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Abstract—This paper presents the research and implementation
of applying the new methodology Cogwheel Modules for creating
new views and insights from knowledge integration. The target
is advanced knowledge mining, e.g., complex discovery, and
decision making. The paper provides both results of the present
research of the methodology and an implementation, including
a case study on different views and possible insight from an
application in the spatial domain. The implementation includes
modules required for a complete workflow as well as generators
for creating results, specifying spatial data and content. The
case study utilises topics, techniques, and data from geosciences,
archaeology and multi-disciplinary context. The methodology is
using integrated knowledge resources for complex knowledge
mining by creating workflows applying specialised tools. The
resulting methodology can be applied with any disciplines and
with combinations of general, as well as specialised tools.
The results of the knowledge mining can be used for gaining
insight and creating automated learning processes, especially
with long-term knowledge resources, which are continuously
in development. The method can be used for practical mining
procedures to gain insight as well as further develop available
multi-disciplinary knowledge resources. The goal of this research
is to create new views and insights from the available knowledge
resources.
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I. INTRODUCTION

This research is focussed on creating new views and insights
from content of knowledge resources. The methodology, which
is deployed allows to compute “Cogwheel Modules” and peel
information from knowledge resources. A workflow can use
the process to iterate in an arbitrary number of turnarounds in
order to create a possible knowledge integration.

The fundaments of the new method of Cogwheel Modules
were presented at the DigitalWorld and GEOProcessing 2017
conference in Nice, France [1].

The work is based on the integration of knowledge resources
referring to universal classification and application components
for solving complex tasks, e.g., for knowledge mining. Target
of this research on the methodology of ‘Cogwheel Modules’
is to create different views based on integrating knowledge
resources and specialised application components for a gain
in knowledge, cognition, and insight.

Creating views means the creation of exhaustive context for
knowledge objects and their entities. The primary context can

be a knowledge context, which allows further analysis and
processing. Based on the primary context, a secondary context
can be created, e.g., a result matrix, a listing, or a visualisation.

The integration of knowledge discovery and decision mak-
ing processes can result in extremely challenging tasks. The
quality of results from knowledge mining is primarily con-
nected with content and algorithms. The language or method
used for expressing a ‘question’ and automating its translation
in general is not of concern for this research.

Data resources, whatever their size is, do not automati-
cally deliver high quality results. In most cases, content and
algorithms are limiting possibilities to answer complex and
staggered questions in reasonable ways. Contributions to these
deficiencies result from data, algorithms, and their implemen-
tations. Therefore, high quality knowledge resources, including
factual, conceptual, procedural, and metacognitive knowledge,
description, and documentation are increasingly important. In
consequence, advancing methodologies for knowledge mining
is a focus of comparable importance.

Different knowledge references and data require different
tools. Several disciplines contribute and specialised approaches
and solutions have to be used on context for coping with any
slightly complex question. Built on such in-deficit foundation,
there is no direct and common practice on how to integrate
specialised algorithms and applications with each other without
a methodology. Appropriate methodologies will allow to inte-
grate advanced knowledge resources and to modularise several
tasks within a knowledge mining workflow. In addition, this
research presents more close insights from a case study and
the knowledge, especially conceptual knowledge required and
provides additional new context examples, factual knowledge,
and further case study results.

This paper is organised as follows. Section II introduces
the methodology for creating views with advanced knowl-
edge mining. Section III describes the Cogwheel Modules
Methodology. Section IV presents an implementation and
case study and how to create a primary context. Section V
discusses an excerpt of secondary new resulting context, es-
pecially different visualisation views leading to new insights.
The discussion includes references and associations with the
workflow implementation resulting from the implementation
and application of the methodology, based on previous work
and re-usable components. Section VI summarises the lessons
learned, conclusions, and future work.
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II. MOTIVATION

The motivation for the research on a new methodology for
creating new views from knowledge integration results from
the unsatisfactory and non-knowledge centric instruments and
state of integration available. For many knowledge mining
challenges, e.g., seeking good answers to complex questions,
there are no solutions available for integrating complex knowl-
edge resources and arbitrary application components. A sample
question is:

Which natural events associated with the creation of crater
structures with a diameter larger than 100 m could have been
directly notable by human population within the last thousands
of years and are still observable on-land at the area of todays’
continent of Europe and which knowledge is associated with
such events?

