
High-level Models of Software-management Interactions and Tasks

for Gradual Transition Towards Autonomic Computing

Edin Arnautovic, Hermann Kaindl, Jürgen Falb, Roman Popp
Institute of Computer Technology
Vienna University of Technology

Vienna, Austria
{arnautovic, kaindl, falb, popp}@ict.tuwien.ac.at

Abstract—For making software systems autonomic, it is im-
portant to understand and model software-management tasks.
Each such task contains typically many interactions between the
administrator and the managed software system.

We propose to model software-management interactions and
tasks in the form of discourses between the administrator and
the software system. Such discourse models are based on insights
from theories of human communication. This should make them
“natural” for humans to define and understand. While it may be
obvious that such discourse models cover software-management
interactions, we found that they may also represent major parts
of the related tasks. So, these well-defined models of interactions
and tasks as well as their operationalization allow their execution
and automation. Based on this modeling approach, we propose
a specific architecture for autonomic systems. This architecture
facilitates gradual transition from human-managed towards au-
tonomic systems.

Index Terms—Self-managing systems; autonomic computing;
interaction modeling

I. INTRODUCTION

Today’s software systems are usually distributed and very
complex. They have a large amount of parameters and pos-
sible configurations and it is crucial to satisfy their quality
requirements such as performance, availability and security.
Management of these systems includes tasks required to con-
trol, measure, optimize, troubleshoot and configure software
in a computing system.

In order to automate software systems’ management tasks,
it is important to understand and represent them in some
more or less formal way. Any such task contains typically
many interactions between the administrator and the managed
software system. We found that modeling these interactions
facilitates understanding and specifying tasks as well. In order
to make interactions easy to understand and to specify by
humans, their specification should be on a high level.

Thus, we propose to model the software systems’ manage-
ment tasks in the form of discourses between the administrator
and the system. Such discourse models are based on insights
from human communication theories and provide specifica-
tions for tasks and their interactions; for the basic approach
see [1]. We elaborate on it here and extend significantly
both our task and interaction specifications (task and discourse
metamodel) as well as our approach to communication content
representation (management domain content metamodel).

Although autonomic computing is a challenging vision,
truly self-managed systems are hard to achieve and not (yet) in
wide-spread use. The processes and means for the transition
towards this vision are still not sufficiently investigated. In
order to address these issues, this paper presents an approach
to gradual transition towards autonomic systems (an earlier
sketch of this proposal can be found in [2]).

The core idea of our approach is that the same interac-
tion specification is used both for management by human
administrators as well as for autonomic management. More
precisely, the same discourse model is used for the automated
generation of user interfaces for human management as well as
for the specification of the interactions between the autonomic
manager and the managed system in the case of autonomic
management. Whenever a management task is sufficiently
understood and a related implementation available in the
autonomic manager, managing this task can be handed over
to the autonomic manager without changing its interaction
specification in the discourse model. As a consequence, a
smooth and gradual transition towards self-managed software
systems will be facilitated, where the portion managed by
human administrators becomes smaller and smaller.

In contrast to the major body of research on autonomic
systems, this approach does not focus on designing and
developing autonomic managers per se. However, the tran-
sition towards autonomic systems and supporting means seem
to be equally important for their acceptance. Our approach
contributes to the latter and is, therefore, complementary to
work on improving autonomic managers.

The remainder of this paper is organized in the following
manner. First, we provide some background on the human
communication theories that we build upon. Then we present
our running example, that we use to explain our approach
to representing interactions and tasks in the form of discourse
models. As an important part for the operationalization of such
discourse models, we define their procedural semantics. Then
we specify both our high-level autonomic architecture and our
transition process from human-managed towards autonomic
systems. Two case studies indicate the feasibility of our
approach. Finally, we discuss related work.

74

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

Communicative Act

Assertion Directive Commissive

Informing Answer Question Reques t Accept Offe rReject

Open Question Closed Question OK

is adjacent to is adjacent to

is adjacent to

is adjacent to

is adjacent to is adjacent to

Fig. 1. Part of communicative acts hierarchy.

II. HUMAN COMMUNICATION THEORIES

Both tasks and their interactions can be specified in many
ways. We strive for a uniform high-level approach to task
and interaction representation based on the following human
communication theories.

Communicative acts are derived from speech acts [3] and
represent basic units of language communication. Thus, any
communication can be seen as enacting of communicative
acts, acts such as making statements, giving commands, asking
questions and so on. Communicative Acts carry the intention
of the interaction (e.g., asking a Question) and can be further
classified into Assertions, Directives and Commissives. Asser-
tions convey information without requiring receivers to act
beside changing their beliefs (e.g., Informing and Answer).
Directives (e.g., Question, Request, Accept) and Commissives
(e.g., Offer) require an action by the receiver or sender for
the advancement of the dialogue by further communicative
acts. This classification is shown in Figure 1. The figure
shows only a small selection from many communicative acts.
Communicative acts have been successfully used in several
applications: inter-agent communication in FIPA Agent Com-
munication Language1 (ACL), information systems [4] and
high-level specifications of user interfaces [5].

Conversation Analysis. While communicative acts are use-
ful concepts to account for intention in an isolated utterance,
representing the relationship between utterances needs further
theoretical devices. We have found inspiration in Conversation
Analysis [6] for this purpose. Conversation analysis focuses

1Foundation for Intelligent Physical Agents, Communicative Act Library
Specification, www.fipa.org

on sequences of naturally-occurring talk “turns” to detect
patterns that are specific to human oral communication, and
such patterns can be regarded as familiar to the user. In our
work we make use of patterns such as “adjacency pair” and
“inserted sequence”.

Rhetorical Structure Theory (RST) [7] is a linguistic
theory focusing on the function of text, widely applied to the
automated generation of natural language. It describes internal
relationships among text portions and associated constraints
and effects. The relationships in a text are organized in a tree
structure, where the rhetorical relations are associated with
non-leaf nodes, and text portions with leaf nodes. In our work
we make use of RST for linking communicative acts and fur-
ther structures made up of RST relations. Thus, they represent
the structure of possible interactions between an administrator
and the software system. We use two types of RST relations:
symmetric, multi-nuclear (e.g., Joint, Otherwise) and asym-
metric, nucleus-satellite (e.g., Result, Condition, Elaboration).

III. RUNNING EXAMPLE

We use a simplified online store as our running example.
The online store application enables the customer to look at
and browse through different catalogues and products, to create
user profiles, create and manage lists of preferred and desired
products. It also allows ordering, shipping management and
credit card processing. For the design of this application it is
very important to separate data storage and management from
data processing and presentation.

Such an application is usually implemented using a multi-
tier architecture, with three as a typical number of tiers:

75

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

...
Fig. 2. Online store system architecture.

• presentation tier (e.g., implementing a Web interface),
• application logic tier (e.g., using Enterprise Java Beans),

and
• data tier (e.g., using a relational database).

Yet, for our running example we integrate the presentational
and logical functionality into one processing tier, and thus
end up with a two-tier architecture for reasons of simplicity.
The resulting online store architecture is shown in Figure 2.
The data tier contains one database server. The processing
tier contains a cluster with several processing servers, which
are controlled by a Processing Controller server. A processing
controller performs, for example, load balancing. The online
store application is deployed in a hosting environment where
each of the servers gets some amount of processing power
assigned (e.g., using some virtualization technology). It is
also possible to dynamically add additional servers and to
integrate them into the processing tier. For each server in the
architecture, the online shop owner has to pay a certain amount
of money. The amount depends directly on the assigned
processing power, which can be changed during runtime.

