initially conceived for semantic
net and agent-based information processing. Smart-M3 is a
paradigm and platform developed to overcome those
limitations.

349

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. High-level system architecture and connectivity to external systems.

C. Semantic Net and Agent-based information processing

with Smart-M3

The Smart-M3 system [2][11] consists of a space based
communication mechanism [12][13] for independent agents.
The agents communicate implicitly by inserting information
to the space and querying the information in the space. The
space is represented by one or more Semantic Information
Brokers (SIBs), which store the information as an RDF
graph. The agents can access the space by connecting to any
of the SIBs making up the space by whatever connectivity
mechanisms the SIBs offer. Usually, the connection will be
over some network, and the agents will be running on
various devices. The information in the space is the union of
the information contained in the participating SIBs. Thus, the
agent sees the same information content regardless of the
SIB to which it is connected. The high-level system
architecture is shown in Figure 2, which includes the
distribution routing between SIBs and external interfaces to
protocols such as NoTA and UPnP from the agents.

The agents may use five different operations to access the
information stored in the space:
Insert: Insert information in the space
Remove: Remove information from the space
Update: Atomically update the information, i.e. a

combination of insert and remove executed
atomically

Query: Query for information in the space
Subscribe: Set up a persistent query in the space; changes

to the query results are reported to the
subscriber

In addition to these access operations there are Join and
Leave operations. An agent must have joined the space in
order to access the information in the space. The join and
leave operations can thus be used to provide access control
and encrypted sessions, though the exact mechanisms for
these are still undefined.

In its basic form the M3 space does not restrict the
structure or semantics of the information in any way. Thus,
we do not enforce nor guarantee adherence to any specific
ontologies, neither do we provide any complex reasoning

1

[14][15]. Furthermore, information consistency is not
guaranteed. The agents accessing the space are free to
interpret the information in whatever way they want.

We are planning to provide, though, a mechanism to
attach agents directly to the SIBs. These agents have a more
powerful interface to access the information and can be e.g.
guaranteed exclusive access to the information for series of
operations. Such agents may perform more complex
reasoning, for example ontology repair or translation
between different ontologies. However, they may not join
any other spaces but are fixed to a single SIB and thus a
single space.

1
 The current implementation of the concept understands

the owl:sameAs concept

350

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The M3 spaces are of local and dynamic nature, in
contrast to semantic web which embodies Tim Berners-Lee's
idea of semantic web [16] as a "giant global graph". We
envision that the spaces will store very dynamic context
information, which poses different challenges than the
internet-wide semantic web. For example, in order to provide
a true interoperability for local ubiquitous agents, the space
(i.e. SIBs) will have to provide a multitude of connectivity
options in addition to http: plain TCP/IP, NoTA [17],
Bluetooth, RFID [18]. Furthermore, the space should be
fairly responsive. While we do not aim for real-time or near
real-time systems, we think response times need to remain
within seconds in order to be acceptable.

The responsiveness is one of the factors behind the
fundamental decision to not enforce any specific ontologies
and allowing the agents to interpret the information freely, as
it lessens the computational burden of the infrastructure.
Another, and more important reason is that we explicitly
want to allow mashing up information from different
domains in whatever way the agents see best. Strict ontology
enforcement would make this kind of activity extremely
difficult as all new ways of mashing up the information
would require approval from some ontology governance
committee. However, we still plan to provide means for
ontology enforcement for cases where the space provider
explicitly wishes to restrict the ways the information is. Such
situations will occur in reality where such enforcement is the
best approach.

The information content in a M3 space may be
distributed over several SIBs. The distribution mechanism
assumes that the set of SIBs forming a M3 space are totally
routable but not necessarily totally connected. The
information content that the agents see is the same regardless
of the SIB where they are connected [19]. Distribution may
also occur between first order space interaction as described
in [20].

Security is provided firstly as an effect of the localised
nature of spaces coupled with the agent-join mechanisms.
Within the space there is need for a more sophisticated
policy mechanism to regulate access, update and the trust of
the information at both individual triple and larger RDF
graph structure levels [21].

