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Abstract—In this work we explore several adaptive and in functions and structures — they represdrd regulative
self-adaptive processes in systems with a high degree of |evel — allow some degree of flexibility (adaptability) for
developmental plasticity. It is indicated that such system are o gystem. The targeted behavior on the regulative level
driven by two different forces: design goals and self-conqs, . 2 N . . .
which define what the system “should be” and “may be”. IS exprgssed by a g.()all, which .delscr'bes "f”ms_Of the
The paper discusses mechanisms, leading to adaptive and System itself and the criteria for achieving adaptive bégrav
self-adaptive behavior, as well as possible conflicts beteie  Adaptivity on this level depends on capabilities of a design
them. Bound and unbound self-concepts are introduced. The to foresee possible environmental changes and to integrate
discussed mechanisms are exemplified by a collective locomo 5 reaction on these changes into the controllers. To react
tion of reconfigurable multi-robot system, where several d& . .
organizing and evolutionary approaches are exploited. on unpr.edlctable chan_ges on .the design Sjtage’ the second

generating levels required, which can modify controllers.

The generating level contains different deriving and evajv
mechanisms, which can generate the regulative level and
essentially, when not completely, change the system. The
|. INTRODUCTION targeted behavior on the generating level is expressed by

Adaptability and self-adaptability represents an impor-a “self-concept”, which is defined in a broader way than
tant characteristic of systems working in real environ-a “goal”. It describes possible developmental changes and
ments [1][2]. Different uncertainties, variation of pareters  determines what the system “may be”. When the behavior
or even an appearance of unknown situations require suagbn the regulative level is referred to “adaptive”, the gener
mechanisms, which allow the system to find a compromiseéting level is associated with “self-adaptive”. Such chesg
between achieving the main goal, set by a designer, flexiblen the generating level, which are not directly related to
behavior to fit the environment and self-developmental feaadaptation, but rather to ontogenetic self-modificaticam c
tures, expressed by a self-concept. Finding this compemisbe also associated with “self-development”, which origgsa
requires three important mechanisms: plasticity of the sysfrom the neuroscience community, e.g. [12]. Despite “self-
tem itself [3]; regulative mechanisms, which uses system’slevelopment” is a more general notion, targeting primar-
plasticity to perform adaptation [4][5]; and, finally, a goa ily cognitive capabilities, the “self-adaptation” and Ifse
and self-concept, which drive the system along adaptive andevelopment” overlap in several points since they are de-
self-developmental changes. veloped in parallel.

Plasticity of the system can be achieved by exploiting the Technical systems possess goal-oriented behavior, but
principle of heterogeneous multicellularity [6]: each mtsl  should be also adaptive to uncertainties and changes in
is compatible with other modules and they can assemble arithe environment and have some degrees of freedom for
disassemble themselves into structures with differentfun self-development. To some extent, these systems are driven
tionality [7], see Figure 1. Not only structural functioitgl by two different forces: by a goal and by a self-concept.
but also regulative and homeostatic mechanisms can be self¥hen the degree of adaptation is low, there are no essential
developed; they are addressed by developmental roboticeonflicts between them. When the plasticity is high, the
Multi-robot systems with high-developmental plasticiyea sSystem can be hindered by self-adaptive processes from
explored in several research projects, e.g., [8][9], inemn  reaching the main goal. Here we are facing a new conceptual
they are referred to as artificial organisms [10]. problem about long-term controllability of self-adaptiaed

Structures and functionality of artificial organisms are self-developmental processes. Obviously, that eithegtia
closely related to each other, by changing macroscopishould be formulated in such an invariant way, which
structure, the system also changes its own functionality anallows multiple approaches for its achieving, or self-audap
correspondingly behavior [11]. Relation between struetur processes should basically be limited.
functions and behavior can be represented as shown in Fig- This paper extends and generalizes several ideas expressed
ure 2. We denote this relationship as “generating” becausi [1][13][14] and introduces a more detailed link between
the upper level generates the lower level, i.e., structgees  a high-level notion of adaption and practical implemen-
erate functions and functions generate behavior. Coetll tation of adaptive mechanisms. The rest of this work is

Keywords-Collective robotics, artificial multi-robot organ-
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structured in the following way: firstly, a short introduani Both developmental and evolutionary methodologies im-
into developmental robotics is made in Section Il andpose a set of prerequisites on a system; one of the most
then different adaptive and self-adaptive mechanisms arinportant from them — it should possess a high degrateef
overviewed in Sections Il and IV. Adaptation and self- velopmental plasticityOnly then an organism can be devel-
adaptation, as well as bound and unbound self-conceptsped or evolved. Developmental plasticity requires a djgeci
are discussed in Section V. To exemplify the mentionedlexible regulative, homeostatic, functional and struatur
ideas, the Section VI introduces the problem of macroscopiorganization — in this point evolutionary/developmental-s
locomotion for artificial multi-robot organisms. Adapthbi tems differ from other branches of robotics. Since colexti
ity of macroscopic locomotion is approached with four systems, due to their high flexibility and cellular-like arg
main mechanisms: adaptive multi-functional local driversnization, can provide such a versatile and re-configurable
in Section VI-A, adaptive self-organization on the level of organization — collective robotics is a suitable object for
interacting structures in Section VI-B, evolving by using aapplication of evolving and developmental approaches.
global fitness evaluation in Section VI-C and a generation The approach, used in our work, is based on modularity
by using the bound self-concept in Section VI-D. Finally, and reconfigurability of the robot platform, as shown in
this paper is concluded in Section VII. Figure 1. Individual modules possess different functiipal

Il. DEVELOPMENTAL ROBOTICS

Artificial developmental systems, in particular develop-
mental (epigenetic) robotics [3], are a new emerging field
across several research areas — neuroscience, develagpmel -
psychology, biological disciplines such as embryogesetic
evolutionary biology or ecology, and engineering sciences
such as mechatronics, on-chip-reconfigurable systems
cognitive robotics [15]. The whole research area (not ofily o
artificial systems) is devoted to an ontogenetic develogmer
of an organism, i.e., from one cell to a multi-cellular adult
system [16].

A closely related field is evolutionary robotics [17],
which uses the methodology of evolutionary computation
to evolve regulative structures of organisms over the time
Evolutionary robotics tries to mimic biological processés
evolution [18], but also faces challenges of embodimeni [19
reality gap [20], adaptation [21] or running on-line and on-
board on a smart microcontroller device [5].

In several points the developmental and evolutionary © (d)
methodologies differ from each other: _ o
« “__ should try to endow the [developmental] SystemFlgure 1. (a) Prove-of-concept: individual robots; (b) Prove-of-copice

: - - : aggregated robots into an artificial organism; (c), (d) Resadtotypes:
with an appropriate set of basic mechanisms for theaggregated robots (imag€9SYMBRION, REPLICATOR projects).

system to develop, learn and behave in a way that
appears intelligent to an external observer. As manyand can dock to each other. Changing the way of how they
others before us, we advocate the reliance on the prinare connected, an aggregated multi-robot system (orgnism
ciples of emergent functionality and self-organizationpossesses many degrees of structural and functional freedo
S <] 5 Due to a capability of self-assembling, robots have a cbntro
« “evolutionary robotics is a new technique for the au- over their own structure and functionality; in this way they
tomatic creation of autonomous robots. Inspired bycan emerge different “self-*” features, such as self-megli
the Darwinian principle of selective reproduction of self-monitoring or self-repairing. These self-* featurms
the fittest, it views robots as autonomous artificial related in many aspects to adaptability and evolve-abttity
organisms that develop their own skills in close in- emergence of behavior and to controllability of long-term
teraction with the environment and without human developmental processes. The self-issues are investigate
interventiori [17]. in manufacturing processes [22], distributed systems,[23]
Despite differences, evolutionary and developmental apeontrol [24], complex information systems [25] or cognétiv
proaches share not only common problems, but also somgensor networks [26].
ways to solve them, it seems that both are merging into one Flexibility and changeability of structures and functions
large area of self-developmental systems [10]. are one of the most important aspects of artificial multi-
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robot organisms [11]. In Figure 2 we demonstrate thebehavior and can be applied when a new situation is at
dependencies between structures and functions, as well &sast structurally known. Evolving is basically related to
introduce a two-layers control architecture with regwiati evolutionary approaches, see e.g. [31], and can be applied
and generating levels. The first level is related to controlwhen the situation is completely unknown and a large search
space of possible solutions should be explored. Recently,

Generating Level evolutionary approaches have been applied to a wide class
of robotic problems [32].
botom-p Collective systems with such a two-layered control ar-
Regulative Level ) chitecture and self-a_s§embllng capabllltl_es possessi@ate
e [T — developmental plasticity and allow a wide range of adap-
T | ot tation and self-modifications. However, there are several
- mpliitule based (ANK) open questions about “driving forces” of adaptation and
oefrefened self-adaptation. Since currently there are several theori

towards adaptive systems, we need first to identify classes

and int. param.