A major goal of the online shop owner is to achieve the
best possible customer satisfaction and shopping experience.
On the other hand, the owner wants to keep the operation
costs as low as possible. One of the most important criteria
for customer satisfaction in Web applications is the elapsed
time from the page request until the requested page is fully
displayed on the screen. This parameter is known as response
time. Other parameters which influence user experience such
as graphical design are not considered in our example. It is
evident that the deployment architecture and the characteristics
of the included components within this architecture directly
influence the system response time. The manager of the shop
application has the following possibilities to influence the
runtime architecture and characteristics of the online shop:

• Increase or decrease assigned processing power of the
database server.

• Increase or decrease assigned processing power of each
of the processing servers in the processing tier.

• Add or remove a processing server in the processing tier.
The manager of the shop application can get the following

information about the online store’s state:
• average response time
• assigned processing power of the database server and of

each processing server in the processing tier
• current utilization of the processing power of the database

server and of each processing server in the processing tier
• average processing power utilization of the processing tier
The task of optimizing allocation of servers and their

respective power to tiers in order to satisfy customers, and
thus provide a high quality of service under peek loads and
to keep the running costs low at the same time, is known
under provisioning. Provisioning problems can be dealt with
using complex mathematical models and architectures (e.g.,
according to [8]). Also some other information beyond the
system itself can be required (e.g., current expense of the
processing power per given unit). However, we do not go
into more detail about such algorithms, since we are more
interested in the communication which occurs within such
management tasks.

In our running example, the manager of the shop application
monitors the application’s response time. If it happens to rise
above a given limit, the manager tries to figure out more
details about the cause, by acquiring information about the
current runtime architecture, its structure and the properties
of the system as a whole and its components. This includes,
e.g., average processing power utilization in the processing
tier, number of servers in this tier, assigned processing power
and processing power utilization of each processing server

76

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

as well as assigned processing power and processing power
utilization of the database server. After having collected all
this information, the manager decides to take some action:
either to increase the assigned processing power of one of
the servers or to add additional servers to the processing tier.
When the manager realizes that the response time falls below
a given threshold value, he can remove one of the servers from
the processing tier to save operating cost.

For our approach it is important that the control and
monitoring features listed above represent the content of the
communication between the manager of the online shop sys-
tem and the system itself. These features serve as the subject-
matter that the manager and system are “talking about”.

IV. HIGH-LEVEL INTERACTION AND TASK SPECIFICATION

We have developed a metamodel based on human commu-
nication theories which defines what the structure of the inter-
action and task models should look like in our approach. We
explain it using an interaction specification for a management
task based on the running example.

We model the communication between a managed software
system and its (human or autonomic) manager in the form of
discourses and relate them to the corresponding management
tasks. Our conceptual metamodel is shown in Figure 3, spec-
ified as a UML class diagram.2 While related concepts have
been used for the modeling of human-computer interaction
(e.g., in [9]), we use discourse models additionally for com-
munication within software systems, more precisely between
a managed software system and its autonomic manager. In
addition to the communication specification, it is necessary to
represent the communication content.

The metamodel illustrated in Figure 3 consists of two main
parts. The upper rounded box represents discourses and man-
agement tasks. A management task represents a typical task
of software system management such as system optimization,
recovering from errors, etc. Figure 3 shows that a management
task is specified by a discourse. A discourse consists of
communicative acts, adjacency pairs, discourse relations, and
their hierarchical structure and represents the modeling of
interactions. This part is also used for general human-machine
communication modeling [9][10][11].

The lower part of Figure 3 consists of classes involved in the
description of the content to communicate for the purpose of
the system’s management and, therefore, represents elements
of the management domain. There are two different kinds of
information to be exchanged between a software system and
its manager. These are the current state of the system captured
by properties and management actions to be executed by the
system.

A. Task and Discourse Metamodel

Our approach to task and communication models in the form
of discourses can be sketched as follows. In essence, it has
communicative acts as its “atoms”, from which “molecular”

2At the time of this writing, the specification of UML is available at http:
//www.omg.org.

structures can be composed in two dimensions. First, adja-
cency pairs model typical sequences of communicative acts
within a dialogue that include turn-taking like for question
– answer or request – accept. Second, Discourse Relations
relate Nodes which can be adjacency pairs or other discourse
relations, thus building up the hierarchical structure of the
discourse. Discourse relations are further specialized into RST
Relations (from Rhetorical Structure Theory) and Procedural
Constructs.

The Communicative Act class represents a single interaction
and carries the intention of the communication, e.g., asking
a Question about the response time. Communicative acts
can have many different types according to their communi-
cation intention as shown in Figure 1. The importance of
explicitly specifying the intention is twofold. Raising the
level of abstraction in general contributes to more “natural”
specification and thus more efficient design. In our case, we
raise the level of abstraction from simple messages (as e.g., in
UML sequence diagrams) to communicative acts: questions,
requests, offers, etc. In addition, we use the intention encoded
in the type of the communicative act for automatic user
interface generation [12]. For example, the intention of a
Question communicative act is information gathering. Thus,
input widgets like text areas or input boxes which allow the
user to provide information are generated. The intention of the
Informing communicative act is to provide new unknown facts
to the receiver of the communicative act, where the receiver
does not need to act upon receiving the communicative act.
This can result in text or an image. Automatic generation of
user interfaces would be much more difficult with interaction
specifications on a lower level of abstraction (e.g., UML
sequence diagrams).

Figure 4 shows an example discourse for optimizing the
response time of the online store. The interactions depicted in
the rounded boxes at the bottom of Figure 4 are cast in terms
of communicative acts, e.g., the left-most Question for the
system response time. The communicative acts in Figure 4
can be viewed as a usage scenario for optimization which
advances from left to right. Since there are many sequences
of interactions possible, we could think of this example more
generally as a use case. While use cases carry additional
information to sequences of actions, they barely represent
more complicated structures.

More importantly, neither scenarios nor use cases represent
something like intentions of the various interactions. Since
our discourse models are built on communicative acts, they
specify the type of communicative act for each interaction.
E.g., Figure 4 shows Questions and their Responses, as well as
Requests with Accepts. This extra piece of information carries
the intent of such an interaction.

In addition, according to Conversation Analysis there are
frequently occurring pairs of communicative acts — adjacency
pairs. E.g., a Question must have a related Response, and a Re-
quest must have a related Accept or a Reject. Adjacency pairs
can contain embedded dialogues like clarification dialogues
which may become necessary before a communication party

77

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

Fig. 3. Task and discourse metamodel connected with management domain content metamodel.