The question is quite precise but present possibilities mostly
cannot achieve appropriately precise results in order to answer
such questions. If one is not satisfied with arbitrary lists of
hundreds of snippets of information mostly not part of an
answer instead of an on-topic result then we have to find better
ways. A solution is to flexibly integrate high quality data with
conceptual knowledge and suitable application components
with appropriate features. Due to the complexity of integration,
the state of the art resources together with supportive data and
component resources will be presented and discussed when
required in the following section.

III. COGWHEEL MODULES METHODOLOGY

With this research, a methodology is defined by a sequence
of steps. The steps can be a set of procedures in order to create
a result for a knowledge mining process, e.g., with a discovery
process. The procedures can include data, knowledge, formal
descriptions, and implementations, e.g., collecting data,
retrieving information, and algorithmic specifications. The
purpose can range from delivering to creating and answer to
an open question, e.g., delivering knowledge for a learning
or decision making process. The methodology uses a formal
description of knowledge, data and information, as well
as required research techniques. Content and context are
represented by any knowledge objects and data available in
time and space. Data may be structured and unstructured.

1a) Identification of a knowledge mining challenge.
1b) Phrasing of a problem or question.
1c) Identification of a solution or answering strategy.
1d) Context description and modeling.
1e) Mapping of sub-challenges to possible partial solutions.
1f) Interface creation for partial solutions.
2a) Creation and / or selection of Cogwheel Modules (mod-

ularisation into sub-challenges and partial solutions).
2b) Knowledge and information: Identification or creation

and / or selection of nuclei and facets.
2c) Peeling of information-nuclei from existing evidence.
2d) Milling of nuclei.
2e) Information processing.

2f) Data selection including nuclei and facets.
2g) Information object turnaround.
3a) Workflow implementation (incl. Cogwheel Modules).
3b) Analysis of results.
3c) Learning process and persistent documentation.
3d) Improvement process.

We can identify three main groups within the methodology. 1a)
to 1f) is a preparatory phase, 2a) to 2g) describes a gearbox
of knowledge mining, and 3a) to 3d) is a consecutive phase.

The modules allow to assign specialised applications and
specialised features to separate modules as will be shown in
the following implementation. Options and features of spe-
cialised applications can be documented, including conceptual
knowledge, with the learning process and to cope with re-
occurring requirements. The methodology allows to create
different approaches for a workflow.

IV. IMPLEMENTATION AND CASE STUDY

The methodology was applied to practical situations. The
following case study presents a practical workflow implemen-
tation from 1 to 3 (challenge identifying question to workflow
implementation) based on the above gearbox of knowledge,
including the required Cogwheel Modules with their mapping
to important components and steps, their implementation and
results. The goal is to create primary context and –in a
consecutive process– secondary context, which in the case
means spatial visualisation.

The starting point is the above sample question. The required
compositions of features and criteria can become quite com-
plex and are commonly not implemented in any single appli-
cation or component. Therefore, the integration of appropriate
application components can be desirable or even required.

The plethora of information from the knowledge resources
is narrowed by the conceptual knowledge, the references to
classifications, e.g., to the mapping and data of:
• Craters (any, e.g., Earth and other planets),

◦ volcanic features including craters,
◦ impact craters including meteorites, . . .

• confirmed (and non-confirmed) structures/craters,

• structures observable on-land,

• age less than (about) 9999 years old,

• larger than 100 m diameter.
The respective workflow requires a number of special calcu-
lations as well as criteria Cogwheel Modules for knowledge
resources and spatial components.

Applying a universal classification can be used to classify
the appropriate objects, the associated application components,
and the respective required options for a Cogwheel Module,
e.g., for the calculations and filters.

In this case, the two groups of components involved with
creating a solution are a) advanced knowledge resources and b)
knowledge mining including conceptual knowledge references,
spatial data and applications.