D. Applications in M3 Spaces

The notion of application in M3 space differs radically
from the traditional notion of a monolithic application.
Rather, as a long term vision, we see the applications as
possible scenarios which are enabled by certain sets of
agents [22][23][24]. Thus, we do not see an email
application running in M3 space, but we could have a
collection of distributed agents present which allow for
sending, receiving, composing and reading email. Figure 3
pictorially depicts the relationship between the user, her
agents and, in this case, one space, while Figure 4 shows the
user (via agents) interacting with many spaces.

Figure 3. A User's Agents, Devices, Spaces and Information.

Figure 4. A User and Multiple Spaces

For this kind of scenario based notion of application, we
also would like to know whether the available agents can
successfully execute the scenario. The envisioned model of
using this system is that the user has a set of agents which
are capable of executing certain scenarios. If a user needs to
perform a new scenario that the current set of agents are not
capable of executing, she could go and find a suitable agent
from some directory by describing the desired scenario and
the agents she already has.

Thus, we need some formal or semi-formal way of
describing agent behavior both with respect to the M3 space
and to the environment. While there exists research
addressing behavior in multi-agent systems, for example by
Herlea, Jonker, Treur and Wijngaards [25], this kind of ad-
hoc assembly of agents in order to execute a certain scenario
seems to be quite unaddressed in current research. However,
slightly similar problems have been addressed in e.g. web
service orchestration research [26], but these still seem to
concentrate on design-time analysis rather than run-time
analysis. As for shorter term, our vision is that sets of
existing applications would be enhanced by being able to
interoperate and thus allow execution of (automatic)
scenarios that would have been impossible or required
extensive work to implement without the M3 approach.

III. BULDING SPACE AND SERVICES IT CAN PROVIDE

Despite the lack of universally accepted ontologies for
representing information related to buildings and the systems
found in them, the application domain still presents some
advantages [27]. It is possible to identify a common name for
some key concepts, such as "temperature" and "humidity".

351

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Example of an Ontology (Schema).

When it comes to the CO2 level it already becomes more
difficult to agree on a common name. There may also be
several different sensors of the same type. For instance, a
ventilation machine with heat recovery would normally have
at least four temperature sensors that need to be named. Still,
the number of manufacturers of such machines is typically
not too big (less than ten in Finland) so even though all
manufacturers would choose their own names for those
sensors, it could still remain manageable. We also believe
that as equipment manufacturers start publishing information
in the smart space and there are services built upon that
information, there may also be more incentive for the
manufacturers to start using common ontologies such as the
simple example in Figure 5 written in a UML or Entity-
Relationship style notation. Another approach could be to
use "forced semantics" [28] implemented by "translation
agents" that would automatically translate information from
one ontology to another [29].

Figure 6 shows an example of a small semantic net [30]
expressed as an RDF graph for representing sensor values
from three different temperature sensors, of which two are
located in the same room. This graph satisfies the ontology
given in Figure 5, where the reader should be able to figure
out the names of relationships (other than object typing)
which are not shown for clarity.

This limited net also illustrates some basic processing
needs, implemented by agents. In Figure 6, sensor ts3 has
produced three temperature readings, which is the beginning
of a reading history. With an increasing number of sensors
that may store historical information in the space, it becomes
necessary to at least implement cleaning agents who take
care of removing expired information or removing the "least
useful" information if memory is filling up. To avoid losing
too much information when cleaning, summarization agents
become essential. Summarization agents will keep track of
minimum, maximum, running average etc. values even after
the cleaning agents have removed the original values.

Figure 6. Example of partial semantic net for a home with several

temperature sensors.

Using Figure 6 we can write queries across this graph to
obtain readings such as those described above. We nominally
use here a graph traversal language such as WQL [31] or
XPath - M3 specifically supports WQL at this time and a
SPARQL parser is being developed.

Given a specific temperature sensor (ts2), the query to
obtain the current temperature would take the pseudo-code
form:

ts2 | readings.filter(

 latest(timestamp).

 temperature

Given a specfic room, the average temperature would
take the form:

Room | (location-1.readings.

temperature.asBag())

/ size(location-1.readings)

where the suffix -1 denotes inverse traversal of a link and

the functions latest(), asBag(), and size() take
their common sense meanings when working with sets (or
bags) of values.

Figure 6 also shows the alarm event alarm_nn in the
space as an example of how to handle anomaly detection. A
sensor consistency check agent notices an abnormally great
value difference for sensors ts1 and ts2 that are in the same
room. The presence of a new alarm event can be detected by
a user notification agent that takes care of notifying the user
about the situation. The user can then take the appropriate
action, after which the alarm event is removed manually or
automatically when the anomaly is no longer present.