78

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

M
an

ag
er

M
an

ag
ed

 S
ys

te
m

Q
ue

st
io

n
(S

ys
te

m
R

es
po

ns
eT

im
e)

A
ns

w
er

Q
ue

st
io

n
(p

ro
ce

ss
in

gS
er

ve
r

pr
oc

es
sU

til
)

A
ns

w
er

Q
ue

st
io

n
(D

B.
pr

oc
es

sU
til

)

A
ns

w
er

R
eq

ue
st

Fo
r

A
ct

io
n

(d
ec

Pr
oc

es
sP

ow
er

(s

er
ve

r,
am

ou
nt

))

A
cc

ep
t

Q
ue

st
io

n
(P

ro
ce

ss
in

g
C

on
tro

lle
r.a

ve
ra

ge

Pr
oc

es
sU

til
)

A
ns

w
er

R
eq

ue
st

Fo
r

A
ct

io
n

(in
cP

ro
ce

ss
P

ow
er

(s

er
ve

r,
am

ou
nt

))

A
cc

ep
t

R
eq

ue
st

Fo
r

A
ct

io
n(

ad
dS

er
ve

r
(p

ro
ce

ss
P

ow
er

))

A
cc

ep
t

R
es

ul
t

Jo
in

t

El
ab

or
at

io
n

N
uc

le
us

Sa
te

llit
e

N
uc

le
us

S
at

el
lit

e

N
uc

le
us

Tr
ee

Th
en

N
uc

le
us

N
uc

le
us

O
th

er
w

is
e

N
uc

le
us

IfU
nt

il

E
ls

e

C
lo

si
ng

O
pe

ni
ng

C
lo

si
ng

O
pe

ni
ng

C
lo

si
ng

O
pe

ni
ng

C
lo

si
ng

O
pe

ni
ng

C
lo

si
ng

O
pe

ni
ng

C
lo

si
ng

O
pe

ni
ng

C
lo

si
ng

O
pe

ni
ng

Sy
st

em
 R

es
po

ns
e

Ti
m

e
>

Tr
es

ho
ld

Fig. 4. Discourse for optimizing the response time.

79

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

is able to answer a question, for example. Thus, adjacency
pairs are modeled in our metamodel as association classes. In
our example, adjacency pairs are graphically represented by
diamonds. They connect the Opening communicative act with
the Closing one.

As stated above, Discourse Relations relate adjacency pairs
and further structures made up of Discourse Relations. They
are specialized into RST Relations and Procedural Constructs.

All RST relations used in our approach describe a subject-
matter relationship between the branches they relate. They
usually do not determine any particular execution order but
eventually may suggest one. We use two types of RST
relations: symmetric (multi-nuclear) and asymmetric (nucleus-
satellite) relations. Multi-nuclear relations like Joint link equal
discourse trees. In our example, the Joint relation links the
Elaboration with questions about the utilization in the process-
ing tier and a question about the utilization in the database.
Note that the order of these actions is not specified by the Joint
relation; that is why in this particular example also another
scenario would fit in, where, e.g., first the database and then
the processing tier is asked for its utilization. If it is possible,
these questions could be asked even concurrently.

Nucleus-satellite relations link a discourse tree that repre-
sents the main intention and a discourse tree that supports the
nucleus. For example, the Elaboration states that the satellite
branch elaborates the dialogue executed in the nucleus branch.
In Figure 4, asking the questions about the utilization of each
server within the processing tier is the elaboration of the
question about the average utilization in the processing tier
(controller).

In addition to RST Relations, it turned out to be useful
to be able to prescribe particular sequences and repetitions
eventually based on the evaluation of some conditions. RST
relations are not sufficient for this purpose and, therefore, we
have introduced Procedural Constructs into our tree structure.

Procedural Constructs provide means to express a particular
order between branches of the discourse tree, to specify
repetition of a branch and to specify conditional execution
of different branches. Thus, our procedural constructs add
control structures to our discourse trees that are more complex
than usual if-then-else or repeat-until constructs in typical
procedural programming languages. When operationalizing
the discourse tree, these procedural constructs also determine
which information cannot be presented together on one screen
of a graphical user interface. One such construct is IfUntil.
E.g., in our example the IfUntil relation requires information
about the server response time, and the execution continues
only if the server response time exceeds some defined thresh-
old.

Figure 4 represents a discourse for optimizing the response
time for our running example and depicts such a tree structure
of the discourse. It illustrates how all interactions within
the discourse conceptually belong together as a whole. This
structure is composed from Discourse Relations where RST
relations are shown in boxes and the IfUntil procedural con-
struct in a hexagon.

In our example, there is the relation called Result at the top.
It represents that the actions requesting the increase of the pro-
cessing power of a server or adding a new server to the system,
are a consequence of the situation resulting from the preceding
interactions. These preceding interactions are subordinated to
the IfUntil procedural construct. After the Question about the
system response time has been asked, the manager decides if
the Tree branch has to be repeated, or either the Then or the
Else branch will be executed. As stated above, a Joint relation
(here within the Then branch) does not prescribe the order of
execution and allows concurrency. The Elaboration relation
relates the communication about the general properties and
their details. A more formal specification of the relations is
given below in Section V.

Such a tree of Discourse Relations could be viewed as the
design rationale of the interactions. Alternatively, it can be
viewed as a “plan” structure of the discourse for arriving at
some goal. In this view, it is actually a non-linear plan (see
the Joint relation in this example), while the usage scenarios
are related linear plans. It is important to note that, where the
discourse model represents a generic set of possible discourses,
the concrete discourse flow will be controlled by the (human
or autonomic) manager.

B. Management Domain Content Metamodel

Besides representing the communication flow explained
above, a complete communication representation includes the
representation of the communication content as well. The
lower part of Figure 3 shows the part of the conceptual meta-
model which describes the discourse content for managing
software systems.

There are two different kinds of information to be ex-
changed between a software system and its (autonomic or
human) manager:

• the information about current system properties and
• the actions to be executed by the system as requested by

the manager.
Each communicative act is associated with its content:

system properties and actions. Properties and Actions are
generalized into the Management Feature concept in our
metamodel. We distinguish between two types of properties:
StateInformation and StructuralInformation. StateInformation
represents the managed resource as seen from outside by
its parameters (black box). StructuralInformation carries the
information about the runtime architecture and structure of
the system. Analogously, two types of Actions exist: Struc-
turalModification and ValueModification for modifying the
runtime architecture of the system or some of its properties.

Properties and Actions make up the Sensor and Effector
interfaces, respectively, and are generalized into the Manage-
mentInterface concept. Each of the Managed Resources is
related to such management interfaces. Usually, a managed re-
source will contain one Effector and one Sensor interface, each
containing several system actions and properties. However, a
managed resource could have several of them, if interfaces
group properties and actions according to some criteria (e.g.,

80

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

«ManagedSystem»
OnlineStoreSystem

«ManagedSystem»
ProcessingTier

«ManagedSystem»
DataTier

«ManagedElement»
ProcessingServer

«ManagedElement»
DataBaseServer

«Effector»
DBEffector

«ValueModification»
+ decProcPower(int) : void
+ incProcPower(int) : void

«Effector»
ProcServerEffector

«ValueModification»
+ decProcPower(int) : void
+ incProcPower(int) : void

«Effector»
ProcTierController

«StateInformation»
- averageProcessUtil: int

«StructuralModification»
+ addProcServer(int) : void
+ removeProcServer() : void
«ValueModification»
+ decProcessPower(int, int) : void
+ incProcessPower(int, int) : void

«Sensor»
SystemSensor

«StateInformation»
+ SystemResponseTime: int

«Sensor»
DBSensor

«StateInformation»
+ assignedProcessingPower: int
+ processUtil: int

«Sensor»
ProcServerSensor

«StateInformation»
+ assignedProcessingPower: int
+ processUtil: int

1

1 11

1

1

11.. *

1

Fig. 5. Content representation for our running example.

one sensor containing only performance and another only
security properties).