Structural rules . . . . .
Structures |07 poram and mechanisms of adaptation, as it is shown in the next
l External Sectlo n .
Vil :
Functions | Furctonan s : [1l. THREE MAINSTREAMS IN ADAPTIVE SYSTEMS

f——
External
] G

: Adaptability is often considered in biological terms of
Bohavioral , natural evolution [33] or environmental uncertainty [34] a
Behavior : . .

: well as in management and business processes [35]. There
have been several attempts to create a common theory of
Figure 2.  Functional scheme of regulative and generatingldein  adaptability, such as the approach suggested by Michael
structural systems (image from [14]). Conrad [34]. Overviewing the vast literature on the field of

adaptation, we can recognize three main streams driviag fur
we denote it as theegulative level It contains different ther development and representing different methodotogie
controllers, such as explicit and implicit rule-based ifart and different approaches to adaptation. The first and oldest
ficial neural networks), different bio-inspired, selfeefed  stream is related to the theory of adaptive control. Several
or learning systems. These controllers influence structuraarly works in adaptive control date from the late 50s - early
or functional rules as well as change parameters of thg0s [36][37]. In the mid-late 70s several issues related to
corresponding level. All controllers work based on thetemporary stabilities [38] appeared, which in turn led &p-it
scheme:change of input parameters: changes of output ative control re-design and identification, and contribliite
parameters/rulesThe main goal of the regulative level is to the mid-80s to robust adaptive control [39][40]. Overviews
maintain an internal homeostasis of the system, to executgf adaptive architectures can be found in textbooks [41][42
different tasks or, more generally, to demonstrate purfpbse which can be generalized as a high-level architecture, show
behavior depending on external conditions. Controllete@t  in Figure 3(a) [43].
regulative level allow some degree of adaptability, defined
by design goals. pdaptie par ; Know‘ed;e“be’mPa;easomng
In detail, it depends to which extent a designer of these Parametrs Models Paroie
controllers was able to foresee possible changes of the SS.ZL’IEJZK|~—| ot
environment and to integrate a reaction on these changes g
into the controllers. The controllers allow different degs %" oo
of reaction on changes. However, the system at the regalativ
level is able to react only to changes whose parameter @ (b)
range was predlcte_d In advanc_e during the development qfigure 3. A high-level architecture fda) adaptive contro(b) adaptive
controllers or learning mechanisms. When changes are n@thavioral systems (images from [14]).
predictable at the design stage, we need to introduce the
second level, which can modify regulative controllers — we Adaptive control consists of two parts, a conventional
denote this as thgenerating level feedback-based control loop and an adaptive part, depicted
Deriving is primarily related to distributed problem solv- by the dashed line in Figure 3(a). The environment is not
ing and planning approaches, known in the multi-agenexplicitly integrated into this model, it is implicitly reftted
community [27], symbolic tasks decomposition [28], struc-by introducing disturbances and by uncertainties in thatpla
tural decomposition [29], self-referred dynamics [30] andThe goal of the adaptive part is to estimate the behavior of
others. These approaches are fast, deliver a predictabeplant (by the identifier) and to calculate dynamically the

Reactive part

»{ Learning

Sensing Controller Actuation
Disturbance

4 | o X 1
LT | |

1 Environment
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control law (by the control law calculator). When in optimal bio-inspired [32] and software intensive systems [59]r¢he
control, a control law is designed off-line by a designer,are four classes of developmental plasticity:
an adaptive controller does it on-line. Most challenges in Plasticity level 1. Fixed interactions.For several appli-
adaptive control theory are concentrated around adaptaticcations, mostly in industrial environment, collective atge
of control to parameters of a plant when these parameter@re expected to work in well-defined environment, where
are unknown or changing. all possible environmental fluctuations can be absorbed by
The second mainstream of adaptation is located arounexternal mechanisms (e.g. by human personal). In this way,
adaptive behavior, which first arises within the Al commu-it is much cheaper to make agents with fully or partially
nity, e.g. [44], and involves cognitive aspects of adaptionpredefined behavior. Cooperative behavior of collectively
[45]. There appear a few new components in the schemeorking robots includes some number of adaptive mech-
from Figure 3(a): explicit environment, sensing and actua-anisms, however is mostly preprogrammed [60].
tion, as well as the deliberative cycle, shown in Figure 3(b) Plasticity level 2. Tunable and reconfigurable cases.
When the reactive part of this scheme is in fact the optimallhese collective systems have several degrees of freedom re
controller from Figure 3(a), the deliberative part représe  lated to developmental plasticity. Adaptivity here is asteid
new Al component. The adaptive system is now embeddeith different ways: from parameter changing, feedback-thase
into the unpredictable/dynamically changing environmentmechanisms [61], adaptive self-organization [62] untilyfu
these systems are often referred to as situated systemsconfigurable systems. Here also a multitude of learning
[46]. Sensing and actuation represent a “body” of themechanisms can be applied [63].
system, intelligence (and so adaptation) is treated ingerm Plasticity level 3. Bounded developmentAdaptivity
of embodiment [47]. Achieving adaptivity in this context is is designed to be in some range of possible variations.
spread into several approaches: different learning tectesi  Normally, it is defined by some structural mechanisms,
in reactive and deliberative parts [48][49][50], behavior for example by a nature of reward. The limit of adaptive
based approaches [51], adaptive planning and reasonirgystems is reached when a new structural change happens
[52], biological inspiration in cognition [53], evolutiamy  or the system is not able to identify the required reward
approaches [54] and many others. The goal of adaption caffor reward-based mechanisms). In this case the system
be formulated as achieving desired environmental resgons@eeds to modify its own structure to absorb environmental
according to some selected fitness/reward criteria. changes. We refer the systems, capable of structural change
The third mainstream towards adaptation is related tawith flexible reward/feedback mechanisms, to developnmenta
the community around distributed and software-intensivecollective systems (see more in Section V).
systems, computational, communication and sensor net- Plasticity level 4. Unbounded development.“Un-
works. With some degree of generalization, the businesbounded” means a very high degree of developmental
applications can be also related to this mainstream [55]plasticity, similar to biological cellular systems. Sucyss
The environment involves explicit users; the system itselftems are potentially capable of unbound increasing of their
is separated into different levels (applications), whicim r complexity, diversity or information capacity (see more in
in parallel [56]. The goal of adaptation here is related toSection V).

scalability, self-optimization and self-protection, ogaition Considering capabilities to detect changes and to de-
of context, as well as to the software-engineering issuetermine desired modifications, we basically refer to three
addressing reliability [57]. following schemes:

1. Model-reference based detectionThis is a widely
used scheme in e.g. adaptive control [64], machine learn-
ing [63], artificial evolutionary systems [17] and many athe