It is quite easy to imagine a great number of other
functionality that agents could implement based on the
information in the space. Such functionality could be
deciding on the target temperature in a room based on some
"voting" rule, automatically telling the coffee and tea making
machines how many people prefer which one, automatic
agreement of the next appointment based on the calendar
information available from participants in a meeting etc.
However, the implementation of such functionality is more

352

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

complex than the anomaly detection described previously. It
is also much less certain to what degree users want to have or
even accept such functionality. However, the purpose of this
paper is not to claim that some specific service or
functionality is useful as such, the objective is rather to show
that Smart-M3 significantly simplify the creation of such
services.

Finally, Smart Spaces as described here are not
constrained to buildings. They can also cover greater
geographical areas and be dedicated for other application
domains. One example of such a domain would be
publishing weather information collected from private
weather stations, ventilation machines etc. for improved
local weather forecasts, thereby improved control of heating
and cooling in buildings and, as a consequence, improved
energy-efficiency as a whole.

IV. IMPLEMENTATION

The Electrical Building Services Centre of Posintra Oy in
Porvoo, Finland, develops demonstration solutions as well as
commercially applicable components for integrated building
automation. The developed systems should be low-cost, easy
to use and easy to integrate with existing and new building
automation systems. Current systems installed both in the
Centre's demonstration facility and in real buildings make it
possible to bridge between the Internet, and a number of
building automation protocols and proprietary device
protocols. The software platform is based upon OpenWRT
(http://www.openwrt.org), a Linux software distribution for
embedded systems. The platform makes it possible to
communicate with proprietary building automation
protocols, and translate the messages to a common format,
namely oBIX. This makes it possible to network the devices
together, which previously were isolated from each other
because of the lack of an universal protocol. The platform
itself is running on inexpensive consumer grade hardware (a
wireless router with Universal Serial Bus). Currently
supported systems include real-time energy metering, data
collection and control of air handling units, a control unit for
electrical systems of small buildings, wireless power outlets,
a consumer-end weather station etc.

The difference of this approach compared to earlier
attempts to create a common building automation protocol, is
that we have a protocol-agnostic approach. Any building
automation protocol can be integrated to the platform by
means of adapter software and hardware, and thus we can
enable any protocol for Internet connectivity. By connecting
together various building automation protocols, we make it
possible to combine the functionalities of various
subsystems, and create new services that would not be
possible without seamless integration of the subsystems.
Currently, the subsystems are combined together by the
oBIX protocol, which makes it possible to build hierarchal
systems by interconnecting the devices on a local level and
export the combined information to upper-level systems via
oBIX as illustrated in Figure 7.

BA

integration

platform

Measurement

information in

oBIX format Control and data

acquisition

Sensors
Actuators

User interface

Figure 7. Integration platform makes it possible to control and acquire

data from building automation systems, and export the data to back-end

systems.

Converting data from proprietary protocols to oBIX
simplifies the creation of traditional Supervisory Control and
Data Acquistion (SCADA) applications, because the
SCADA application now needs to understand only one
protocol, instead of a myriad of protocols.

However, optimal control of a building's automation
system also needs information from other sources than the
various systems located in the building. A simple example is
to use weather forecast information from a meteorological
website so that the control system can decide to start heating
the house during the night (when electricity is cheaper) if the
weather forecast says the next day will be colder. Including
this type of information from outside the domain of building
automation is difficult, if we have to use a building
automation specific data format like oBIX.

The Smart-M3 architecture is being integrated to the
demonstration platform to make it possible to combine
information from various data sources, and to do automated
reasoning over it as illustrated in Figure 8. Reasoning agents
might change over time, or be only temporarily available,
e.g. if they are located in a visitor's mobile phone, PDA or
similar.

SIB

Building

automation

systems

Reasoning agent

Web services

”’Meetingroom

temperature is 20 C”

”Weather tomorrow: cold”

”Meeting at 0900 hrs”

User1: ”My preferred room

temperature is 24 C”

”Action: start heating at 0400 hrs,

setpoint 22 C”

User2: ”My preferred room

temperature is 20 C”

User3: ”My preferred room

temperature is 22 C”
Figure 8. The SIB is an implementation of a data store supporting

reasoning over cross-domain information.