These management interfaces are provided by the Managed
Resource, which is specialized into Managed Element and
Managed System. Managed systems can basically contain
other managed resources, thus allowing one to build a hier-
archical structure of a managed system. These three concepts
(dark gray classes in the metamodel in Figure 3) enable the
modeling of the system structure, so that the manager and
the managed system can communicate about it. The runtime
instantiation of this model can be also used by the autonomic
manager for reasoning. Structural properties and actions for
changing the system structure are only possible for managed
systems and not for managed elements.

Figure 5 shows an instantiation of this part of the meta-
model for our running example and represents the model of
the system architecture. The figure shows the model as a
UML class diagram, where classes, methods and attributes
are assigned with stereotypes corresponding to the metamodel.
The gray classes represent the system structure of the On-
lineStoreSystem, including two tiers and servers within these
tiers. The pink classes represent the management interfaces.
For example, SystemSensor is a management interface for
getting the server response time and DBEffector for increasing
and decreasing the processing power of the database server.
Runtime architecture would be an instantiation of this model,
where we would, for example, have several instances of the
processing server.

V. PROCEDURAL SEMANTICS

An important issue is to operationalize our communication
and discourse specifications and to make them executable
within our architecture. In order to achieve this operational-
ization, we transform the communication specifications in the
form of discourses into state machines. In this sense, the
transformation to state machines defines procedural semantics
of our discourse models. For this transformation, the intentions
of the communicative acts are not used, but they are not lost,
since they are used for other purposes.

In many real-world applications, predetermined discourses
are well suited for communication between human and com-
puter, since the user can anticipate the behavior of the system
and can expect the same user interface whenever starting
the discourse with the system again. This behavior can be
achieved by using state machines for the discourse manage-
ment. Many approaches directly utilize some kind of state
machine to model communication. These include both human-
machine communication and user interfaces required for it
(e.g., in [12][13]), as well as machine-machine communication
(e.g., in [14]). Contrary to these approaches, we do not
use state machines for explicit communication modeling, but
solely for the specification of their procedural semantics and
for their execution. Importantly, we do not let the user model
them.

Since, especially in user interfaces, the possible interac-
tions are manifold, a flat state machine can become quite
complicated. A solution for reducing the complexity of state
machines are statecharts, which introduce hierarchies into state
machines. Since our discourse models are hierarchical as well,

81

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

Condition

Tree

Else

Then

RepeatCondition

[false]

[true]

[false]

[true]

Fig. 6. Mapping of the IfUntil procedural construct.

we use statecharts to specify the procedural semantics of the
discourse relations and thus the dynamics of the complete
discourse.

Such statecharts have the following basic structure:

• Each state transition corresponds to exactly one commu-
nicative act and thus represents the advancement in the
dialogue.

• State transitions are triggered by sending a communica-
tive act by either the manager or by the managed system.

• Each state entry gets processed, resulting in system
effects and in possible triggering of a new communicative
act.

• Adjacency pairs are reflected in the statechart by a
sequence of transitions. Thus, they constrain the set of
potential communicative acts of outgoing transitions of
the current and adjacent states.

• Discourse relations are mapped to state machine patterns
forming a submachine state that can be included in
higher-level discourse relation mappings.

In the following, we specify the procedural semantics of the
discourse relations used in our running example.

The statechart of our IfUntil [11] relation is shown in Figure
6. IfUntil is a procedural construct that we found useful for
defining a certain control structure in our task and discourse
models. It is more complex than the usual procedural statement
in a typical procedural programming language. In fact, it
may be considered a combination of an if-statement and a
conditional loop. If Condition is fulfilled in the statechart, the
discourse continues in the Then branch.

Otherwise, there are two possibilities:

1) the Tree branch is performed if the Condition is not
fulfilled. It can be performed again and again until
Condition becomes fulfilled, or

2) the discourse can continue in the Else branch, if Repeat-
Condition is also not fulfilled.

This branching of the flow is modeled by the UML “choice”
construct — graphically represented by a diamond. Checking,

 Elaboration

Nucleus

Satellite

Fig. 7. Mapping of the Elaboration RST Relation. Nucleus 1

Nucleus 2

Fig. 8. Mapping of the Otherwise RST Relation.

whether Condition and RepeatCondition are fulfilled is per-
formed by the (autonomic or human) manager.

The Elaboration RST relation states that the satellite branch
elaborates on the communication executed in the nucleus
branch. The procedural semantics are defined in the statechart
shown in Figure 7. Communication in the satellite branch is
optional — the communication in the nucleus branch does
not have to be elaborated. However, if the communication
in the nucleus branch gets elaborated, it can even occur in
parallel. This is decided usually by the manager for requesting
additional information about some parameter. To complete the
execution of the relation, both, nucleus and satellite have to
be completed.

If the communication flow requires that in one particular
moment either the one or the other branch of the discourse has
to be performed, we use the Otherwise RST relation. Usually
the manager decides which one of the nuclei (even choosing
out of several ones) has to be performed. After one branch is
started, it also has to be completed in order to complete the
relation as a whole. The procedural semantics is shown in the
statechart in Figure 8.

The Result RST relation represents that the communication
in the nuclei is a consequence of the situation resulting from
the communication taken place in the satellite. Its simple
statechart is shown in Figure 9. It can be used for improving
the rendering of the management user interface.3

The Joint RST relation is a multi-nuclei relation, which
doesn’t prescribe any order of the execution of the communi-
cation in its nuclei. The communication within nuclei can even
be performed concurrently, and the relation is completed after
all nuclei are completed. This possible concurrency is shown
in its statechart in Figure 10 by two compartments separated
by a dashed line.

3We have slightly changed its semantics with respect to [1].

82

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

 Nucleus Satellite

Fig. 9. Mapping of the Result RST Relation.

For operationalizing the complete discourse model, the
statecharts of each relation have to be combined into one
hierarchical statechart according to the discourse relation hi-
erarchy in the discourse model. This is done by traversing the
tree structure recursively and applying statechart mappings of
the corresponding discourse relations. Typically, the statechart
of one discourse relation is included as a submachine state
in the statechart of the higher-level statechart. Therefore, the
hierarchy of the overall statechart corresponds to the hierarchy
of the discourse tree. The result of this traversing for our
running example is presented in Figure 11. It completely
defines the set of possible discourse flows.

Starting at the top of our example discourse in Figure 4,
we have the Result RST relation. It basically defines two
subsequent statecharts of the relations IfUntil and Otherwise.
The IfUntil relation contains three branches: Tree, Then and
Else. The Tree and Else branches don’t contain any further
discourse relations. Both of them contain one adjacency pair
each, which are also mapped to the (simple) statecharts. The
Tree branch contains the adjacency pair for acquiring system
response time. The adjacency pair is mapped to the statechart
containing two states: S1 and S2. The transitions within
this statechart are induced by the communicative acts: “M:
Question (System Response Time)” uttered by the Manager
(M:) and “S: Answer” uttered by the System (S:). The Then
branch contains the Joint relation, which again contains an
Elaboration relation in one of its nuclei. The Otherwise rela-
tion doesn’t contain any further discourse relations in its nuclei
and the mapping defined above is applied, where each nucleus
contains one adjacency pair. Prior to each state transition,
either the manager or the managed system is supposed to
fill in the content of the communicative act. For the decision
points (e.g., in IfUntil or Otherwise relations) the manager
is involved and it controls the further discourse flow. Such
a complete discourse statechart is interpreted by the Task
Execution Engine of our architecture.