316

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The definition of data-centricity used is: “The term data-
centric refers to a focus, in which data is most relevant
in context with a purpose. Data structuring, data shaping,
and long-term aspects are important concerns. Data-centricity
concentrates on data-based content and is beneficial for in-
formation and knowledge and for emphasizing their value.
Technical implementations need to consider distributed data,
non-distributed data, and data locality and enable advanced
data handling and analysis. Implementations should support
separating data from technical implementations as far as pos-
sible.” [2].

According to this, the implementation of the methodology
is as far data-centric as possible and allows a systematic
application.

The following sections describe the essentials of the prepara-
tory phase up to the partial solutions and the Cogwheel
Modules required, including the handling of the nuclei and
information processing. The sub-challenges are presented with
their mapping to applications. Relevant excerpts of data and
information are discussed in anticipation of the final results.
The concluding section shows the workflow implementation
used for creating the final results.

A. Multi-disciplinary knowledge resources identification

The knowledge resources hold arbitrary multi-disciplinary
knowledge (e.g., documentation of factual, conceptual, proce-
dural, and metacognitive knowledge), in various structures as
well as unstructured, objects, and references, including infor-
mation on digital objects and realia objects, e.g., media objects
and archived physical specimen. These resources provide the
prerequisites in order to create efficient Cogwheel Modules
and handle knowledge and information nuclei and facets for
peeling and milling processes.

1) Factual knowledge: The knowledge resources also con-
tain information on various types of crater features like vol-
canic craters and impact craters. Especially, the Earth’s impact
crater container in the knowledge resources container holds
data and references for all known impact craters on Earth.

The knowledge resources provide factual and conceptual
data, e.g., crater types, crater/impact ages, and confirmed
impact events.

The impact features container holds the Kaali impact, rep-
resented by its major impact crater. The minor craters of this
impact event are referenced from this object and from sub-
objects, all of which contain their factual and referenced data.

Figure 1 shows a spatial presentation overview of terrestrial
(meteorite) impact features resulting from the impact features
container. The spatial presentation is using a Robinson pro-
jection in order to cover arbitrary locations with a continuous
visualisation in a common way.

The multi-disciplinary knowledge resources were used to
create various computational views of impact craters on Earth
[3] with any more details. The multi-disciplinary views, in-
cluding conceptual knowledge represented by classifications,
enable an association of various characteristics common with
different information in collections [4].

Figure 1. Impactmap – computed worldwide spatial distribution of classified
terrestrial impact features (meteorite) from available object entries [3].

In this case, Earth surface information, georeferenced geo-
physical and geological factual data, have been associated.

Table I lists the factual container data used from the LX
Foundation Scientific Resources [5] (not an acronym) refer-
enced for the Kaali crater field object and relevant with the
mining challenge.

TABLE I. RESULTING FACTUAL DATA REFERENCED FOR THE
KAALI CRATER FIELD (EXCERPT, LX RESOURCES).

Crater Number Coordinates (lat/lon) Diameter (m) Elevation (m)

1 58.371270 22.664737 39 24.10
2 58.367407 22.672298 25 25.90
3 58.366556 22.677637 76 21.99
4 58.371982 22.675092 33 24.91
5 58.370815 22.675611 20 21.90
6 58.370861 22.663155 13 29.90
7 58.370306 22.671848 26 22.90
8 58.367460 22.672577 15 25.99
9 58.372715 22.669419 110 34.14

The crater field consists of 9 known craters. Crater number 9
is the major crater. Craters 1 to 8 form sub-container objects,
which deliver the data.

In order to illustrate general facilities with modified Cog-
wheel Modules, information peeling and milling, even for case
studies with different knowledge resources, we can take a look
into the context and quality of the data involved in this case.

The factual knowledge criteria for impact crater classifica-
tion on basis of a physical view (criteria classification) are:
• Size of the impacting object,
• Speed of the impacting object,
• Material of the impacting object,
• Composition and structure of the target rock,
• Angle that the impacting object hits the target,
• Gravity of the target object respective planet,
• Physical attributes, e.g., porosity, of impacting object,
• Age of the impact,
• Size of the impact,
• Structure of the crater.
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Further associated phenomena (indicator classification) are
impact crater indicators on the other hand, which are:

• Planar fractures in quartz,
• Shocked quartz,
• Glass fragments.