353

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Case study overview showing an interoperability solution for a simple building automation problem.

The integration to the SIB is not intended to replace the
control logic embedded in building automation systems, but
rather to facilitate using the information from the building
automation systems together with other information.

A. Smart-M3 Implemented for Building Automation

In building automation there are several different
automated devices which benefit from the knowledge of
three simple states. These states are "Home", "Away" and
"Vacation". This state data can be modified by status
changes in several different system, and this data could be
requested by any device compatible with the Smart-M3
stack, running an agent built for this purpose. This simple
case study was expanded to be configurable to demonstrate
an additional benefit which could be added by the Smart
Space approach. Our demonstration scenario requires a home
state switch, reflecting the global state (i.e. "Home", "Away"
and "Vacation"), and a heating system. In addition to these
devices there are two additional parts for enabling
interoperability: a controller and a configuration tool. In
addition to the required interoperating components there is
also a temperature display, and a temperature slider which
can be configured to correspond to or set the different
temperatures available from the heater appliance. The
demonstration application consists of several agents

2

representing the functionality of the devices and a user
interface. A conceptual model is shown in Figure 9.

All these components contain a proprietary solution, and
provide only a limited set of services through their agents.
Additional services could be added to the model, and
published to the SIB in order for the configuration tool to
make new rules of interaction. The demonstration
implementation contains a temperature service concept in

2
 Smart-M3 agents are also called Knowledge Processors.

addition to the house state concept shown in Figure 9. The
temperature data service is contained in the Heater,
Temperature Slider and the display. An example
configuration is to set the display to show the active
temperature setting in the heater, but if there was an
independent temperature sensor it could be configured to
display its value as well.

The configuration tool can add and remove
dependencies, rules and connections by querying the SIB. In
our scenario the heater and air-conditioning agents can be
configured to request changes in the State switch value, or
remove their dependency. The state is indicated by an integer
value. When configuration has been set up, the configuration
tool agent can leave the Smart Space, as all the necessary
data is contained within the ontology in the SIB.

1) Example Scenario
All devices in the home connect to the SIB, through their

respective SIB interfaces, and insert information about
themselves. This information consists of a user friendly
name, a list of services it provides and the data which
describes its state. No automatic configuration about how
they interact exists at this time. When the configuration tool
is run, the user is presented with devices registered in the
SIB, and can then configure rules.

Rules are interpreted by a controller agent. The controller
subscribes to changes in the data of the devices. In order to
catch changes in state of the switch the controller listens to

new instances of the Event class. This instance contains
information about what has occurred. When the controller

receives a new instance of an Event it parses through the
list of rules, and if there is a matching rule, it will execute the
rule. In this simple implementation a matching rule will

create a new instance of the class Invoke and add
properties to it according to the configured rules.

354

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Overview of the ontology used in the implementation of the

case study.

The new Invoke instance is subscribed to by the agent
representing the service invoked, and can then be used to
alter the internal state accordingly.

2) Ontology
In this use-case we created an ontology containing rules

for automation, and concepts for expressing house state, and
temperature. The house state is mapped to an integer value,
but should more correctly be defined as an enumerated class
consisting of the three states as individuals 'Home", "Away",
"Vacation". An overview of the ontology is shown in Figure
10. In this way the configuration tool could suggest
potentially interesting counterparts for creating connections
or rules. The ontology does not contain a complete set of
concepts for building automation, but merely the concepts
needed for this specific automation task and demonstration.
The ontology is expressed in OWL-DL and contains classes,
data properties and object properties.

3) Code Generation
The Python Code Generator was used to generate the

agent ontology API. We recognized several features which
would be required in order to create a practical
implementation of the initial plan of the building automation
ontology. Updating data in the SIB requires a delete and
insert query. There is no support for subscribing to changes
in properties, and thus the implementation uses classes of

Event and Invoke to register changes. This approach adds
significant overhead to network utilization. The generated
API also populates all instance properties depending on
which class it is loaded from, which could also be changed to
a populate on demand approach in order to reduce
unnecessary queries to the SIB, or alternatively it could make
use of a better query receiving all properties in one message.
At the moment all properties are queried separately.