VI. AUTONOMIC ARCHITECTURE AND TRANSITION
PROCESS

Figure 12 illustrates our proposed autonomic architecture
designed to execute and automate modeled tasks as presented
above. It is based on the generic autonomic architecture [15],
separating the autonomic manager from the managed system.

The Task Execution Engine interprets the task and its
associated discourse according to the procedural semantics of
the discourse relations presented above and manages the flow
of the communication. It utilizes also the intention encoded
in the type of the communicative acts. For example, for a
Question it would invoke some information gathering facility
of the underlying managed system and for a Request it would

 Joint

Nucleus 1

Nucleus 2

Fig. 10. Mapping of the Joint RST Relation.

call corresponding action. The Human Administrator or the
Autonomic Manager controls the autonomic administration
process by deciding which set of actions (set of communicative
acts) has to be performed next.

The UI Generator generates and controls the user interface
for the case of human management. It utilizes the procedural
semantics of the subject-matter relationships of the RST Rela-
tions (e.g., Elaboration, Otherwise, etc.) as presented above. In
addition, it takes into account the intentions of the communica-
tive acts as mentioned in Section IV-A. The Communication
Adapter encapsulates low-level interaction interfaces of the
managed system.

This architecture enables the whole spectrum of man-
agement possibilities. Without an Autonomic Manager first,
it provides for high-level communication with the human
administrator only, through a generated user interface. In
Figure 12(a), the human administrator is responsible for the
management Tasks I and II. For example, management Task
I could be the performance optimization as in the running
example, and Task II could be a (self-)healing task.

After performing the management by humans for some time
according to the defined discourse, it is expected that some
insights into system behavior will have been gained. With
these insights, the Autonomic Manager has to be designed
and implemented. Since the discourse constrains possible
interactions, this is easier to do than implementing the au-
tonomic manager from scratch. Some of the relations include
conditions for their execution as defined above, which have to
be evaluated by the Autonomic Manager. It “decides” how the
discourse proceeds by initiating the sending of corresponding
communicative acts. Depending on the discourse complexity
as well as the number and variety of relevant parameters and
possible actions, the manager would be more or less complex.
However, the design and deployment of autonomic managers
is out of the scope of this paper.

VII. CASE STUDY: SYSTEM SIMULATION WITH SIMSYS

In the first cases study, we simulated an IT system with
a tool and modeled one typical management task for it.
We concentrated on human management using graphical user
interfaces. The used tool has been developed in the course of
a research project at IBM [16] and was kindly provided to us
for our research. It has been used at IBM for the evaluation
of policy-based software system management. This tool can
simulate IT systems with different configurations containing

83

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

IfUntil

Tree

S1 S2

Else

S3 S4

Joint

Elaboration

S8 S9

S5 S5

S6 S7

RepeadCondition
Condition

Otherwise

State2 1 State2 2

State23 State2 4

Initial

Final

M: Question (ProcCont.
averageProcesUtil)

S: Answer

M: Question (procesingServers.
procesUtil)

S: Answer

S: Answer

S: Accept

M: RequestAction
(decProcessPw (server,
amount))

S: Answer

M: Question (System
Response Time)

S: Accept

S: Accept

M: RequestForAction
(AddServer (processPw))

M: RequestForAction
(incProcPw (server, amount))

M: Question
(DB.procesUtil)

Fig. 11. Complete Discourse Statechart.

84

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

Fig. 12. Autonomic Architecture and Transition Process.

different kinds of servers. It also simulates the workload on
such systems. It defines a system as a set of processes in which
each process has a set of defined properties and operations.
For example, one HTTP server would be represented by one
running process. This process would have properties such
as CPU power or disk space and would provide operations
to change these properties. These processes can also have
(incoming or outgoing) connections to others processes. A
process can execute the operations on connected processes
over these connections. A typical example is the sendRequest
operation between two servers (processes), which forwards a
user request to connected servers.

The simulated system in our case study represents a typical
Web store. The simulation tool offers a graphical represen-
tation of the simulated system architecture as illustrated in
Figure 13. The Web store contains the IT-Infrastructure, which
calculated parameters, e.g., response times, dropped requests,
etc. Within the IT-Infrastructure, there are three server clusters
in charge for distributing HTTP requests, application server
requests, and database requests, as common in three-tier ar-
chitectures. Within each server cluster, servers are responsible
for request processing and, if needed, their forwarding. The
Shopper process created a sample workload on the system
generating shopper objects, where each shopper created se-
ries of requests to the system. When a request entered the
site, the SimSys simulation system time-stamped it for the
response time recording and sent it to the HTTP cluster, which
forwarded the request to the first ready HTTP server and
further via the application cluster to the database. We attached
our communication platform to the simulated system via Java
method calls.

Let us explain the management discourse shown in Fig-
ure 14. Much as in our previous examples, the most significant
parameter is the response time (in the SimSys system identified
as latency). So, the manager can ask a question about the
system latency. If the manager considers the latency too large,
the manager can ask for the current user activity. As a result,
the power of the servers can be increased (e.g., if only the
system latency has risen) or additional servers can be added
(e.g., if both the system latency and the user activity have
risen).

In this example, we show a case where a human manager is
responsible for the management and communicates with the
system using the generated user interface. Figure 15 shows
screenshots of this simple management user interface. First,
the manager has the possibility to ask a question about the
system latency using a button from Screen 1. This represents
the Tree branch of the IfUntil relation. The answer to this
question is presented in Screen 2. In addition, it is possible to
ask about the user activity (by selecting the button on the right
in Screen 2). In this case, the human manager “evaluates‘” the
condition of the IfUntil relation. If the manager decides that
the latency is too high (in our case 6 seconds), the condition
in the IfUntil relation is fulfilled and the manager should be
able to continue with the communication (asking the second
question by pressing the getActivity button). Screen 3 shows
the answer to this question and two buttons, addProcessing-
Power and addServer representing the possibilities to issue
corresponding requests.

This example shows a simple management scenario for the
human management case. It demonstrates the feasibility of
our approach to handle the required communication (model

85

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

 Fig. 13. Simulated System.

Result

IfUntil Otherwise

Manager

ManagedSystem

OpenQuestion

get
ITSystem.latency

OpenQuestion

get Activity

Answer Answer AcceptAccept

Request

addProcessingPow
er()

Request

addServer()

Nucleus
Satellite

latency > threshold

Tree Then

Nucleus Nucleus

Opening

Closing

Opening

Closing Closing

Opening

Closing

Opening

Fig. 14. System Optimizing Discourse Specification.

86

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

Fig. 15. Screenshots of the Management User Interface.

and execution) between the system to be managed (in this
case a simulated three-tier business application) and the human
manager.

VIII. CASE STUDY: APPLICATION SERVER JBOSS

This case study demonstrates our approach on the manage-
ment of a Java application server. In this second case study,
we utilized the Java application server JBoss and implemented
two management tasks in an autonomic manner.