For creating Cogwheel Modules and enabling views, fac-
tual knowledge not only contains facts like measurements
and documentation. Factual knowledge supports analysis and
visualisation, e.g., comparing knowledge objects and creating
a spatial distribution and visualisation.

2) Conceptual knowledge: Advanced knowledge from inte-
gration of universal classification and spatial information can
provide new insights when applied with knowledge mining
[6]. The use of the Universal Decimal Classification (UDC) is
widely popular, e.g., in library context, geosciences [7], and
mapping [8] as provided by the Natural Environment Research
Council (NERC) [9] via the NERC Open Research Archive
(NORA) [10].

The small excerpts of the knowledge resources objects only
refer to main UDC-based classes, which for this part of the
publication are taken from the Multilingual Universal Decimal
Classification Summary (UDCC Publication No. 088) [11]
released by the UDC Consortium under the Creative Commons
Attribution Share Alike 3.0 license [12] (first release 2009,
subsequent update 2012).

Data in the knowledge resources carries references to clas-
sifications. Examples are references to UDC for any discipline
and object, e.g., natural sciences and history.

Here, besides the central UDC:539.63 (impact effects) and
UDC:539.8 (other physico-mechanical effects), referred top
level groups for geodesy, cartography, and geography are
UDC:528 [13], UDC:910 [14], and UDC:912 [15]. Tables II
and III show excerpts of the conceptual data (UDC) used for
geodetic / cartographic and geographic classification.

TABLE II. CLASSIFICATION WITH KNOWLEDGE RESOURCES:
GEODETIC AND CARTOGRAPHIC CONCEPTUAL DATA (LX).

UDC Code Description (English, excerpt)

UDC:5 MATHEMATICS. NATURAL SCIENCES
UDC:52 Astronomy. Astrophysics. Space research. Geodesy
UDC:528 Geodesy. Surveying. Photogrammetry.

Remote sensing. Cartography
UDC:528.4 Field surveying. Land surveying. Cadastral survey.

Topography. Engineering survey. Special fields of surveying
UDC:528.5 Geodetic instruments and equipment
UDC:528.7 Photogrammetry: aerial, terrestrial
UDC:528.8 Remote sensing
UDC:528.9 Cartography. Mapping (textual documents)

TABLE III. CLASSIFICATION WITH KNOWLEDGE RESOURCES:
GEOGRAPHIC CONCEPTUAL DATA (LX).

UDC Code Description (English, excerpt)

UDC:9 GEOGRAPHY. BIOGRAPHY. HISTORY
UDC:91 Geography. Exploration of the Earth and of

individual countries. Travel. Regional geography
UDC:910 General questions. Geography as a science.

Exploration. Travel
UDC:910.2 Kinds and techniques of geographical exploration
UDC:912 Nonliterary, nontextual representations of a region

Composite classification based on these top level classifi-
cation references can refer to special items, e.g., cartographic
bibliographies, historical atlases, and globes. Summarised, the
classification can be used as glueing component classifying
the knowledge object space and the implementation space,
e.g., respective resources, objects, application components, and
features of application components. This also provides the base
for the creation of conceptual knowledge objects.

For creating views, conceptual knowledge not only provides
a universal system of knowledge space, it contains classifi-
cation and allows context references. Conceptual knowledge
can provide a range of precise as well as fuzzy context for
knowledge objects. Especially, conceptual knowledge allows
the creation of conceptual knowledge objects. For example,
impact features and meteorites can be classified in the follow-
ing groups.

Table IV shows conceptual data (UDC) used for the basic
classification of impact events and meteorites.

TABLE IV. CLASSIFICATION WITH KNOWLEDGE RESOURCES:
IMPACT EVENTS KNOWLEDGE RESOURCES CLASSIFICATION (LX).