Three mainstreams in the theory of adaptive systemsareas, where the detection of changes represent an error
considered in the previous section, allow making severabetween a model and a system (“plant” in control theory).
conclusions towards their underlying adaptive mechanismaMultiplicity of Feedback-, Reward-, and Fitness- based
These mechanisms are closely related to three followingnechanisms [61][65] originate from this model-reference
issues:developmental plasticitycapabilities to determine based approach. This is the main detection mechanism for
desired modificationsand, finally, mechanisms, allowing adaptive systems.
reaction on changes by utilizing plasticitsince adaptive 2. Self-tuning based detectionThis is also very popular
systems are approached from several independent dirsctioapproach, see e.g.[66], the first ideas are referred to [67].
(see the first bio-inspired work on adaptation by Ashby [58]) consists of a parameter estimator, a design calculatioraand
understanding of these underlying mechanisms differs frommegulator with adjustable parameters, the idea is to sédect
community to community. design for known plant parameter and to apply it to unknown

Generalizing experience from the adaptive control theplant parameter, using recursively estimated values afethe
ory [42], Al domains [44] and the latest developments inparameters” [64, p.189]. Self-tuning mechanisms are often

IV. MECHANISMS OFADAPTATION IN COLLECTIVE
SYSTEMS
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used in terms of self-adaptive control, especially in th& 60 by re-linking only one elementary module. Developers are
and 70x [68]. trying to design the modules so that to make this change

3. Concept-based detectionSelf-developmental systems as small as only possible — i.e., to provide possibly smaller
with a high degree of plasticity cannot use model- or tuning-granularity. Not only the system itself, but also the regu-
based detection mechanisms — mechanisms of detection degor can be based on a modular structure; this eliminates
not plastic enough to follow these systems. Instead sodrawbacks of parameter-based mechanisms related to a fixed
called self-concept-based approach has been proposdd (fistructure of regulator.
in human psychology [69][70], see more in Section V). This
mechanism determines desired modifications based on in
ternal stimuli, containing in the self-concept; in manyesas E
each self-modification creates a new generation of adaptive
changes, which are absorbed by the model-reference based
detection. This mechanism is mostly utilized in self-adagpt e
systems.

The mentioned developmental degrees of freedom, to- - )
gether with the detection mechanisms, can create different
combinations, which result in several adaptive and self- (@ (b)
3ic(j:aa$(gvt(|?]rr;:i:]:jrgllsc:rgss.sggccz‘sér;%hn?nvéghnar?i(i;pst?“on, we InF__igure.4. Simplifieq structure ofa) modulgrity-based adaptive mecha-

. nisms ;(b) self-organized adaptive mechanisms.

1. Parameter-based adaptive mechanismsrThis kind
of adaptive mechanisms has a long tradition in the con- 3. Self-organized adaptive mechanismdn contrast to
trol theory, see e.g. [41]. Here the system is controlledhe two previous adaptive mechanisms, the self-organizati
through control parameters, see Figure 3(a). By modifyingepresents another approach for adaptation. Self-origaniz
the values, the controlled system responses by changing itystems consist of many interacting elements with a high
behavior (in the terminology of control theory — the tramsfe degree of autonomy [73], see Figure 4. The transfer function
function). There exists a multitude of possible variations of such systems is “generated” dynamically through interac
when the system is known, its analytical model can be usetlons. Usually, when these interactions are not syncheahiz
for control purposes; when the environment is simple — itthe transfer function is irregular or even chaotic. Howgver
is incorporated into the analytical model; when the systenwhen these interactions become synchronized in some way,
is unknown (the black box approach) — different feedbackwe observe an appearance of “ordered transfer function”.
mechanisms can be utilized for control purposes. DifferenSelf-organized adaptive mechanisms introduce a feedback
ways of how to adapt the system are the focus of unsudirectly into the interactions among elements. In this way,
pervised reward-based learning approaches. The parametany changes in a local feedback modify the whole collective
based adaptive mechanisms are very efficient, however posehavior [74][75]. In many cases it happens without any
sess several drawbacks. First of all, the system is adaptivegulators at all; all interacting elements modify theirmow
only within such variations of a transfer function, whictear interactions [76].
allowed by changes of control parameters. The second point Since environmental changes require an adaptive reaction
is related to the feedback mechanisms/analytical regufato from a system, which in turn requires specific control
this element represents a general bottleneck. For examplmechanisms, we can divide changes and reactions into those
a feedback mechanism expects only a temperature as farecast in advance and correspondingly those not forecast
feedback parameter. In a situation where not only a temin advance. This division is relative, because in practical
perature but also a light becomes a feedback parameter, tlsuations each change has forecasted and not forecasted
predefined regulator will not provide an adequate regufatio components.

2. Modularity-based adaptive mechanismsTo increase Now, based on the introduced concepts, we can define
flexibility of the systems to react to environmental changesadaptability [14]. Adaptability is closely related to envi-
another principle has been suggested. This principle isonmental changes and the ability of a system to react to
based on the so-called “atomic structure”, where the systerthese changes and the capability of the designer to forecast
consists of modules, which can be dynamically linked toreaction of the environment to the system’s response. There
each other. The linkage can be of binary as well as fuzzfore adaptability is defined in term of the triple-relation:
character, see Figure 4. Examples of such systems are arénvironmental changes system'’s response> environmen-
ficial neuronal networks (ANN) [71], Genetic Programming tal reaction In general, adaptability is the ability of a
(GP) [31], reconfigurable robotics [72] and others. Modularcollective system to achieve desired environmental reasti
structure has several dedicated issues, i.e., granulafity in accordance with a priori defined criteria by changing its
modules — how large are changes of the transfer functiomwn structure, functionality or behavior initiated by clgad

a11a12a13
021022 023 ..
031032 a33

environment
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FOUR TYPES OF ENVIRONMENTAL CHANGES IN ROBOTIC APPLICATIONS

AND EXAMPL

Table |

ES OF CASES BOTH FORECAST AND NOT FORECAST IN
ADVANCE, FROM FROM[14].

EnvironmentaExamples: Forecast in Ad- Examples: Not Forecast in
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feedback-based regulative mechanisms. This and simifar de
initions of self-adaptivity is widely used in evolutiondiF8]
and in autonomic [79] communities.

The theory of adaptive control also uses the term of self-
adaptation, however in another context. It is primarilyatet

changes vance Advance k o g A
leading to: to different variations of well-known self-tuning mechsimis
Appearance Installation of industrial Work in previously unex- [67][66], where the detector and regulator uses iterative
of ~ new robots in a new workshop ID'O(f;;d enVll\r/Ionﬂ;ent (e.. approach for identification of control laws. On the early
situations anding on Mars : : :
Changed  Changing a type of loco- Search and rescue sce- stage of 60x and 70x the term of s_elf adaptation was widely
functional-  motion (e.g. from wheeled nario when robots en- used, e.g. [68], whereas modern literature refers selfiun
ity to legged), when changingcounter unknown obsta- approaches to adaptive systems [64].

a terrain type cles " ] ; .
Modified Gravitational perturbance Distributed  control  of Tak!ng Into accoun_t regulative and generatlng levels from
behavioral  of flying object in space legged locomotion for the Figure 2, the difference between adaptive and self-
response and finding new control obstacles of random adaptive seems to be more complex. We start from the

laws for engines geometry | ted fact. that “adaptive” and “self-adati
Optimization Changing of day/night Adapting locomotive commonyaccep ed 1act, that "a ap Ive” an Se_ -adagtiv
of light and  adapting parameters for randomly are placed on different levels of hierarchy. In Figure 6 we
parameters intensity of additional moving obstacles draw these two levels (as two dashed boxes).

light

self-concept

generating mechanisms

<-:-I

self-adaptive

environment. In Table | we roughly specify four different
categories of environmental changes.