An application server is a software system which usually
takes the role of the “business logic” in the multi-tier archi-
tecture. Its main purpose is to encapsulate the access to the
data in the database and to simplify data manipulation along
the lines of the business process. Usually, an application server
utilizes some component model and enables the development
of component-based applications. It acts also as a container
for these components. An application server offers different
features to simplify application development. These include a
programming model as a set of APIs, resource handling and
pooling, support for distributed computing, authentication and
authorization, messaging, transactions, monitoring and control,
etc.

In our case study we use the JBoss server, which implements
the J2EE industry standard4 and enables the development
of Java components — Enterprise Java Beans (EJBs). For
extending JBoss, new components (services) were developed
according to the Managed Beans (MBeans) service specifica-
tion. To be able to perform the case study, especially to be
able to monitor required parameters, these were the following
extensions:

• a CPU and Memory Monitor, which collects data from
the underlying Java Virtual Machine (JVM), and

• a Response Time Recorder. This extension is concerned
with gathering information about the response times for
client requests.

4http://java.sun.com/j2ee/docs.html

Fig. 16. Case Study Setup.

A. Case Study Setup

The system setup for the case study is shown in Figure 16.
It is a distributed setup, with the JBoss application server,
the autonomic manager and the load generators installed on
different machines. For achieving a more realistic load for
the application server, we have used the benchmark tool
ECperf [17]. It is designed to measure performance and scala-
bility of J2EE application servers and provides a typical J2EE
business application as well as load generators to simulate the
workload for such an application.

Since JBoss is a complex software system, which has many
parameters that have to be configured, and since the configura-
tion is tedious and error-prone, a self-configuration capability
would seem desirable. Therefore, we use the configuration
scenario as one example for our case study.

Our second example is about optimization. The optimizing
capability is also of interest for a system like JBoss. An
optimization in this case would imply the reduction of the
response times of client requests sent to the application server.
This requires the response times to be measurable and system
parameters to be accessible and changeable.

B. Communication Content Model

Prior to creating the management discourses we have to
figure out, which parameters are of interest for the monitoring
of the JBoss status, as well as to define possible corrective
actions which have impact on the behavior of the JBoss server.
In essence, we have to define what the manager and the
managed server (JBoss) will communicate about.

The most significant JBoss properties for this case study are
the following:

• available memory,
• the size of the database connection pool,
• the thread pool size for the EJB invocation processing

threads, and
• the server’s response time.
The most relevant actions are:
• setting the thread pool size, and
• clearing the EJB cache
Restrictions to the Java Virtual Machine (JVM) heap mem-

ory size would also have a deteriorating impact on system
performance. Unfortunately, the maximum heap size cannot be
changed during runtime, and minimum and maximum values
are specified as startup parameters. A modification of these

87

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

«ManagedSystem»

JBossServ er

«Sensor»
JBossManagementSensor

«StateInformation»
+ availableMemory: int
+ databaseConnectionPoolSize: int
+ EJBThreadPoolSize: int
+ responseTime: int

«Effector»
JBossManagementEffector

«ValueModification»
+ clearCache() : void
+ setThreadPoolSize() : void

Fig. 17. JBoss Server model for the domain of discourse.

values would thus require a restart of the JVM and the system
would be completely out of service for some time, including
all applications running within that JVM instance. Therefore,
this parameter has not been used in our case study. Also some
other parameters have not been included in the case study
(SQL statement cache, EJB cache maximum size, etc.).

To use JBoss parameters for the content of communicative
acts, we have modeled them as shown in Figure 17. Since
we do not model the internal structure of JBoss and are more
interested in illustrating our approach to communication, the
model is rather simple and contains only one class representing
the JBoss server and associated Sensor and Effector interfaces.

C. Configuration Task of the JBoss Server

This example shows the configuration task for the JBoss
application server. For a better understanding of this example,
let us briefly explain the thread pooling in the JBoss server.

Figure 18 shows the interworking of thread pools. Every
request that arrives at JBoss via the Tomcat5 — embedded
server for servlets — has to wait for a thread from the HTTP
thread pool to be available in order to be processed. If the
client request involves calls to an EJB on the server, the request
also has to acquire a thread from the EJB thread pool. And if
the EJB call during its execution needs to make a request to
the database, a connection from the database connection pool
has to be retrieved. The amount of threads and connections
in the different pools limits the number of client requests that
can be processed concurrently. Having more connections in
the database connection pool than threads in the EJB pool is
a configuration that is not useful and unnecessarily increases
resource usage, because the number of database connections
that can be used at the same time is limited by the number
of threads in the EJB pool. Thus, it is not desirable to have
more connections in the DB connection pool than threads in
the EJB thread pool. If the ratio of EJB threads to database
connections becomes too small, many client requests will not
get a database connection within the configured timeout. For

5tomcat.apache.org

database

web-client

EJB-client

HTTP thread
pool

database
connection

pool EJB thread
pool

JBoss

Fig. 18. JBoss threads pooling.

our scenario, we keep the number of database connections
constant. The goal is to maintain the number of pooled EJB
threads above the number of available database connections.
Another goal of this scenario is to prevent an extensive use
of memory. The amount of available memory is monitored
and when that amount drops below the configured minimum
threshold, the memory is freed by:

• ordering JBoss to clear up all EJB caches, and by
• reducing the amount of concurrency in request processing

by reducing the number of EJB worker threads.
The discourse for this configuration task is shown in Fig-

ure 19. Starting from the top of the diagram, the communica-
tion for the configuration of the thread pool sizes and the com-
munication for the memory usage managing can be performed
in parallel — jointly — as defined by the RST Relation Joint.
For the configuration of the thread pool sizes the Manager
issues Questions about the databaseConnectionPoolSize and
EJBThreadPoolSize. If the ratio is not below a given threshold,
the manager requests the action for setting up the appropriate
threadPoolSize. For managing of memory usage, the manager
issues the Question about the availableMemory, and when it
drops below some threshold it tries to free it by issuing the
Requests to clearCache and to reduceThreadPoolSize of the
worker threads.

For the evaluation of the transition towards autonomic
systems, an Autonomic Manager has been implemented. It
periodically executes the task and discourse in order to per-
form management functionality. Regarding the thread pooling,
it corrects the parameters using the procedure described above.
For the memory usage management, we had to limit the maxi-
mum amount of memory used by the Java Virtual Machine to
100MB for getting observable effects. As stated previously,
the ECperf benchmarking tool was used for load creation.
The Autonomic Manager checks the memory status according
to the discourse and executes corrective actions whenever
needed. Under the same load conditions, JBoss crashed due
to OutOfMemory exception when the Autonomic Manager has
been put out of function.

D. Optimization Task of the JBoss Server

Our second example is the response time optimization
task. The most significant parameter having an effect on the
response time is EJB thread pool size [18]. The manager asks
the Question about the current response time and Requests the

88

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

ManagedSystem

Manager

Joint

IfUntil
IfUntil

Joint Joint

Request

setThreadPoolSize

(size)

Request

setThreadPoolSize

(size)

Request

clearCache()

Accept Accept

OpenQuestion

JBossServer.database

ConnectionPoolSize

OpenQuestion

JBossServer.EJBThre

ad PoolSize

OpenQuestion

JBossServer.availab

le Memory

Answer Answer AnswerAccept

Nucleus Nucleus

Tree
Then

Then

availableMemory < threshold

Tree

EJBThreadPoolSize/databaseConnectionPoolSize < threshold

Nucleus Nucleus Nucleus Nucleus

Opening OpeningOpening

Closing Closing

Opening Opening Opening

Closing Closing ClosingClosing

Fig. 19. JBoss configuration discourse.

Managed System

Manager

IfUntil

Request

setThreadPoolSize (size)
OpenQuestion

JbossServer.responsetime

Answer Accept

responsetime > threshold

Tree Then

Opening
Opening

Closing Closing

Fig. 20. JBoss optimization discourse.

action for changing the thread pool size, when the response
time is below a given limit. Figure 20 shows the corresponding
discourse. The communication in this discourse is simple and
so are the resulting user interfaces. However, for showing the
transition towards autonomic systems, an Autonomic Manager
has been implemented as well.

The Autonomic Manager monitors the response time and
makes small changes to the thread pool size according to
the discourse. Once the response time has improved, it takes
the new values of both the thread pool size and response

time as a condition for the next execution of the optimization
discourse. If and when the modifications have increased the
response time, the autonomic manager tries to adjust the
parameter in the opposite direction for the next execution of
the optimization discourse. We have clearly seen effects of
increasing the thread pool size for reducing the response times.
However, since more threads use also more memory, this value
cannot be increased indefinitely. In our case it settled around
80. We also observed that clearing the EJB caches temporarily
increased the CPU load and thus the response times.

IX. RELATED WORK

Our work relates both to the field of interaction modeling
(between humans and computers as well as between comput-
ers) and to the field of autonomic and self-managed software
systems.

Modeling interaction design is mostly done through tech-
niques from task analysis and cognitive science. Techniques
based on Hierarchical Task Analysis [19] or GOMS [20]
model activities on various levels of detail in a hierarchical
way to achieve a particular goal, and (e.g., temporal) relation-
ships between tasks on the same level. On the more detailed
levels, task models specify only the type of tasks (e.g., user,
system or interaction task) or operators (click, select . . .), but
not their intention in the sense of asking, requesting, etc.

Formal interaction modeling is important for interactions
between agents. Most approaches for modeling inter-agent
communication utilize some form of finite-state machinery.
E.g., Labrou and Finin [21] deal with interactions between

89

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

agents based on KQML, where conversation policies are
proposed for the description of conversations between agents.
Conversation policies represent simple conversations between
agents in terms of possible sequences of KQML messages. Our
discourse models can represent more complex interactions and
should be easier to design by humans.

Management tasks are nowadays performed by well-trained
professionals which are responsible for configuring the system
so that the users can get their jobs done and for maintaining the
system against both internal failures and internal or external
attacks [22]. They interact with the system using command-
line interfaces, graphical interfaces or Web-based management
tools [23].

Modeling and specifying management tasks and user inter-
faces for performing those tasks has been neglected in general
[24]. However, operators and administrators of software sys-
tems are constantly trying to automate administrative tasks and
to reduce unnecessary interactions with the system. They use
their own executable scripts to automate monitoring of system
health, to perform operations on a large number of systems,
and to try to eliminate errors on common tasks that take many
steps [25]. Our approach also strives for the automation of
administrative tasks but concentrates on interactions within
such tasks and provides a well-defined way for their modeling.

A typical approach to define automation of software man-
agement tasks for autonomic computing is in terms of poli-
cies. Policies represent instructions to determine the most
appropriate activity in a given situation. One way to specify
policies has been defined in [26]. They represent policies in the
form “IF condition THEN action” where condition
contains a particular state of the system and the action repre-
sents the actions to be performed if such a state occurs. They
also define how to manage and execute such policies. Kephart
and Walsh [27] define three types of policies: Action, Goal
and Utility Function policies. Action policies are on the lowest
level and take also the if-then form. Goal policies specify
a single desired state and the system should generate behavior
itself from the policy. Utility Function policies generalize Goal
policies where a desired state is computed by selecting from
the present collection of feasible states the one that has the
highest utility. The Accord framework [28] defines so-called
operational interfaces. This offers the possibility to formulate,
inject, and manage rules that are used to manage the runtime
behaviors of the autonomic system. Rules incorporate also
typical if–then expressions, i.e., “IF condition THEN actions”.
Similarly to our approach, Cheng et al [29] consider that
“the capturing and representation of human expertise in a
form executable by a computer” is crucial for the automation
of management tasks. They have developed a new language
for adaptation where the concepts used in the language are
derived from system administration tasks. The basic concept
in the language is a tactic, which embodies a small sequence
of actions to fix a specific problem in a localized part of
the system. A tactic contains the conditions of applicability,
a sequence of actions, and a set of intended effects after
execution.

Contrary to this work on policies, our approach focuses on
and formalizes interactions between an administrator and a
software system. We believe that the interactions are important
both for the task execution and for understanding the task. It
seems also non-trivial to reduce sometimes complex manage-
ment tasks to single policies. We believe that our task models
should be easier to create by humans since they are based on
human communication theories.

X. DISCUSSION

In order to utilize our approach, the system designers and
developers would first have to attach our communication plat-
form to the system — to integrate it into the managed system.
If the system is designed from scratch, special interfaces would
have to be developed. If it is a legacy system, the designers
would have to understand and expose the interfaces. This
is usually not trivial for such systems. In any case, some
additional effort would have to be provided. This may seem
to not pay off, especially if the transition towards autonomic
operation is far away. However, we believe that our approach
can bring some advantages even in the case of (only) human
management. By performing task and discourse modeling,
the designers become familiar with the system’s behavior.
Very often, the automation of management tasks is becoming
possible only through such an improved understanding.

Our approach adds also some additional overhead to the
communication through the need to convert the low-level
communication messages into communicative acts. This is
more significant for the autonomic management case, where
the autonomic manager reacts on the system’s events and
enacts the corrective actions (possibly after some additional
communication with the managed system for problem inves-
tigation). Our approach is more directed towards business
applications and information systems, where usually the “best-
effort” for correcting the problem is sufficient. Anyhow, even
this would be much faster than the human reaction. However,
due to this overhead, our approach is not well investigated to
be used for real-time or embedded systems.

The IT industry has neglected tools and systems used by
operators for configuration, monitoring, diagnosis, and repair,
and the need for improved user interfaces for operators is
large [30]. We believe that the discourse-based communication
modeling of administrative (management) tasks, as well as
systems modeling for the communication content can con-
tribute to a better understanding of management procedures
in general.

XI. CONCLUSION

In essence, we propose to model software-management
interactions and tasks in the form of discourses between the
administrator and the software system. In addition to the inter-
action and task models, we have developed a metamodel for
the modeling of the management domain for such tasks. For
the execution of these tasks we have defined their procedural
semantics, and from these models, we are able to generate
user interfaces.

90

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

Case studies showed that our approach can be used both
in the case of human management as well as in the case
of autonomic management. However, since two case studies
involved two different managed systems (simulation and real
system), management discourses were slightly different. For
one managed system and one particular management task,
we would have the same discourse and therefore the same
communication specification both for human and autonomic
management. This utilizes to the gradual transition towards
autonomic systems.

XII. ACKNOWLEDGMENTS

The extension of the JBoss server as well as autonomic
managers have been programmed by the diploma student
Christoph Bernhard Schwarz, who worked together with the
authors of this paper. We also thank Eser Kandogan and IBM
for providing us with the simulation tool SimSys.

REFERENCES

[1] E. Arnautovic, H. Kaindl, J. Falb, and R. Popp, “High-level modeling of
software-management interactions and tasks for autonomic computing,”
in Autonomic and Autonomous Systems, 2008. ICAS 2008. Fourth
International Conference on. Washington, DC, USA: IEEE Computer
Society, March 2008, pp. 212–218.

[2] E. Arnautovic, H. Kaindl, J. Falb, R. Popp, and A. Szép, “Gradual
Transition towards Autonomic Software Systems based on High-level
Communication Specification,” in SAC ’07: Proceedings of the 2007
ACM Symposium on Applied Computing, Autonomic Computing Track.
New York, NY, USA: ACM Press, 2007, pp. 84–89.

[3] J. R. Searle, Speech Acts: An Essay in the Philosophy of Language.
Cambridge, England: Cambridge University Press, 1969.

[4] M. Nowostawski, D. Carter, S. Cranefield, and M. Purvis, “Communica-
tive acts and interaction protocols in a distributed information system,”
in Proceedings of the 2nd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’03). New York, NY, USA:
ACM Press, 2003, pp. 1082–1083.

[5] J. Falb, R. Popp, T. Röck, H. Jelinek, E. Arnautovic, and H. Kaindl,
“Using communicative acts in high-level specifications of user interfaces
for their automated synthesis,” in Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering (ASE’05).
New York, NY, USA: ACM Press, 2005, pp. 429–430, tool demo paper.

[6] P. Luff, D. Frohlich, and N. Gilbert, Computers and Conversation.
London, UK: Academic Press, January 1990.

[7] W. C. Mann and S. Thompson, “Rhetorical Structure Theory: Toward a
functional theory of text organization,” Text, vol. 8, no. 3, pp. 243–281,
1988.

[8] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile
dynamic provisioning of multi-tier internet applications,” ACM Trans.
Auton. Adapt. Syst., vol. 3, pp. 1–39, 2008.

[9] J. Falb, H. Kaindl, H. Horacek, C. Bogdan, R. Popp, and E. Arnautovic,
“A discourse model for interaction design based on theories of human
communication,” in CHI ’06 Extended Abstracts on Human Factors in
Computing Systems. New York, NY, USA: ACM Press, 2006, pp.
754–759.

[10] C. Bogdan, J. Falb, H. Kaindl, S. Kavaldjian, R. Popp, H. Horacek,
E. Arnautovic, and A. Szep, “Generating an abstract user interface from
a discourse model inspired by human communication,” in Proceedings of
the 41th Annual Hawaii International Conference on System Sciences
(HICSS-41). Piscataway, NJ, USA: IEEE Computer Society Press,
January 2008.

[11] R. Popp, J. Falb, E. Arnautovic, H. Kaindl, S. Kavaldjian, D. Ertl,
H. Horacek, and C. Bogdan, “Automatic generation of the behavior of
a user interface from a high-level discourse model,” in Proceedings of
the 42nd Annual Hawaii International Conference on System Sciences
(HICSS-42). Piscataway, NJ, USA: IEEE Computer Society Press,
2009.

[12] J. Falb, R. Popp, T. Röck, H. Jelinek, E. Arnautovic, and H. Kaindl,
“Fully-automatic generation of user interfaces for multiple devices from
a high-level model based on communicative acts,” in Proceedings of
the 40th Annual Hawaii International Conference on System Sciences
(HICSS-40). Piscataway, NJ, USA: IEEE Computer Society Press, Jan
2007.

[13] I. Horrocks, Constructing the User Interface with Statecharts. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[14] M. McKinlay and Z. Tari, “Dynwes - a dynamic and interoperable
protocol for web services,” 2002, pp. 74–83.

[15] An architectural blueprint for autonomic computing, 3rd ed., IBM
Corporation, June 2005, white Paper.

[16] E. Kandogan, C. Campbell, P. Khooshabeh, J. Bailey, and P. Maglio,
“Policy-based management of an e-commerce business simulation: An
experimental study,” Autonomic Computing, 2006. ICAC ’06. IEEE
International Conference on, pp. 33–42, 13-16 June 2006.

[17] S. M. Inc., “Ecperf (tm) specification,” Sun Microsystems Inc., 2002.
[18] Y. Zhang, W. Qu, and A. Liu, “Adaptive self-configuration architecture

for j2ee-based middleware systems,” System Sciences, 2006. HICSS ’06.
Proceedings of the 39th Annual Hawaii International Conference on,
vol. 9, pp. 213a–213a, Jan. 2006.

[19] Q. Limbourg and J. Vanderdonckt, “Comparing task models for user
interface design,” in The Handbook of Task Analysis for Human-
Computer Interaction, D. Diaper and N. Stanton, Eds. Mahwah, NJ,
USA: Lawrence Erlbaum Associates, 2003, ch. 6.

[20] B. E. John and D. E. Kieras, “Using GOMS for user interface design
and evaluation: Which technique?” ACM Trans. Comput.-Hum. Interact.,
vol. 3, no. 4, pp. 287–319, 1996.

[21] Y. Labrou and T. Finin, “Semantics and conversations for an agent
communication language,” in Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI’97), 1997, pp. 584–591.

[22] E. A. Anderson, “Researching system administration,” Ph.D. disserta-
tion, University of California, Berkeley, 2002.

[23] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama, and
M. Prabaker, “Field studies of computer system administrators: analysis
of system management tools and practices,” in CSCW ’04: Proceedings
of the 2004 ACM conference on Computer supported cooperative work.
New York, NY, USA: ACM Press, 2004, pp. 388–395.

[24] R. Barrett, Y.-Y. M. Chen, and P. P. Maglio, “System administrators are
users, too: designing workspaces for managing internet-scale systems,”
in CHI ’03: CHI ’03 extended abstracts on Human factors in computing
systems. New York, NY, USA: ACM Press, 2003, pp. 1068–1069.

[25] E. Kandogan and J. Bailey, “Usable Autonomic Computing Systems:
The Administrator’s Perspective,” in ICAC ’04: Proceedings of the
First International Conference on Autonomic Computing (ICAC’04).
Washington, DC, USA: IEEE Computer Society, 2004, pp. 18–26.

[26] R. M. Bahati, M. A. Bauer, and E. M. Vieira, “Mapping Policies
into Autonomic Management Actions,” in ICAS ’06: Proceedings of
the International Conference on Autonomic and Autonomous Systems.
Washington, DC, USA: IEEE Computer Society, 2006, p. 38.

[27] J. O. Kephart and W. E. Walsh, “An Artificial Intelligence Perspective
on Autonomic Computing Policies,” in POLICY ’04: Proceedings of the
Fifth IEEE International Workshop on Policies for Distributed Systems
and Networks. Washington, DC, USA: IEEE Computer Society, 2004,
p. 3.

[28] H. Liu and M. Parashar, “Accord: A Programming Framework for
Autonomic Applications,” Systems, Man and Cybernetics, Part C, IEEE
Transactions on, vol. 36, no. 3, pp. 341–352, May 2006.

[29] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-based Self-
adaptation in the Presence of Multiple Objectives,” in ICSE 2006
Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), Shanghai, China, 21-22 May 2006.

[30] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in USITS’03: Proceedings
of the 4th conference on USENIX Symposium on Internet Technologies
and Systems. Berkeley, CA, USA: USENIX Association, 2003, pp.
1–1.

91

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