UDC Code Description (English, excerpt)

UDC:500 Natural sciences
UDC:523 Solar system
UDC:523.68 Meteors. Meteoroids. Meteorites
UDC:530 Physics
UDC:539 Physical nature of matter
UDC:539.63 Impact effects
UDC:539.8 Other physico-mechanical effects

The excerpt also shows the context of meteorites and impact
effects in UDC:5.

An object carousel generated for impact craters, shows the
different types present in the knowledge resources groups and
their crater categories (Figure 2). For the task of creating a
carousel all categories are selected (red colour). The resulting
categories are micro crater, multi-ring crater, elongate crater,
complex crater, and simple crater.

Any objects in the categories can carry attributes like time
and space as well as objects in other categories, which allows
to have dimensions across disciplines. According conceptual
knowledge “filters” have been applied to the other criteria like
geological time types and sub-types.
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Figure 2. Object Carousel computed for impact crater categories, supporting
the creation of new primary context.

Regarding the knowledge mining process all categories can
be used. After finding results with a possibly high relevance the
categories provide further information for context and analysis.

B. Supportive data and component resources

In this case, referring to spatial distribution and distance,
supportive data and component resources are geoscientific data
and mapping components.

Appropriate data was required for the criteria, which are
related to topographic data. In the past, the georeferenced
objects have been used with various data, e.g., with the Global
Land One-kilometer Base Elevation Project (GLOBE) [16] and
the 2-minute gridded global relief data (ETOPO2v2) [17].

For the required resolution of the results presented here,
the knowledge resources had to be integrated with data based
on the gridded ETOPO1 [18] 1 arc-minute global relief
model data [19]. For special purposes data can be composed
from various sources, e.g., adding Shuttle Radar Topography
Mission (SRTM) data [20] from the Consultative Group on
International Agricultural Research (CGIAR) [21].

The horizontal datum of ETOPO1 is World Geodetic System
geographic, which was established in 1984 (WGS84) and later
revised. The WGS84 specifications and references are provided
by the National Geospatial-Intelligence Agency (NGA) [22]
and as EPSG:4326 from the European Petroleum Survey
Group Geodesy (EPSG) [23]. The vertical datum of ETOPO1
is “sea level”. The source elevation data were not converted by
the authors of ETOPO1 to a common vertical datum because
of the large cell size of 1 arc-minute.

The Generic Mapping Tools (GMT) [24] suite application
components are used for handling the spatial data, applying
the related criteria, and for the visualisation.

Further, supportive components can be Google Earth or
Google Maps presentation [25], Marble [26], and Open-
StreetMap (OSM) [27]. [28].

For creating views, supportive data and component resources
can provide data and features, which allow to refer to different
context and add different kind of interactivity.

C. Peeling and milling of context references for views
Advanced analysis of research data is becoming increas-

ingly important. For example, services supporting researchers
especially for categorising texts with a special context are in
development for many years [29]. Nevertheless, these services
do not provide features beyond term context and text analysis.

The knowledge resources can fully support context and
provide references to multi-disciplinary knowledge, e.g.,
photo media objects related to an object (Figure 3).

1 Photo-Object: Birgit Gersbeck-Schierholz, Hannover, Germany.
2 media: YES 20160629 {LXC:DETAIL--M-} {UDC:(0.034)(044)770} LXDATASTORAGE://...

kaali2016_1.JPG ...
3 media: YES 20160629 {LXC:DETAIL--M-} {UDC:(0.034)(044)770} LXDATASTORAGE://...

kaali2016_2.JPG ...
4 media: YES 20160629 {LXC:DETAIL--M-} {UDC:(0.034)(044)770} LXDATASTORAGE://...

kaali2016_3.JPG ...
5 media: YES 20160629 {LXC:DETAIL--M-} {UDC:(0.034)(044)770} LXDATASTORAGE://...

kaali2016_4.JPG ...
6 media: YES 20160629 {LXC:DETAIL--M-} {UDC:(0.034)(044)770} LXDATASTORAGE://...

kaali2016_5.JPG ...
7 Object-Discoverer: Birgit Gersbeck-Schierholz, