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Abstract
A key point in parallel systems design is the way clients
requests are forwarded and distributed among the
servers, trying to obtain the maximum throughput from
them or, in other words, the load-balancing policy.
Although it is a largely studied theme, with well
accepted solutions, the inclusion of temporal constraints,
also denoted as deadlines in this work, to the requests
brings new complexities to the load-balancing problem:
how to distribute the tasks and minimize the miss rate.
The experiments describe along this paper attests that
the workload variability plays a crucial role in this
problem, pointing the big requests as the most critical
elements. Our results also shows that even dynamic
load-balancing algorithms are not able to reach an
acceptable miss rate, since they handle both short tasks
and big tasks the same way. Hence, we propose a new
load-balancing algorithm, called ORBITA, which has a
request identification and classification mechanism and
an admission control module as well, restricting the
number of big tasks within the system. This algorithm
outperforms its competitors, which means that it has a
bigger rate of tasks that end within the deadline,
specially when the system is under high load. A
prototype was also built in order to check the
correctness of the simulation phase. The experiments
were run against a benchmark tool, TPC-C, and all the
results confirmed the previous assumptions, leading to
the conclusion that it is a good practice to understand
the system's workload in order to minimize the miss rate.
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1. Introduction

In parallel request processing systems, several parallel
servers compute the incoming requests (or tasks) that are
dispatched to them according to a load-balancing
algorithm. Typically, these servers provide no guarantees
about the response times for the request executions, in a
so-called a best-effort approach. In peak situations, with
requests arriving at high rates, this policy can lead to a

scenario where a request takes tens of times longer to
execute than it would take in a less stressed server. This
way, if the system provides some kind of quality of
service, such as trying to guarantee that response times
would not be higher than an acceptable threshold,
denoted as deadlines in this paper, the best-effort policy
cannot be applied. Guaranteeing acceptable response
times in parallel processing systems through load-
balancing is the main objective of this paper. Our
approach is meant to be applicable in different
environments, including Transaction  Processing
Systems, Web Services, Virtualization Platforms.

This work proposes a new load-balance algorithm,
based on the tasks durations (which are supposed to be
known a priori), and our experiments prove that this is a
better approach than blindly dispatching the tasks taking
no further considerations — as most load-balance
algorithms do. Although there already exists size-aware
load-balancing algorithms, such as SITA-E [20], they do
not comprise response times concerns, which is
responsible for their poor performance on stressed
systems with deadlined-tasks.

In order to find the best alternative, we have to
analyze the impact of deadlined-tasks and their
variability in the known load-balancing techniques. Our
approach is valid and performs better than traditional
load-balancing ones for both hard or soft deadlines.

The simulated architecture comprises only two
servers, because it is the simplest possible parallel
architecture. This can be easily expanded to n servers as
well and this generalization will be discussed throughout
the paper.

% Server 1
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Reguest Manager

Figure 1: Simulated architecture

43



2. Related Work

There are plenty of works about load-balancing and
QoS, most of them leading to already accepted and
consolidated conclusions. Although these are almost
exhausted themes, their combination seems to be an area
where there are very few research results.

2.1. Load-balancing

Many load-balancing algorithms have been studied,
most of them trying to maximize throughput or minimize
the mean response time of requests. Reference [19]
proposes an algorithm called TAGS, which is supposed
to be the best choice when task sizes are unknown and
they all follow a heavy-tailed distribution. This is not the
case for the scenario analyzed in this paper, in which
task sizes must be below a deadline threshold. It is also
shown in [19] that, when task sizes are not heavy-tailed,
Least Work Remaining has a higher throughput then
TAGS. In fact, [24] and [23] claim that Least-Work
Remaining is optimal when task sizes are exponential
and unknown.

The algorithm SITA-E [20] has the best performance
when task sizes are known and heavy-tailed but,
otherwise, Least-Work-Remaining presents a better
throughput.

Our previous work in [25] presented a technique to
determine the best multiprogramming level (MPL)
offline. Such concept had been expanded and we propose
an algorithm that computes the maximum MPL in
runtime.

2.2. Quality-of-Service (QoS)

In real distributed systems, task sizes are heavy-tailed.
This means that a very small portion of all tasks are
responsible for half of the load [21]. Most tasks are very
small and there is a small number of big tasks as well. In
models with deadlines, like the one analyzed in this
paper, a similar distribution occurs.

Reference [30] presents a model where the number of
concurrent requests within the system is restricted. When
this number is reached, the subsequent requests are
enqueued. But this model has no concern for deadlines or
rejection of requests. It also does not show a way to load-
balance the arriving tasks, since it is a single-server
architecture.

Quality-of-Service was also studied for Web Servers.
In [9] the authors propose session-based Admission
Control (SBAC), noting that longer sessions may result
in purchases and therefore should not be discriminated in
overloaded conditions. They propose self-tunable
admission control based on hybrid or predictive
strategies. Reference [8] uses a rather complex analytical
model to perform admission control. There are also
approaches  proposing some kind of service
differentiation: [5] proposes architecture for Web servers
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with differentiated services; [6] defines two priority
classes for requests, with corresponding queues and
admission control over those queues. In [30], the authors
propose an approach for Web Servers to adapt
automatically to changing workload characteristics and
[14] proposes a strategy that improves the service to
requests using statistical characterization of those
requests and services.

Comparing to our own work, the load-balancing
alternatives referred above do not consider QoS
parameters, such as deadlines, and the QoS studies
concern single server systems, only. Our approach uses
multiple servers and a careful request allocation to those
servers in order to comply with the deadline constraints.

3. Modelling typical real distributions

In order to analyze and propose time-considering
load-balance approaches, it is important to understand
first the kinds of workloads distributions that happen
typically and how to model them. The typical request
workload, such as Transaction Processing Systems, is
quite heterogeneous in what concerns servicing
requirements.

Besides the algorithm SITA-E, reference [20] presents
a study that claims that the distribution of task sizes (or
durations) in computer applications are not exponential,
but heavy-tailed. In short, a heavy-tailed distribution
follows three properties:

1. Decreasing failure rate: the longer a task runs, the
longer it is expected to continue running.

2. Infinite variance

3. A very small fraction (< 1%) of the very largest
tasks makes up a large fraction (50%) of the load. This
property is often called as the heavy-tailed property.

The simplest heavy-tailed distribution is the Parefo
distribution, with probability mass function:

—a-1
f(x)=ak’x"" ,a,k>0,x>k ,
and cumulative distribution function
F(x)=1-(k+x)’

In these functions, k is the smallest possible
observation, whereas a is the exponent of the power law,
and will be called hereafter as the variance factor of the
function. It varies from 0 to 2 and the more it is close to

0, the greater is the variability.

4. Traditional load-balancing algorithms and
their weakness

Load balancing is a fundamental basic building block
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for construction of scalable systems with multiple
processing elements. There are several proposed load-
balancing algorithms, but one of the most common in
practice is also one of the simplest ones - Round-Robin
(RR). This algorithm produces a static load-balancing
functionality, as the tasks are distributed round-the-table
with no further considerations. At the other hand, the
algorithm Least-Work-Remaining (LWR) produces a
dynamic load-balancing, as the arriving tasks are
dispatched to the server with the least utilization (jobs on
queue or concurrent executing tasks). This algorithm is
considered in this study, as it is supposed to be the best
choice when tasks durations are not heavy-tailed.
According to [19] and [20], the main issue involving
these algorithms is the absence of a control over big
tasks, mixing inside the same server short (small) and
long (big) tasks. It becomes more evident when tasks
durations are heavy-tailed, with a minuscule fraction of
the incoming tasks being responsible for half of the load.
In fact, both [19] and [20] propose size-aware
algorithms, trying to minimize the effects caused by the
big tasks on the small ones.

We are concerned with guaranteeing specified
acceptable response time limits. The number of
concurrent executions (CE) is a crucial variable when
deadlines are involved, because as we increase the
number of CE we have a larger probability of missing the
deadlines. As we are going to see, this is an issue that
affects mostly systems where tasks durations have a high
variability, which means that the occurrence of big tasks
is more usual. When the variability is low, i.e., the
number of big tasks is near to zero, all algorithms have
similar performance curves and practically all tasks are
completed. As performance starts to degrade as the
variability begins to increase, the number of canceled
tasks also gets higher, which gives space for a new size-
aware load-balance algorithm, On-demand Restriction
for Big Tasks, or ORBITA in short. The main idea is to
separate the short tasks, which will always be submitted
to execution, from the big tasks, which will have their
admission by a server (or node) dynamically controlled.
This way, a node will only admit big tasks that will not
make the other already running big tasks miss their
deadlines. Otherwise, the big task will be rejected by the
node, as its admittance would lead to further performance
degradation. In an » servers scenario, a task is only
rejected if none of the n servers is able to handle it.

In the following we describe each load balancing
algorithm we compare considering deadlines and
rejection:

4.1. Least-Work-Remaining (LWR)

for each task that arrives:
next server := server list ->least utilized
send (task, next_server)
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4.2. Task Assignment by Guessing Size (TAGS)

In this algorithm, all incoming tasks are dispatched to
the first server. If a task is running for too long, i.c., is a
big task, it is killed and restarted from scratch on the
second server.

for each task that arrives:
send (task, first server)
schedule dispatch to second_server(task)

4.3. Size Interval Task Assignment with Equal
Load (SITA-E)

for each task that arrives:

if task is a big task
server := server_list ->second_server
else

server := server_list ->first server
send (task, server)

4.4. On-demand Restrictions
(ORBITA)

for Big Tasks

for each task that arrives:
if task is a small task
server := server_list ->first server
send(task, server)
else
server := server_list ->second_server
bigger task :=bigger running_task(server)
max_ce := LOWER _BOUND(deadline/bigger task)
if number of running tasks(server) >= max ce
NOT ADMITT(task)
else
send (task, server)

Figure 2 depicts how LWR and SITA-E behave. In the
figure, a new job with estimated duration of 3 units of
time (UT) is received (2a) and there are 2servers: one is
executing 3 short tasks and the other one is executing 2
long tasks. If the load-balancer module, the light-gray
rectangle in figures, is using a LWR strategy, then the
new task is dispatched to the second server (2b). On the
other hand, if a size-aware algorithm (like SITA-E) is
used, the job is forwarded to the first server, the one
containing short tasks (2c).

5. Simulation setup

Due to the large number of parameters involved, it
becomes necessary to formally describe the simulation
model used in this work. The simulator has the following
parameters :

® Number of servers.
® Tasks arrival rate (follows an exponential
distribution).
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Figure 2: A new transaction arrives (a). LWR approach (b). Size-aware approach(c).
Table 1: Percentage of generated durations, according to the variance factor (@) of the Pareto
distribution and the duration inteval.
el ot [om2 | R3] B4 [ M5 Bel | 67 [ M8 [ B [ B [ 10 ]
0,1 53,88% 6,97% 517% 490% 442% 4,64% 3,93% 4.24% 425% 3,14% 3,85%
02 76,02% 475% 3,18% 2.94% 230% 1,90% 1,87% 1,95% 1,7%% 1,56% 1,75%
03 87,90% 291% 1,76% 1,38% 1,12% 0,98% 0,8%% 0,80% 0,78% 0,75% 0,73%
® Task size distribution (follows a Pareto distribute them among the allowed durations. Table 1
distribution). shows the percentage of the generated durations for
® Maximum amount of time a task can execute values of a versus the intervals (that must be read as
(deadline). [min, max[). It is to notice that when a assumes lower

® Load-balancing algorithm.
® Minimum size of “big tasks”.

In this paper, a system with 2 identical servers was
simulated. The deadline time was set to 20 seconds and
the duration of each request follows a Pareto distribution,
where the value of the parameter a varies from 0.1
through 0.3, step 0.1, the smallest possible duration is
0.001 second (1 millisecond) and the highest duration is
10 seconds. In addition, all tasks have the same priority.
The concurrency model is linear, which means that a
task will take twice longer if it shares the server with
another task, it will take three times longer in case of two
other tasks and so forth.

The simulator implements all the described
algorithms: TAGS, SITA-E, LWR and ORBITA and task
arrivals follow an exponential distribution, with A
varying from 1 to 10, step 1. Finally, the tasks which
have their durations below 1 second are considered small
tasks. The big tasks are constituted by all the other
durations. To eliminate the transient phase, the data
obtained in the first hour of the simulation was
discarded. Only the results obtained in the next 5 hours
were considered.

5.1. Task duration generation

Since we are simulating a scenario where tasks have
deadlines, the variance is not infinite. But as we are
interested in studying how the system behaves when the
number of small tasks is much greater than the number
of big tasks, the Pareto distribution is used to generate
the duration of the tasks. The MOD function will be
applied to all durations that exceed the deadline time
(generated_duration MOD deadline), in order to equally

values, the variability is higher. Even in these cases, the
number of durations within the interval [0,1[ is much
greater than the others.

5.2. Simulation Results

In these experimental results, we analyze first results
for all tasks, showing that ORBITA has better or at least
as good performance as other approaches in that case,
and almost zero miss rates unlike the other strategies.
The big tasks are a small fraction of the workload, but
they are the ones with the largest miss rates for most
strategies, and that is where ORBITA obtains much
better results than the other ones because it considers
time constraints. For this reason we then analyze results
concerning the big tasks.

Figure 4a shows the performance of the algorithms
when tasks durations highly vary. It can be noticed that,
as the arrival rate raises, both LWR and TAGS performs
worse in comparison with the other two algorithms,
SITA-E and ORBITA. This low performance occurs due
to the fact that those algorithms mix small and big tasks
inside the same server, while SITA-E and ORBITA
reserve a server to execute small, fast requests. A quick
look to figure 5a attests this explanation: LWR and
TAGS have small tasks getting canceled, an event that
does not occur nor in SITA-E neither in ORBITA. Even
a high arrival rate such as 10 tasks per second does not
make the small tasks miss their deadlines when those
algorithms are used.

If the variance factor was set to 0.3, the throughput of
the four strategies would be very similar, as shown in
figure 4b. As this variance factor generates a smaller
number of big tasks, the assumption that mixing all kind
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Figure 3: Throughput of big tasks with variance factor 0.1 (a) and 0.3 (b).
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Figure 4: Total throughput with variance factor 0.1 (a) and 0.3 (b).
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Figure 5: Throughput of small tasks with variance factor 0.1 (a) and 0.3 (b).
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of tasks inside the same server for highly heterogeneous
workloads is a bad idea, as shown in figure 4a, is
reinforced.

It is worth noticing that in both cases in figure 4, the
ORBITA algorithm has a better performance than its
competitors. It becomes more evident if we analyze the
throughput of small tasks and big tasks in separated
graphics (figures 3 and 5).

As discussed above, both ORBITA and SITA-E
policies prevent small tasks from being killed. This
statement can be observed in figure 5a. A consequence of
this event is that if we expand the simulated architecture
from 2 to n parallel servers, only 1 server should be
sufficient to handle all small tasks, with the other (n-1)
servers being used to handle the big tasks. If the arrival
rate keeps growing, there will be a moment when the
number of servers destinated to handle small tasks should
also increase. But the point is that the number of nodes
that should be used to handle big tasks is much more
critical than those that should be dedicated to small tasks.

The graphics shown in figures 3a and 3b shows the
throughput of the big tasks. These pictures confirm the
robustness of ORBITA, which maintains the throughput
of big tasks almost unaltered, even when the variance
factor is 0.1 and the arrival rate is 10 tasks per second.

Figure 3a shows that, for highly heterogeneous
workloads, ORBITA is the only strategy with satisfactory
results.

In figure 3b, the algorithm LWR presents a better
throughput than ORBITA for arrival rates below 7 tasks
per second. A closer look at the ended tasks of each
strategy, displayed in tables 2 and 3, shows that LWR
strategy has a better throughput for task arrival rates
comprehended between 1 and 6, and ORBITA presents a
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second. Considering results of figures 3a and 3b together,
we conclude that ORBITA is better with highly
heterogeneous workloads or high arrival rates due to its
tight control on time constraints. LWR is also an
interesting algorithm as it tries to optimize resource
usage, but does not have enough control over time
constraints. Our current and future work on this issue,
involves  considering  adaptable = ORBITA/LWR
alternatives and LWR with time constraints.

6. Prototype experiments

The Midas middleware [29] is a tool that intercepts
the requests sent by an application to a database server. It
uses the Proxy Design Pattern, thus providing a
transparent admission control layer, without requiring
deep source code modifications. A simplified class-
diagram is shown in figure 6.

The utilization of more than one database server
opens the necessity to keep data synchronized on all
nodes, an issue that is known as data replication.
According to [35], there are two replication models:
eager replication, where the updated data is synchronized
at the other nodes before transaction completion, and
lazy replication, where the updated data is sent to other
servers after transaction completion. For simplicity, we
used a primary copy replication strategy, since reference
[35] attests it is the best choice for eager replication.

7. Experiment Setup

To better understand the implications of ACID
properties on load-balancing algorithms, we performed

better throughput for arrival rates higher than 7 tasks per various  rounds  of - experiments - using - the TPC-C
Table 2: Throughput histogram of LWR algorithm with variance factor 0.3.
| AmivalRate | [010 | [t2[ | [23( | (34[ | [450 | (560 | (670 | (780 | [89[ | (o100 | 10 |
1 52,85 1,77 1,09 0,78 0,65 0,5 0,57 0,45 0,41 0,43 0,36
2 106,56 3,62 2,16 1,66 1,39 1,2 0,98 0,97 0,82 0,63 0,58
3 157,52 5,16 3,08 2,54 1,91 1,34 1,15 0,78 0,69 0,46 0,33
4 210,77 7,31 44 2,86 1,58 0,96 0,57 0,36 0,25 0,16 0,13
5 264,27 9,19 4,51 1,74 0,7 0,27 0,17 0,09 0,05 0,02 0,02
6 317,21 10,58 3,47 0,79 0,19 0,06 0,02 0,02 0 0 0
7 369,7 11,01 1,63 0,16 0,02 0,01 0 0 0 0 0
8 4237 9,71 0,56 0,03 0 0 0 0 0 0 0
9 476,46 7,76 0,16 0 0 0 0 0 0 0 0
10 529,75 4,88 0,02 0 0 0 0 0 0 0 0

Table 3: Throughput histogram of ORBITA algorithm with variance factor 0.3.
ArivalRate | [0,1[ | [1,2[ | [23[ | [34[ | [45[ | [56[ | [67[ | [78[ | [89[ | [910[ | 10 |

1 53,06 1,43 0,91 0,69 0,53
2 106,07 2,31 1,29 1,11 0,87
3 159,01 2,6 1,38 1,23 1,03
4 211,17 2,92 1,73 1,2 1,06
5 263,86 29 1,85 1,24 1,02
6 316,49 3,02 1,75 13 1,12
7 370,23 321 1,98 1,35 1,11
8 422,01 3,08 1,75 1,47 1,07
9 474,35 3,27 1,98 1,28 1,24

=
o

529,24 3,13 18 1,29 1,11

0,5 0,44 0,41 0,41 0,37 0,37
0,81 0,64 0,65 0,57 0,55 0,45
0,97 0,82 0,71 0,68 0,68 0,59
0,9 0,85 0,8 0,68 0,64 0,65
1,08 0,86 0,72 0,79 0,65 0,73
0,%4 0,94 0,9 0,71 0,67 0,72
0,97 0,88 0,75 0,76 0,73 0,71
1,06 09 0,87 0,81 0,7 0,68
1,08 09 0,83 0,74 0,7 0,68
1,02 0,93 0,91 0,82 0,72 0,68
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Figure 6: Simplified class-diagram of the Midas middleware.

benchmark (http://www.tpc.org/tpec/) in a 2-servers full-
replicated database.

Also, to create a more realistic scenario, we modified
the workload generation. According to related work [19],
typical transactional workloads present high-tailed
properties, which is not the case of TPC-C's default
workload. We also made an extra modification on the
TPC-C's code, simulating an open model, i.e.,
transactions are sent to the system according to a
statistical distribution (e.g. an Exponential Distribution).
For more informations about open and closed simulation
models, please refer to [32].

The use of an open model was a bit imprecise due to
the high cost to create and destroy threads (for emulating
clients). For arrival rates greater than 14 transactions per
second, the mean value of the exponential distribution
was not able to be reached. Nevertheless, the obtained
results clearly simulated high-utilization scenarios, the
aim of the experiments.

7.1. Workload Generation

As mentioned before, we used 2 types of transaction
mixes: the one described in the TPC-C specification
(which we call default transaction mix in this paper) and
another one that aims to reflect a more realistic one, as
stated in [19].(denoted here as heavy-tailed transaction
mix).

Briefly explaining, the TPC-C specification proposes
5 (different transactions (in parenthesis are their
frequency of occurrence): new order (45%), payment
(43%), delivery (4%), order status (4%) and stock level
(4%). When executing in standalone mode, we found that

new order transaction was the longest one and, in
contrast, the stock level was the fastest transaction. So,
we create the heavy-tailed transaction mix comprising
only stock level (95%) and new order (5%) transactions,
thus attending the requirements of a heavy-tailed
distribution.

To classify transactions in short or long we used a
map. As TPC-C has only five different transactions, we
could store pounded mean response times (PMRT) for
each one of them. Hence, each map entry was a pair
{transaction name, PMRT}. If the PMRT value was
greater (lower) than a threshold (1 second, arbitrarily
chosen) then its corresponding transaction would be
classified as long (short).

A last remark on the workloads: order status and stock
level transactions are read-only, which means that they
should not acquire any locks. On the other hand, the
others are update transactions and their isolation levels
were set to Read-Committed.

7.2. Experiments Details

All experiments were executed using a Pentium 4
3.2GHz, with 2GB RAM DDR2 and a 200 GB SATA
HD which was responsible for creating the threads that
simulate the clients. The servers were 2 Pentium II MMX
350MHz, with 256MB RAM and a 60GB IDE HD. Both
servers were running a Debian Linux, with Kernel
version 2.6 and were connected by a full-duplex
100Mbps Ethernet link. A PostgreSQL 8.1 database
server was running on each server machine and the
database size was 1.11GB. The client machine used a
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Sun Microsystems' Java Virtual Machine, version 1.5.
The database was created with 10 warehouses.

The reason for using the slower computers as the
database servers relies on our need to stress the system.
Our intention is not to maximize the throughput within
deadline (TWD) — the most important metric for this
work, but to analyze the impact of ACID properties on
load-balancing algorithms and their implications on QoS
constraints.

Table 4: Simulation parameters and their values

Value

Exponential distribution

Parameter

Arrival rate

Simulation time 20 minutes
Warm-up time 5 minutes
Deadline 5 seconds

Finally, each round of experiments was executed for a
period of 20 minutes. During the first 5 minutes no data
was collected. Before each round, the database was
dropped and then recreated, guaranteeing that all rounds
of experiments used the same database state.

7.3. Results

Figures 7 and 8 show the throughput of transactions
that ended within the deadline versus the arrival rate. For
best visualization, the results are displayed in terms of
long transactions (a) and short transactions (b).

It can be seen that when the default workload is used
(figures 7a and 7b), LWR performs badly. As a result for
mixing inside the same server both short and long
transactions, only those which are the fastest ones are
able to end within the deadline. This can be explained by
the high number of locks obtained by update transactions
(the majority on this workload), interfering on the
execution of read-only transactions.

On the other hand, SITA-E and ORBITA performs
better due to their size-aware nature. Such algorithms
estimate the duration of incoming transactions and, if
classified as long (short), the transaction is forwarded to
the appropriate server. The thing to be noticed here is
that short transactions are the read-only ones, thus they
do no acquire locks. This explains the high number of
short transactions that were executed within the deadline
with these algorithms. On the other hand, the TWD of
update transactions is smaller, and for SITA-E it even
presents a decreasing form on figure 7a. Why does
ORBITA perform better than SITA-E? The reason is the
admission control that ORBITA provides for long (big)
transactions — which are responsible for acquiring locks
and, in these cases, for a long period of time. Controlling
the admission of long transactions directly implies in
controlling the number of locks, thus keeping the
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accepted transactions ending their executions within
their deadlines. It can be seen from figure 7a that an
arrival rate of 10 transactions per second reaches the
optimal TWD.

A last analysis of figure 7 that is worth mentioning is
about replication. Once all update transactions are
replicated to others servers, why the performance of
small transactions was not affected by the replication in
SITA-E and ORBITA? The most reasonable answer for
this question relies on the assumption that only the write-
set (WS) of update transactions were forwarded to the
other server. These WS's do not contain any 'select'
statements, thus their execution is also very fast — which
means that their executions do slow down the read-only
transaction, but are not capable for making them to miss

their deadlines.

Figures 8a and 8b present the performance of the
same algorithms when a heavy-tailed workload is used.
One of the properties of such a distribution is massive
presence of short transactions and only a few of very,
very big transactions. The results in these figures are
interesting, because the presence of only 5% of new order
transactions is sufficient to reduce a lot the TWD of short
transactions when the LWR algorithm was chosen. In
fact, when the arrival rate is 6 (which means 360
transactions per minute, 95% of them are short), TWD
reached its maximum value, about 100. As both servers
have to execute new order transactions, locks used by this
transaction (which includes a 'select for update' clause)
also occur everywhere. Again, the TWD of long
transactions is zero — even for small arrival rates. This
can be ironically explained by the massive presence of
fast transactions, which severely interferes on the
executions of long transactions. So, long transactions do
not permit that the short ones execute within deadline. In
turn, the presence of lots of short transactions are
responsible for the zero-TWD of long jobs.

The other algorithms, SITA-E and ORBITA, have
better performances. As in the default workload setup,
none of the small transactions missed their deadlines,
even when data modifications provided by the
replications occur. On the other hand, the execution of
long transactions for SITA-E becomes critical. As the
arrival rate increases, the TWD fastly decreases until it
reaches zero. Again, the high number of locks are
responsible for the poor performance. In contrast to
SITA-E, ORBITA is capable to maintain the TWD of
long transactions in its maximum, due to its admission
control mechanism. A remark about this admission
control relies on the reduced number of long transactions
admitted. When TWD reached its maximum value, the
arrival rate is about 10, what means that 600 transactions
arrives per minute — 5% of them (about 30) are of new
order type — but only 7 of them were admitted.
Otherwise, there might be conflicts on lock acquisitions
and, probably, some transactions (maybe even all of
them) would miss their deadlines.
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Figure. 8: Throughputs of long transactions (a) and small transactions (b) when heavy-tailed workload is used.

8. Conclusion and future work

In a parallel system, the incoming tasks must be
dispatched to a server according to a load-balancing
algorithm. Most of these algorithms are not aware about
the response times of the tasks, since they all follow a
best-effort policy. Thus, if tasks arrive at a very high rate,
not only fast requests will have to wait for a long period
to be executed, as slower requests will take too long. In
this paper we propose ORBITA, a load-balance
algorithm that takes time into consideration.

The ORBITA algorithm, which is based on the
assumption that tasks durations follow a highly
heterogeneous distribution, differentiates service between
small and large requests in order to provide time
guarantees. It was experimentally proved that the big
tasks were the ones responsible for deadline misses, so
ORBITA works by separating the fast, small tasks from
the big tasks, which have their admission controlled by
each server. A big task will only be admitted into a server

if it does not make the other running big tasks miss their
deadlines.

The experiments have shown that when the variability
of the task durations is high, ORBITA's throughput is not
only greater than the other algorithms, but fairer, since
tasks of all size intervals have low miss rates.

We also implemented a prototype containing three
different of the presented load-balancing techniques,
each one with different characteristics: Least-Work-
Remaining (LWR), Size Interval for Task Assignment
with Equal Load (SITA-E) and On-Demand Restrictions
for Big Tasks (ORBITA), our proposal.

Those rounds of experiments were executed in a 2-
servers fully replicated database. The dynamic algorithm
(LWR) presented the worst performance, since it does not
make differentiations on transactions. Thus, by mixing
inside the same server update and read-only transactions,
the isolation needed for the first group was responsible
for making lots of transactions (of both groups) to miss
their deadlines.
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On the other hand, the size-aware algorithms (SITA-E
and ORBITA) dynamically recognized read-only
(update) transactions and classified them in short (long).
This way, each group was assigned to a dedicated server,
hence reducing the overall miss rate. Even the replication
cost was not sufficient for deteriorate the performance of
read-only transactions, since only the write-set of the
whole update transaction was forwarded to the other
server. The main problem for SITA-E relies on the
execution of long transactions, which are responsible for
acquiring the locks. The uncontrolled admission of
update transactions present in the SITA-E can reduce the
number of transactions ended within the deadline per
minute to zero. In contrast, ORBITA has an admission
control of big transactions. An update transaction is only
admitted by the system if it will not cause deadline
misses — from itself or from the other already-running
transactions.

As future works, we intend to investigate how to
effectively identify and estimate the duration of
transactions. The solution adopted in this paper (using a
map with pounded mean response times) was sufficient
for what this work was intended, but we are concerned on
if and how to generalize such a concept for a system with
ad-hoc transactions. We also intend to work on database
internals level and study the viability of adding time-
constraints mechanisms to queries and/or transactions.

As future work we intend to investigate how ORBITA
can be made to adapt automatically to actual workloads
and arrival rates. This includes how to determine the
number of servers needed to handle each type of tasks
(big and small) and, instead of dividing tasks into two
classes statically, how to determine and manage task
classes automatically. We also intend to work on a time-
constrained version of LWR and compare the
approaches.
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