4) Building Automation Configuration Tool
The tool for creating rules for the controller is a

command line tool. The configuration tool inserts or removes

instances of Connection. Typing "?" or "help" provides
the list of commands and a brief explanation. There are three

main commands; list, connect and disconnect.
With the list command a list of registered devices are

shown. The list also shows rules for the controller, as shown
in the following listing of configuration tool output:

HomeStateSwitch (addr=17)

 0 State

 This three state switch

 corresponds to the Home, Away,

 Vacation modes used in

 heaters etc.

 Connected to:

 Heater => State

5) Running the demonstration
The source code is available from SourceForge

(www.sourceforge.net), under the name "smart-m3". The
demonstration is tested only for specific versions of the
components, but may well work with other versions as well.
If you are having trouble running the demonstration, please
consider installing the following versions; Python 2.6.x,
PyQt v.4.5.4 for Python 2.6 and Nokia SIB revision 98.
Python is needed because this generated API and the Smart-
M3 Mediator

3
 are written in Python. The Qt library is used

for the message pump of the persistent agent. The Nokia SIB
provides the database back-end and connection library for
the Smart-M3 Mediator. The SIB is also available from
SourceForge, with installation instructions. To the best of our
knowledge it does not compile on Windows.

The agents in the building automation demonstration try
to connect to a smart space named "x" on 127.0.0.1 at port
10010 by default, but this can be changed for all agents in

the file SmartSpaceConf.py. Port 10010 is the default
for the SIB, but the smart space name must be provided.

Running python SIB.py x starts a SIB running locally

at port 10010 with the smart space name x.
The simplest use-case to run is the HomeStateSwitch and

the Heater. They have pre-configured addresses of 17 and 7
respectively. These can be connected by the configuration
tool using the following commands:

Command] list

 HomeStateSwitch (addr=17)

 0 State

 Connected to:

 -

Command] connect

Source address: 17

Source feature: 0

Destination address: 7

Destination feature: 0 (State might have

another number)

Rule name: TestRule

If these commands have executed correctly the heater

will output its changing state following the home state
switch.

The agents can be started in any order, but the
configuration tool agent does not find any devices until they
are started. The suggested order is to run the controller and
the configuration tool, and then any of the service providing
devices/agents. Observe that subscriptions to the SIB result

3
 A caching middleware for accessing the SIB.

355

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in a TCP timeout if no subscribed data is sent by the SIB
within a quite short period of time depending on network
configuration. The Python platform cannot independently set
TCP keep-alive messages. It is therefore recommended to
run the demonstration locally. There are some subscriptions
which are not required after running the configuration tool,
thus the example might work even after this timeout error.

The SIB does not clear all data when running the clear
command, and thus it is recommended to remove the smart

space file if problems occur. This is done by running quit

in the SIB command line interface, and then rm x, where x
is the smart space name, and then running the SIB again

python SIB.py x.

6) Lessons learned
Tool-chain: We used the Application Development Kit,

ADK, available from SourceForge. The ADK was able to
generate the Python API from the use-case's OWL ontology
without problems. It was found that there are several features
to be implemented into the ADK which would improve this
building automation use-case. The ADK does not support
subscriptions to changes in properties. This lead to
modifications in the ontology in order to use subscription to
instances instead. An improved ontology API would reduce

overhead of creating new instances of Event for changes in
values of the devices and sensors, instead of updating one
property.

Smart-M3: The architecture of the interoperability
package as described is not, in its current form, very well
suited for building automation. However, it raises interesting
points about potential cross domain interoperability
scenarios, which are much easier to implement as a result of
access to data in a well structured form. By revealing an
interface to the smart space for programmatically accessing
features in devices, normally accessed by infrared remote
controls and proprietary systems, the possibility of
interoperating between the virtual and the physical world is
realized. Cross domain implementations can be aided by the
ADK, by loading several ontologies for a single agent and
using input data from one domain and translate it into
another.

There is significant overhead in communication and
application size. To the best of our knowledge the current
SIB implementation does not scale beyond a very modest
number of devices in a building automation scenario, and
cannot automatically be distributed over multiple SIBs. The
workaround to a distributed environment would be to
implement an agent which moves data between two SIBs.
We recognize that the overhead is partially due to the ADK
generated ontology API and this specific implementation.

Improvement proposals: The implementation could be
further improved by removing the addressing scheme used
here. It should not be needed as long as the instances are
uniquely identifiable. The solution used here is for
convenience when querying for a specific device, we need
only an integer value instead of the UUID. The current
implementation is still inadequate for real building
automation applications, but demonstrates a working concept
of connecting features together via the SIB.

V. CONCLUSIONS

Buildings are a major context for creating smart
environments and achieving the goals of Ubiquitous
Computing, where people could interact seamlessly with
their everyday environment and where the various devices in
the environment co-operate in order to achieve some "smart"
behavior. However, there are still great interoperability
challenges between systems in the domain of building
automation due to several competing bus standards and
proprietary solutions. The paper shows how such issues can
be solved using device adapters and protocol conversion in
so called home gateways as illustrated in Fig. 1.

However, the question of semantic interoperability is not
solved by home gateways. Semantic interoperability can be
partially achieved by standards based on e.g. XML Schema
such as oBIX and PMI but it does not seem probable that
such standards will achieve a similar global acceptance as
HTTP and HTML in any near future. Furthermore, those
standards do not define device-specific semantics, such as
the names of devices, sensors, alarms etc. In order to
overcome such limitations, this paper describes an
information publishing mechanism that does not require any
pre-defined standard for making the information visible,
discoverable and usable to others. That also signifies that it
becomes possible for third-party solution providers, who are
not themselves manufacturers of building material or
building automation, to create Smart Space applications.
Such solution providers can provide agents or agent
frameworks that implement new functionality. Therefore,
our goal is to provide an easy to use basic mechanism that
makes it possible to create an open ecosystem where the set
of potential applications is open and impossible to predict in
advance.

The home gateway solutions described in the paper are
currently in use in many real buildings and are expected to
become commercial-level volume products within a year.
The Smart-M3 implementation described in the paper is
implemented on a demonstration laboratory level and will
eventually be tested in real pilot targets. Earlier experiences
using semantic nets and agents with "classical" tools such as
the DIALOG platform have shown their power in several
domains such as shipment tracking, product lifecycle
management etc. The technical, conceptual and business
feasibility of Smart-M3 as an enabler of semantic nets and
agents in the building automation domain still remains to be
proven. However, the ad hoc data and processing distribution
mechanisms of Smart-M3 that are conceived also for
embedded devices, and notably mobile phones, are expected
to be key enablers of future smart environments where
buildings, vehicles, public spaces etc. can be accessed and
used in a uniform way.

ACKNOWLEDGMENT

This work has been carried out in the Devices and
Interoperability Ecosystem (DIEM) project (www.diem.fi),
financed by the Technology Development center of Finland
(TEKES) and by the partner organizations of DIEM, and in

356

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the AsEMo project financed by the European Regional
Development Fund.

REFERENCES

[1] K. Främling, I. Oliver, J. Nyman, and J. Honkola, “Smart spaces for
ubiquitously smart buildings,” Proc. Third International Conference
on Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM), Sliema, Malta, October 11-16 2009, pp.
295–300.

[2] I. Oliver and J. Honkola, “Sedvice: A triple space computing
exploration environment,” Proc. Tripcom workshop, April, 2008.

[3] D. Lewis, Convention: a philosophical study. Blackwell Publishing,
2002, 0-631-23257-5.

[4] PROMISE, “Volume 3: Architecture reference: Promise messaging
interface (pmi),”. [Online; accessed 25 August 2010]
http://cl2m.com/system/files/private/PROMISE AS Volume 3
Architecture Reference PMI.pdf, 2008,.

[5] R. T. Fielding, “Architectural styles and the design of networkbased
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000. [Online; accessed 21 January 2011]
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[6] K. Främling, T. Ala-Risku, M. Kärkkäinen, and J. Holmström,
“Agent-based model for managing composite product information,”
Computers in Industry, vol. 57, no. 1, 2006, pp. 72-81.

[7] K. Främling and L. Rabe, “Enriching product information during the
product lifecycle,” Proc. 12th IFAC Symposium on Information
Control Problems in Manufacturing (INCOM), 17-19 May 2006,
Saint-Etienne, France, 2006, pp. 861–866.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns –
Elements of Reusable Object-Oriented Software. Addison Wesley,
Reading, MA, 1995.

[9] DIALOG, “Distributed information architectures for collaborative
logistics,” 2001. [Online; accessed 21 January 2011]
http://dialog.hut.fi/.

[10] K. Främling, T. Ala-Risku, M. Kärkkäinen, and J. Holmström,
“Design patterns for managing product life cycle information,”
Communications of the ACM, vol. 50, no. 6, 2007, pp. 75–79.

[11] I. Oliver, “Information spaces as a basis for personalising the
semantic web,” Proc. 11th International Conference on Enterprise
Information Systems, May 2009.

[12] L. J. B. Nixon, E. Simperl, R. Krummenacher, and F. Martin-
Recuerda, “Tuplespace-based computing for the semantic web: a
survey of the state-of-the-art,” The Knowledge Engineering Review,
vol. 23, no. 2, June 2008, pp. 181–212.

[13] B. Hayes-Roth, “A blackboard architecture for control,” Artif. Intell.,
vol. 26, no. 3, 1985, pp. 251–321.

[14] A. Passant, “:me owl:sameas flickr:33669349@n00,” Proc. Linked
Data on the Web (LDOW 2008), Beijing, China, April 2008.

[15] K. Idehen and O. Erling, “Linked data spaces and data portability,”
Proc. Linked Data on the Web (LDOW 2008), Beijing, China, April
2008.

[16] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, May 2001.

[17] “Network on terminal architecture,” http://www.notaworld.org, 11
2008.

[18] J. Jantunen, I. Oliver, S. Boldyrev, and J. Honkola,
“Agent/spacebased computing and rf memory tag interaction,” Proc.
3rd International Workshop on RFID Technology - Concepts,
Applications, Challenges (IWRT 2009), May 2009.

[19] S. Boldyrev, I. Oliver, and J. Honkola, “A mechanism for managing
and distributing information and queries in a smart space
environment,” Proc. 1st International Workshop on Managing Data
with Mobile Devices (MDMD 2009) 6-7 May, 2009 - Milan, Italy,
2009.

[20] I. Oliver and S. Boldyrev, “Operations on spaces of information,” in
Proc. IEEE Conference on Semantic Computation. Berkeley, CA.,
September 2009.

[21] A. Toninelli, R. Montanari, L. Kagal, and O. Lassila, “Proteus: A
semantic context-aware adaptive policy model,” in POLICY. IEEE
Computer Society, 2007, pp. 129–140.

[22] I. Oliver, E. Nuutila, and S. Törmä, “Context gathering in meetings:
Business processes meet the agents and the semantic web,” Proc. 4th
International Workshop on Technologies for Context-Aware Business
Process Management (TCoB 2009), May 2009.

[23] J. Honkola, H. Laine, R. Brown, and I. Oliver, “Cross-domain
interoperability: a case study,” Lecture Notes in Computer Science,
vol. 5764, Springer Berlin / Heidelberg, September 2009, pp. 22-31.

[24] S. Balandin, I. Oliver, and S. Boldyrev, “Distributed architecture of a
professional social network on top of m3 smart space solution made
in pcs and mobile devices friendly manner,” Proc. Ubicomm 2009.
Malta, 2009.

[25] D. E. Herlea, C. M. Jonker, J. Treur, and N. J. E. Wijngaards, Multi-
Agent System Engineering, ser. LNCS. Springer, 1999, vol. 1647, ch.
Specification of Behavioural Requirements within Compositional
Multi-agent System Design, pp. 8–27.

[26] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Compatibility
verification for web service choreography,” Proc. IEEE International
Conference on Web Services, July 6–9 2004. IEEE, 2004, pp. 738–
741.

[27] H.-G. Kim and Anseo-Dong, “Pragmatics of the semantic web,” Proc.
Semantic Web Workshop. Hawaii, USA, 2002.

[28] S. Staab, “Emergent semantics,” IEEE Intelligent Systems, vol. 17,
no. 1, 2002, pp. 78–86.

[29] B. Hu, S. Dasmahapatra, P. H. Lewis, and N. Shadbolt, “On capturing
semantics in ontology mapping,” Proc. AAAI. AAAI Press, 2007, pp.
311–316.

[30] M. A. Rodriguez and J. Bollen, “Modeling computations in a
semantic network,” CoRR, vol. abs/0706.0022, 2007.

[31] O. Lassila, “Programming Semantic Web Applications: A Synthesis
of Knowledge Representation and Semi-Structured Data,” Ph.D.
dissertation, Helsinki University of Technology, November 2007.

357

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