According to environmental changes from this table, we
can identify five different classes of adaptability in colle
tive systems, capable of structural phenomena: optinoizati
mechanisms; behavioral control; functional control; dri
tion of new regulatory functionality and, finally, evolvirgj
new regulatory functionality. These mechanisms are graphi
cally represented in Figure 5. Since we involve in this figure

j\etS
ed oo
oY
e
e oo
\,\a(\gea adaptation as evolving of
© regulative mechanisms
adaptation as self-derivation
of regulative mechanisms
adaptation as
variation of structural rules
adaptation as
variation of functional rules
adaptation as
variation of parameters

parameter
optimization

design goals

parameter-based,
modularity-based,
self-organizing
regulative mechanisms

adaptive

Collective System

Environmental
Changes
Figure 6. Adaptive and self-adaptive mechanisms.

situations.

required
functional
changes

The mechanisms in the first box allow adaptive behavior,
related to the design goals of a system. These “goals” are
implicitly formulated as a transfer function, model-reface
and other mechanisms related to behavior in environment.
In the same manner, the self-adaptation needs also a “goal”,
however the self-adaptive goal should be expressed in a more
broad and flexible way and should be related to the system
itself. It describes developmental goals as “what a system
may be”, instead of “what a system should be”. To explain
the difference between both, we can consider the case of

several evolutionary mechanism, we closely touch the gsudNacroscopic locomotion for such an organism, as shown in

of self-adaptivity, considered in the next section. Figure 1(b). - _ -
This organism can have a series of specifications: legged

V. ADAPTATION VS. SELF-ADAPTATION or wheeling principles of motion, specific limitations im-
The ideas, expressed in the previous sections are related pwsed on energy consumption or on a structural stability.
adaptation. There are several differences between adgaptat They can be formulated even broader, as e.g. “a system
and self-adaption. For example, Back in [77] distingusshe capable to move from A to B”, and expressed as a fithess
betweendynamic parameter contrpladaptive parameter function of the traveled distance and constrained by e.g.
control and self-adaptive parameter controHere “self- segmented (such as insects) construction of body, synunetri

adaptive” includes (evolutionary) mechanisms for chang-movement of legs or humanoid-like structure of body. All
ing regulative structures, whereas “adaptive” means merelof them are different examples of design goals, which, when

required e
behavioral o
changes

Class of
Adaptability
evolving of

regulatory
functionality

parametric
changes

derivation of
regulatory
functionality

functional
control

behavioral
control

Figure 5.
[14].

Different adaptivity mechanisms in collectivestgyns, from
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touching with reality, produce some adaptive locomotivemanner[85]. We find some first ideas about open-ended
structures and behavior. Obviously, that formulating giesi evolution in [86] and [87]. Open-ended evolution is also re-
goals more or less broad, we allow more or less degrees déted to indefinite growth of complexity [88] and unbounded
adaptability. diversity [89]. Ruiz-Mirazo and co-authors expressed the
Now, we can assume, that driven by human developmentahteresting idea thdthe combination of both self-assembly
history, we have a specific vision of how this organismand self-organization processes within the same dynamic
may be: complexity of regulative and homeostatic func-phenomenon can give rise to systems with increasing lev-
tionality, degree of “intelligence”, flexibility of struatal els of molecular as well as organizational complexity”
reconfiguration, scalability. They can be also broaderhsucThey also proposed to decouple genotype and phenotype
as “increasing of information capacity”. These visions arefrom each other. A similar idea of increase homeostatic
not directly related to locomotion, they express some desirautonomy in macroevolution was proposed by [90], which
of how to see the whole systems. From these visions, it ideads us to not-fitness driven self-developmental prosesse
not always possible to obtain some locomotive structureSeveral implementations of open-ended evolutionary seena
directly. Each change along the “vision axis”, requiresios, e.g. [91], do not use any explicit behavioral fitness,
follow-up changes along “adaptive axis”. In other words, moreover, there is no complexity growth in such “classical”
“self-vision axis” and “adaptation axis” are different. @u artificial life simulator as Tierra and Avida [92]. In this wo
a “vision of itself” is expressed in terms of a “self-concept Russell Standish proposed to improve these systemkey
The notion of self-concept originated in human psychologi-step in doing this is to generate a process that adaptively
cal research, e.g. [70], and is basically related to humkin se recognises complexity, since it will be impossible to idelu
developmental processes, e.g. [69][70][80]. Recentlgreh humans in the loop, even when run on conventional com-
appear several works, which apply psychological ideas tguting platforms.
robotics, e.g. [81][82]. These works lead us to an interesting question about
In self-adaptation we have to point out one principalthe unbounded self-concept: which process can generate
element, related to the bounded and unbounded character cdmplexity? One of the first remarks is from von Neumann:
changes. When in adaptive processes, these driving forcésynthesis of automata can proceed in such a manner that
are mostly bounded, expressed e.g. by reward or fithesgach automaton will produce other automata, which are
the self-concept may include driving forces, which are ofmore complex and of higher potentialities than it5¢86].
unbounded characteBelf-adaptationcan be formulated as A similar approach is observed in L-Systems [93] (authors
a series of changes, undertaken by the system alone, amded evolutionary process but human operator in the selec-
intended to adapt to its own vision of itself. tive loop) as well as in self-referred dynamics [30]. It seem
When the self-concept has an unbound character, thénat structural production can lead to growth of complexity
system is in fact continuously changing itself. In this @t  and diversity.
sell-adaptation can be related to another process — self- However, considering the Kolmogorov complexity of frac-
development. The notion of self-development in robotics istal structures, which is equal to the shortest production
most probably originated from another community — neu-set of rules [94], we note the complexity of the whole
roscience, e.g. [12][83], which through artificial neuratn fractal is independent of its size — the self-similar stouat
works (ANN), e.g. [84] and evolutionary communities find production does not increase complexity. Thus, we require
its own way to robotics, e.g. [82]. The development focuseghat production systems include parameters, which perturb
on ontogenetic processes related to cognitive science argknerating structures. In this way, structural productides
the concept of embodiment [3], whereas self-developmerparameterized by a random (environmental) value may lead
is understood more broadly as e.g. self-exploration, selfto infinite growth of complexity and diversity, and are
supervision, self-learning and others. To be consistetit wi candidates for the unbounded self-concept. In Table 1l we
the logic of these notions, theelf-developmentis a more  collected several possible self-developmental processes
general ontogenetic mechanism of continues changes, whidtructural collective systems with bounded and unbounded
targets cognitive aspects and may be unlimited in time angdelf-concepts.
complexity, i.e., it possesses unbounded properties. Both To conclude this section, we argue that adaptation and
self-adaptation and self-development are related to tlie se self-adaptation are two different, hierarchically plaqged-
concept. cessesrelated to an origin of changes and not to the used
In evolutionary community unbounded properties are of-mechanisms (both processes can use the same mechanisms)
ten related to open-ended evolution, whistcharacterized Related to the utilized degrees of plasticity and origin of
by a continued ability to invent new properties — so far onlymodification, different adaptive and self-adaptive mecha-
the evolution of life on Earth (data partly from the fossil nisms can be combined into three groups and represented
record) and human technology (data from patents) haveas shown in Figure 7.
been shown to generate adaptive novelty in an open-ended Design goals and self-concept also differs from each
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Table Il " N .
SEVERAL CHARACTERISTICS OF SELFDEVELOPMENTAL PROCESSES IN |QWS ore.g. templates”. Templates are well-known in cog-
COLLECTIVE SYSTEMS FROM[10]. nitive science [95] (also as “schemas” or “prototypes”), in
topological research (in knot and braid theory) [96], asl wel
Process Developmental plasticity ~ Self-Concept as known as “frames” in the Al community [97]. The self-
Regulatory Structural and functional(bound) Achieving a  Concept can be also expressed by symmetries, conservation

plasticity of the system, targeted goal in changing laws, be planning- or fithess-driven or even have a character

controllers can  changeenvironment. (unbound) — of ynhounded metrics for open-ended evolution.
their own transfer Increasing performance

functions. characteristics.
Homeostatic Like in the regulative case(bounded) Endogenous V1. APPROACHINGADAPTABILITY OF ARTIFICIAL
but related to maintaining steady state(unbounded) ORGANISMS FORCOLLECTIVE LOCOMOTION

steady internal states inAchieving best possible
changing environment.  homeostasis for diverse To exemplify the discussed concepts of adaptation, self-

scalability metrics. - 3 .
Leaming Changeable structure ofbounded) e.g. positive adaptation and self-development, we consider the problem

regulative system. or negative rewards. Of collective locomotion for multi-robot organisms. Figus
(unbounded)Fitting very shows a top-down view on a hexapod organism. The whole
large (infinite) parameter
space, e.g. by exploring
structural-functional

relations.
Planning- Structural, functional and (bounded) Minimizing
driven regulative plasticity. deviations from a plan.
(unbounded)Self-referred
planning.
Fitness-driven  Structural, functional andbounded)Explicit fithess.
regulative plasticity. (unbounded)Implicit fit-

ness (optimizing energy

balance, maximizing off-
springs).

Open-ended Capability for unboundedqunbounded) Unbounded
evolutionary activity. metrics.

(b)
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Figure 7. Three groups of adaptive and self-adaptive mésmanplaced
along the used degrees of plasticity and origin of modificati

her: If . “ " d . .. Figure 8. Top-down view on a hexapod multi-robot organismonfr
other; seli-concept Is more “"system common escrlpt'onFigure 9(a). Shown are four different positions of legs tosirate a

and has more degrees of freedom. Normally, during adapsomplexity of collective locomotion.

tation, a system cannot change its own goal. However,

during self-adaptation, a system can potentially change thorganism represents a collection of aggregated modules,

design goals, i.e., self-adaption and goals can potenti@l which form the central vertebral column and six legs con-

conflicting. When the plasticity is high, and the system camected to the spine. Since 1DoF modules are connected in

be hindered by adaptive processes from reaching the mawertical and horizontal planes, legs as well as the vertebra

goal, we are facing a new conceptual problem of a long-terneolumn possess multiple angular and dispositional degrees

controllability of adaptive and self-developmental preses.  freedom, required for the legged locomotion. This organism
There are several strategies to avoid conflicts betweemoves on a flat surface without any obstacles; four different

achieving design goals and self-adaptation. One of them is tframes of this movement are shown.

formulate the self-concept invariant to possible adaqiesti From these images it is well visible, that the regular

There are several mechanisms expressing such an invariambtion patterns (when there are no obstacles) can be split

property of the generating level: symmetries, conseraatio onto three different parts:
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(a) Periodical (or rhythmic) activation of “active joints” symmetries caused by differences in docking elements, or
(elements, which connect legs to the vertebral column). more generally by different modules. This leads to non-

(b) Motion of legs in a vertical plane. This patterns is symmetrical positions of several active nodes, likeand
basically the same in all legs. G,

(c) “Rippling” of the vertebral column. The amplitude and - we require that some structural nodes are e.g. strongly
frequency of this motion should be synchronized with activehorizontal (vertical) as e.gD, £ and F'.
joints. - all nodes have different load. This is indicated by

Basically, the motion without obstacles represents a ielassdifferent gray level of active nodes.
cal controlling problem, which can be solved with e.g. kine- Each motor is controlled by a non-linear rhythmic driver,
matic analysis [98], evolved [32] or resolved by using bio-whose control parameters depend on internal sensors (e.g.
inspired approaches [99]. The problem of adaptation agpeatorque of a motor). Without loss of generality, we say
first, when an organism should overpass some obstacle, arnhiis represents a simple adaptive control on the functional
this requires multiple co-depending changes of patterjis (alevel, where motors are first not connected with each other.
(b). Moreover, the works on CPG, e.g. [100], indicate thatThis scheme is sketched in Figure 10. Now, we insert a
any adaptive modification of the macroscopic multi-celiula

behavior requires multlplg correlations between mdmidg . |Unb0und Self-Concept
degrees of freedom and, in the worst case, may essentlallgeneiratlng
. . eve
increase the complexity. | Bound Self-Concept |—>| Generator |
The need of multiple synchronization may be better
understood in Figure 9, which shows the 2D section of an ag: ,
. ) NN - Evolving |Evo|vmg|<—| Fitness
gregated organism with several active joints in the fronb(t  Level
front legs). We assume that this structure is already adeate A 4 v
Couplings (1,1)¢(1,2) ... o(1.n)
Structural (information 6(2,1)¢(2.2) ... (2n) Global
Level and structural) e(m,1) o(m2) .. c(mn) Enviromental
Functional Non-linear driver Non-linear driver
Level x(i,n+1)=F(a,x(i,n))+C(x(itk,x(n-1) x(i,n+1)=F(a,x(i,n))+C(x(itk,x(n-1)
Behavioral |\ “Loeer " "W 77T TR Cesr T
Level Actuator Actuator

Figure 10. Different levels of adaptive collective locoiat

structural level, which depends on a morphology of the
organism. This level is represented by a coupling element
C, which creates “communication channels” between dif-
ferent nonlinear drivers (there are several different diogp
elementsC on e.g. structural and information levels). Since
organisms create generally three dimensional structures,
(b) expect at least a coupling between three elements (as e.g.
! o . . _ a tensor of the third order). The coupling element contains
Figure 9. (a) Artificial organism, front view;(b) 2D section of an . . . L
aggregated organisms (two front legs with a section frortebeal column), values l'kecijk = 1 (direct coupling between driversj, k),
circles are active joints. Shown are two kinematic statethisforganism.  ¢;;; = 0 (no coupling between drivers j, k), cijr = —1
(phase inversion between driveérg, k) or even any positive
(or evolved) and represents some optimum of functionalityamplification) or negative (decay) coefficients. Colleeti
for a locomotion without obstacles. Each of the aggregatedctuation depends on coefficients in these coupling elesnent
modules possesses independent motors (degree of freedomAs mentioned above, any non-periodical perturbation, e.g.
displayed by a circle) and can actuate independently of eactmotion with obstacles, requires multiple synchronizatiea
other. In order to move as an organism, all these motorswveen elements, which firstly adapt the collective actumatio
should perform synchronized individual actuations. Thereof all motors; secondly takes into account stability con-

are several requirements, such as: straints. There are three different mechanisms, which ean b
- the center of gravity should not overstep the nodes used in creating adaptive structure and functionality adou
and H, other case the organism will be unstable; C. Firstly, individual rhythmic drivers use local adaptive

- even in homogeneous case there are several nomechanisms, know in the theory of adaptive control, as
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shown in Section VI-A. Secondly, drivers aitrepresent a logistic maps. The system (1) is denoted as the ordinary
coupled map lattice (CML) [101]. As we can see from Fig- logistic-logistic (OLL) map. Several examples of qualita-
ure 9, nodes3, C, D, F, G, H have the most intensive load, tively different types of behavior are shown in Figure 11.
which can lead to a more stronger synchronizatiorin
where as other nodes do not need any synchronization and
their connection will disappear. In this way, synchronizat
effects in CML represent an emerging adaptability created
by self-organizing processes between behavioral, funatio
and structural levels. This effect is similar to the obsdora
in CPG with environmental coupling [102]. This approach
is sketched in Section VI-B. Then, a structure @f (and
so a collective locomotion) can be evolved, as described in
Section VI-C. Here we face the problem of deriving such
local and global fitness functions, which adapt a collective
actuation within the framework of constrains. 1
The processes, mentioned above, lead to an adaptive °°[ 08
macroscopic locomotion, e.g. when an organism encounterg Zj ; ' )
an obstacle. However, changes in collective actuation can , L ; o 4/4(
be occurred even when an organism does not encounter an o i
obstacle (just to remind this organism already reaches some -2
optimum in fitness, i.e., these changes cannot be driven by an
“old fitness”). To initiate such changes, we have to intragluc © C)
a new “driving force”, which is independent of particular Figure 11. Several examples of qualitatively differentetyf behavior of
obstacles. This will be then a self-adaptation, which takeshe system (1). Bifurcation diagrams of the OLL map (1) abpeeters{(a)
place on the generating level, as shown in Figure 10. Ther=1 ¢=0.1, 20 = 0.1, (b) b =2, ¢ = 0.6, zo = 0.4; () b = ~1.5,
=—1,20=0.1;(d) b= —0.5c=—1, 9 = 0.1.
are several proposals for bound and unbound self-concep(fs
as shown in Section VI-D.
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As shown in [106], the non-homogeneous coupling in
A. Multi-functional, Locally Adaptive Rhythmic Motor (1) increases determinancy order of initial NF. This can be
Driver understood as a perturbation of the original logistic map by

As described in the previous section, individual motorcouplings. In order to obtain all possible perturbed ncedin

drivers should demonstrate diverse dynamic behavior. I{€'MS, it needs to calculate the universal unfolding that is

literature there are known different types of continuousdVen €.9. by
rhythmic generators, e.g. [102], however due to technologG(%’ M)
ical reasons of controlling DC motors and running on a

small microcontroller, we prefer time-discrete systemaclE  with the codimension 4, wherey; are coefficients. We
time-step can be selected as small as possible, for exampt@n see that non-homogeneous coupling method of OLL
a few usec to guarantee a quality of control. Dynamic map changes the codimension of local bifurcation from 1
variables, e.gxz,,, represent voltage (current, phase), which(transcritical bifurcation contained in the logistic map)4.

are applied directly to DC-DC convertor or H-bridges. To The approach (2) can be used for designing a pro-
obtain diverse dynamics, we use the idea of changing thgrammable series of bifurcations so that to create a desired
determinancy order of normal form (NF) and the following dynamics of the system (1). This allows us to use this system
perturbation of nonlinear terms [103]. This can be achievedlirectly in the mechanisms of local adaptation. Coefficgent
when to use hierarchical non-homogeneous coupling for any, b andc can be connected to locomotive sensors (for ex-
well-know low-dimensional system, for example the logisti ample a torque sensor). When a load on motor is increased,
map. This approach is very common in the community (e.ga local control mechanism (e.g. PID regulator [41]) adapts
[104][105]). In our case, the map has the following form: the coefficienta, e.g. to achieve the required torque on the
given load. In the next section we will see several adaptive
effects, which arise when many of individual motor drives,
like (1), are connected into one system.

= a1 + \u@n + @292 + a3l +asph + b (2)

Tnt1 = CYn + axn (1 — xy), (1)
Ynt+1 = CTn + bxnyn(l - yn)a

wherez, € R, y, € R, ¢ is the coefficient of the linear
coupling, b is the coefficient of the nonlinear coupling,
a is the general bifurcation parameter. As turned out, the Considering modular robots with the ability to dock to

dynamics of (1) in fact has little in common with the initial each other and to build multi-robot organisms, the problem

B. Adaptive Mechanisms Based on Self-organization

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

131
occurs how to synchronize the behavior and especially thef the lengthm:
collective locomotion for different organism’s topologie ; ; i1
Traditionally, such problems have been treated by using Tndl = q_a)f(‘”n)“%(f(xn ) ©)
classical model-based methods. The developed controllers Tn = 'n
either use such model-based approaches or utilize biayhere z, € R, i = 1,2,..,m and n represent the

inspired or evolutionary algorithms. However, most of thes dimensions of the CML{ (%) is the logistic map
approaches are not fully applicable for a large scale modula ; ; ;

robotics because of a very high complexity, the huge amount f(zy,) = az;, (1 — a7,). 4)

of exchanged data and limited hardware capabilities. Mosfmportant parameters are the small coupling parameter

algorithms fail also due to the lack of scalability and adapt that denotes the strength of nearest neighbor coupling and
ability. The development of new techniques for adaptivethe bifurcation parameter

treatment of such problems is required.

In the last decades, several approaches from the field of
non-linear dynamics have been applied to robotics, espe-
cially to solve the problems of locomotion in bipedal [107]
or multi-legged robots [108]. The big challenge is still the
synchronization between joints or legs so that the gener-
ated locomotive pattern become adaptive to environmental
changes. Stable attractors provide often the best way to
develop a system, which is able to generate several pat-
terns by low-dimensional coupled equations with only a
few control parameters. In multi-body systems with many
degrees of freedom such methods allow reflecting the real
dynamics only in a very limited way. Several attempts have
been undertaken to use feedbacks in time-delayed nonlinear
oscillators [109][110] or feedbacks based on resonance ef-

fects [111][112]. S_uch feedbacks can address several local Experimental results show that the synchronization be-
and global properties of the dynamics, however currently,eqn sites occurs within.16 < e < 0.19, observable as
achieved results target often very specific problems an%right areas in Figure 13. During the iteration process, in

lack in generalization to other applications. In this BTt 4o 1 simulate a disturbance, we apply a small fluctuation
we present an approach based on the Coupled Map Lafs

. ) A n the bifurcation parameter, which can be e.g. associated
tices (CML) [101], which focus on synchronization effects with a disturbance in the communication load. Such a
achieved in high-dimensional coupled equations.

L X ) ... . disturbance in turn can be referred to some disturbances

Each site in the CML is considered as a unit (j0intjy e environment (i.e., obstacles, environmental change
angle, hinge motor, link), which can be coupled with their o sonsrimotor disturbances). In Figure 13, the bifuorati

neighbors through a coupling parameter. We use threﬁarameter was slightly disturbed for a short time period and

different c_oupling structures: uni_directi_onal or biditenal _after few time steps when perturbation stopped, the system
coupled rings and four-connections-sites on a 2D Iatt|cebecomes again synchronized (area in boxes)

Synchronjzat_ion between the _robots appears t_hrough the Further analysis of the local and global impact has been
synchronization effect of spatiotemporal chaotic pattern .o by investigating the impact of disturbances in small

mode!ed_by oscﬂlatln_g nonllr}ear equations. When Syr]'separated regions (Figure 13 (a)) or if the disturbances
chronization appears n a region of the C.ML’_th'S meansappear in local neighborhoods (Figure 13 (b)). As it can
thaF the communication between r°‘?°t5 in this region he observed in these figures, better synchronization effect
rapidly decreased and the corresponding part of the onganis,, .\ it 5 perturbation appears in the sites that are close to

pelrfo;]msf.a synchro_mzed molvem;nr:. di ionalri each other (local impact). In a multi-robot organism, this
n the first scenario we analyzed the one-aimensionalring, o ans that units in a local range (one leg, arm etc.) perform

coupled topology (Figure 12). AS. a “basic” sy_stem WE USChetter synchronization than robots far away from each other
the homogeneously coupled logistic map (Figure 11 (a)). In the next test scenario we extended the model by

Each si.te can _be ao]ditivgly CWP'E‘?' with their_lgft and/Orcoupling the sites with both left and right neighbors (bidi-
right neighbor sites either in unidirectional or in biditienal rectional coupling). We took again a ring map lattice of the

Figure 12. Multi-robot organism connected to a ring.

way. Synchronization appears due to interactions betwee@ngthm

non-identical systems, which leads to a locking of their

phases, whereas their amplitudes remain uncorrelatetheAs t 2%, = (1 —e)f(zl)+ 5(f(x5Y) + f(zith))  (5)
first test system we take the unidirectional ring map lastice 2™ = a1,
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CML, Parameters: a_start = 3.89; a_distub= 4; e= 0.16951 CML, Parameters: a_start = 3.89; a_distub= 4; e= 0.16951
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Figure 13. One-way coupled map lattice. Initial condit'nom§ =01+
0.0000049:. Boundary conditionsz} = z7,; (a) disturbances (i.e. motor
voltage drops) are simulated in a large distance and do gaffisantly
affect each other(b) disturbed sites are in local range and affect more
each other than in (a).

Figure 15. Time evolution through 2D CML sites.

In order to get a homogeneous coupling the coupling _ _ _ _ _
parametet is divided by two. We observe similar synchro-  Like in experiments with serial couplings, in order to

nization effects like in the previous experiment in siteatth analyze synchronization properties of 2D spatial lattices
are nearby or far away from each other. we temporary disturb the bifurcation parameter in a block-

shaped regions (Figure 16). It can be considered e.g. as a
disturbed part of a multi-robot organism (legs, arms etc.).

The results in Figure 16 show that a small perturbation of
« does not cause a chaotic behavior like in the previous
experiments for serial coupled sites, but leads instead to
a phase synchronization. The reason is the asynchronous
updating of the sites [113]. This approach not only syn-
chronizes locomotive behavior but also allow forcing the
organism to change the locomotion pattern. In Figure 17
different conceptual layers for the whole framework are
introduced: Couplings-, CML-, Actuator-, and the Organism

b) Layer.

) o L In the Couplings Layer (Structural Level), we generate
Figure 14. Two-way coupled map. Initia conditionty = 0.1 + the coupling matrixC mentioned in Section VI. This
0.0000049:. Boundary conditionz’ = x},; (a) disturbances are simulated ) = . )
in a large distance and do not significantly affect each otfgrdisturbed ~ Matrix maps the topology of the multi-robot organism by
sites are in local range and affect more each other than in (a) inserting ones and zeros as matrix elements. According to

. . . the structure of the coupling matrix the corresponding sirea
Open or closed chains are the basic structures in many, e cML are activated (one) or not activated (zero). On
robotic systems since robots often consist of legs and armg ), Layer (Functional Layer), we perturb the sites in the
In simulation above we analyzed and developed mechanismg.tiyated areas from the Couplings Layer and can observe
focusing on achieving a synchronized locomotive beha"io'bhase propagation and as well as active phase shiftingeffec
for multi-robot organisms with only chain-like structures required (Figure 16). All non-activated sites in the CML
Now we extend this idea for multi-legged robots with three 5 e considered as virtual modules, which do not exist in

dimensional topologies. To achieve this, the dimensionali oty however are required in order to generate the phase
of Equation 5 increased. In this case, the coupling can bgynchronization patterns.

performed in all four directions

CML, Parameters: a_start = 3.89; a__ disturb = 4;
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At the Actuator Layer (Behavioral Layer), standard con-

x;il = (1—e)f(ah?) + S (f (i) trollers (PI, PID control etc.) can be applied and are often
+f (@I 4 fab =YY 4 f(ahith)) a part of servo motors. Such controllers are well-known
gitmaatm — g from the theory of control and enable motors to follow

(6) the generated phase patterns. By learning the phase gattern
wherei, j = 1,2, ..., m represent the system’s size. For eachgenerated by different perturbations in we are able to
time step we generate a separate 2D lattice and perform these this knowledge and actively apply it to generate desired
time analysis (Figure 15). locomotion patterns. The bifurcation parameteis hence
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=150 Figure 17.  Architecture of Active Phase Perturbation Apgfo for
Locomotion. This figure demonstrates how the CML based ambraan

200 directly referred to real robotic applications.
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Figure 16. Phase pictures of 2D CML with four disturbed regio _{_Ezf(zilJrAi,jnLAj)
sifmitm = ald,
(7)

where Ai and Aj are distances between CML sites that
a control parameter for the phase regulation and can br?e]present the Iinks..ln order to analyze temporal effe_cts of
adapted in runtime. the phase propagauo_n we need to pick the areas of interest

and go through the time steps of the 2D map (Figure 15).

The activated sites in the Coupling Layer can be additively By choosing different values of coupling parameters we

coupled with other activated areas by additional terms anére able to synchronize the links for different locomotion
with different coupling parameters (eqy., 2). The coupled patterns. As it can be exemplary observed in the Figure
sites represent four main links of each leg of the robotl8, legs can be synchronized for instance pairwise and in a
organism. The idea behind this approach is to synchronizeross-wise manner. It is of course not trivial to find always
all four links for achieving desired gaits (walking, trow, the suitable coupling parameter set, therefore evolutiona
galloping etc.). Depending on the structure of gait, linea ¢ and learning approaches can run in parallel and learn it for
be connected in parallel or crosswise, see Figure 18 (topachieving a good fitness.
and can also be adapted dynamically to different situations As a conclusion to this section, we summarize our re-
Therefore, additional coupling terms have been added to thsults. Using methods from non-linear dynamics and self-
equation 6, here exemplary a weak coupling between organization, we applied a CML-based approach for achiev-
links one (upper left) and two (lower left) and betweening synchronization between different limbs of a multi-
links three (upper right) and four (lower right). The comgli  robot organism. We analyzed serial as well as 2D coupled
parameter between links one and four and between two anslaps and also analyzed local and global impact of occurred
three ise, and is in this example much stronger than the  disturbances.
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061 ‘ ‘ o L“"M ks ‘ ‘ Through environmental and local feedback, the current ditnean be

8 3 40 45 50 85 60 "3 35 40 45 50 55 6  measured and optional crossover operators with other isancan be
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Figure 18. Time evolution of non-coupled (left image) anded (right

image) sites in the activated areas for the four main linkghef robot . t B luati fth t l troet
organisms. Coupling parameter agg:= —0.01 andez = —0.001. When environment. By evaluation or tné current coupling stroetu

system gets synchronized it can be observed that links odcam (blue  in respect to a desired task (e.g. locomotion), a fitnessevalu
and black lines) as well as the links two and three (red andrgfimes) measures the performance of an Organism in the current
get synchronized crosswise. . . . .
environment. In case of locomotion the fitness function doul
. _ 3 be influenced by multiple factors like power consumption,
C. Fitness Driven Adaptability number of couplings (high number of coupling may lead to

Because it is very hard, to break down a desired behavidfigher communication traffic) or velocity of an organism.
into the individual behavior of each robot in a swarm or in 10 cover each point potentially in the search space,
a multi-robot organism [17], we support the adaptation pro_mutatmngl operators are used. This mutations can range
cess with bio-inspired evolution. Especially, in unprealite 7™M @ single random change of a coupling entry to com-
environments, when robots are able to (dis-)aggregate d¥/€t€ swapping of areas within the coupling matrix. In an
modules may fail, pure classical approaches can perfor,ﬁnwronmgnt_wnh multiple organisms, we can use t_he evolu-
suboptimal. Therefore, in addition to the adaptive mechalfionary principle of cross-over. Two or more organisms can
nism based on self-organization from the previous sectiofXchange their coupling matrices to each other. Depending
and artificial evolution of controller design, we adapt the®n the fitness value of both parents, a total or a partial
robots by use of evolutionary concepts. exchangg of the genome can be done. _The new structure

Figure 19 depicts the idea of the evolutionary concept.Can be either placed in one individual or in both.

The key element is the genome, which contains the codified
coupling matrixC;;, and control parameters. This genome
maps to the coupling of motors within the organism and
thus to the behavior of the organism. Based on the previous
section, the coupling strength can flow into the equations
and extend the existing couplings. Detached from struktura
coupling, even functional coupling of not physically lirtke
robots can evolve. For example the front left leg of a
hexapod-like robot is not physically linked with the leftdka Figure 20. Exemplary hexapod organism in simulation.

leg, but has to be synchronized in order to move. Even so,

the strength of the coupling of two individuals can vary. For the design of controllers and the evaluation we use the
Thereby, different strengths of the coupling lead to défér ~ Symbricator simulation [114]. Beside rings and caterpilar
behaviors. In order to adapt to a certain structure, whichiike organisms we are interessted in legged organisms (like
requires a non-trivial coupling, the strength of the cougdi  quadrupped or hexapod organisms, see Figure 20). The com-
evolves. parison of multiple (symmetrical and asymmetrical) shapes

A crucial point for evolution is the feedback from the and the corresponding coupling matrices with the reached
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fitness values (in simulation) can lead to very efficientwhere 9 9

organisms and locomotion patterns. In the final stage, we w= cos(l) —|—isin(—7r). (11)
want to pre-evolve the controllers in the simulation and ) n n

deploy them afterwards to the real hardware. This will speed Ne eigenvalues can be calculated as

up the time for development and prevent hardware of critical n S

damages. In a downstream step, the mechanism can adapt A=) e(w T (12)
the robot online and onboard to unpredictable environments i=1

and changes during actual operating time. Maximal eigenvaluel,,., = A1 = >, ¢, i.e., when

circulant coupling has only a fixed number @ffor any n,
) ] ) the stability and several other properties@fare invariant
Previous sections demonstrate examples of different adaps the dimension of the whole system. Both, circulant and
tive processes on functional, structural and evolvinglve qepiitz hand matrices demonstrate ideas of invariances in
In this section we briefly !ntroduce thg generating |eV€,'the self-concept. From the view point of the group theory,
and self-concepts. As mentioned, adaptive and self-adapti ,, .. . circulant can be viewed as a cyclic grodpnZ of
structures differ in two important points: adaptation usesyqern and can be generated by a generaforin Z/nZ.
environment for generating C_hanges, whereas self-adaptat 1 generatop™ can represent a particular example of the
uses the self-concept for this purpose. Moreover, the selfy,ng self-concept, applied to generate scalable topzbgi
adaptation is formulated in a more broad way than adaptasi ctures of an artificial organism.
tion; .to implement this_, we need to integratg structural and 14 integrate symmetry breaking constrains into the topo-
functional ge.n_erators into the system’s archltecture._ logical self-concept, we can use the approach [119] in the
Thus, to utilize self-adaptive approach, we need_ to involV&,rm of [120]. Kiziltan and Milan in [120] defined four
bound or unbound self-concepts and a generating mechganeratorsi;, ¢, which the flip first two rows/columns
nism. Several concrete examples of unbound self-concepf§ 5 matrix andr.. C.. which shift the first row/column to
. . . . S S
based on information the(.)r)_/. are mtrpo!uced in [1][10]. the Jast position. For any generators, the notaiog = g2,
The unbouqd se_lf—concept |n|t|at§s unlimited (open—er)ld(_ed(e.g_RfoRf _ R}) is used. Any two matrices are equivalent
grovvth of diversity and complexny;_the treatment of _thls when they are obtained from each other by applying any of
issue oversteps the framework of this paper. To explain thgyn m generators, e.g x 3 couplingC has 36 symmetrical
idea of self-concept for the structural generator, we focUsyatrices. The idea of breaking a sy:mmetry is to apply con-

on the bound case. The bound self-concept is invariant Qg ains; which order all symmetric objects, like the pragbs
adaptive processes. There are several mechanisms eRreSSkyicographical order [119].

such an invariant character of self-adaptation on the gen- apgther concept behind self-generation are so-called tem-
erating level: symmetries, templates and conservatios,law plates. They are well-known in cognitive science [95] (also
production, decomposition rules as well as self-referelice 55 «“schemas” or “prototypes”), in topological research (in
this work we can briefly demonstrate the use of symmetriegot and braid theory) [96], as well as known as “frames”
and symmetry breaking [115] for structural generation asn A| community [97]. The idea of a template is to describe
well as ideas of developmental modularity [116] expressednos general “stereotypical” properties or features of som
in the form of “templates” for functional generation. common classes of situations/processes/objects. Cencret
The most obvious way to generate well-scalable structurghsiance of a template can be reconstructed or generated
symmetries is to create a circulant [117] coupling by parametrization. There are several attempts to find an
T 0c universal template, however it seems that different clsse
C= <cn01 g %) ’ (8) of solutions need different templates.

Since we are focusing on dynamic properties of collective
actuation, we can assume each motor is driven by a periodic
T — (2‘; ot 2;:?) (9) control. In this way a collective actuation represents a
- ¢z < system of coupled oscillators with adaptive feedback, gs e.
(taking into account dimensions for C and forT). The  described in [102]. As known, such systems possess self-
idea of introducingT consists in making topology and adapting properties. Specific (desired, required) dynamic
kinematics scalable to the size of this body. In this way,motion pattern can be generated when to parameterize the
the basic building block is defined by circulant coupling CML-driving-system with a specific set of control parame-
C = circ(co, c1, €2, ..y cn—1). Well-known property of cir-  ters as well as to provide a way to change these parameters,
culant coupling is a possibility of its diagonalization et see Figure 21. Thus, we can map the problem of finding a

D. Bound Self-concept and Structural Generation

whereT is a Toeplitz band matrix [118]

Fourier matrix dynamic template to the problem of finding such a bifurca-
1 /111 tion dynamics, which property reflects the needed changes.
E = — 1w w? y (10) . . . .
= 7\ 1 w? Speaking more technically, we are looking for universal
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is considered to be more general ontogenetic mechanism,
related to cognitive structures and their embodiment.

The introduced ideas are exemplified by the problem
of collective locomotion in aggregated multi-robot organ-
isms. Self-organizing and evolving adaptive mechanisms
for the motion with obstacles have been considered. The
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | synchronization of oscillators for motor drivers can regluc
complexity of adaptive mechanisms. It was indicated that fo
performing further structural and functional changes wiith
obstacles, another driving mechanism on the generatimg lev
should be used. Examples are given by symmetries and

unfolding [103]. Obviously, that universal unfolding taber . . :
with parameter sets can be viewed as templates for coldectivsymmetry breaking effects in structural matrices, tettesla

actuation. Unfolding can be explained in the following way: or universal unfolding, which can represent a bound self-

let the normal forms of a local bifurcations be given b concept for functional and structural cases.
9 y Several problems remain unsolved. Firstly, the coupling

templale

1

|

g 1
level |
1

i

structural
and
functional
level

self-synchronization

Figure 21. Template for collective locomotion.

q,, = éu({o‘}’ {ﬂ})ﬂn +g(2) (ﬂn’ {a}, {B}) + Cin _F|gure 10 involves much more diverse structural and
(r41) functional elements. It seems there is a complex dependency
+ .. +0(g ); (13)  between structural and information couplings, which finall

emerges a collective functionality. The whole framework
aroundC requires more attention. Secondly, the structural
self-concept based on symmetrieg®tan regulate morpho-

dynamics of artificial organisms. However, it is completely
unclear, how this concept can work with a more “high-

where the tern&u presents the diagonal matrix of eigenval-
ues,g are the resonance terms, dependent on bathand

{B} andr is the determinancy order. Universal unfolding
includes all possible perturbations of this normal form,

which are equivalent to original bifurcation problem [103] level functionality”, e.g. cognitive or hemostatic regida.

lg th;tnvriﬁt:g:gl?:'ir:]%irr?pruer?i\e/gz;? jr?frggiiensﬁosvllg.\ff;an%inally, approaches in Sections VI-A — VI-D are only briefly
P ) 9 g sketched to indicate the used mechanisms. Experimental

the most general form of the desired dynamics, i.e. template . . .
. ) ; . . Ttesults for these sections are omitted, since these do not

From the view point of dynamics, the universal unfolding . . .
. contribute to the main goal of this paper. It needs another
can represent a bound self-concept, applied to rhythmic gal :
control work, which concentrates on these approaches and on a

multitude of nonlinear effects appearing in them.
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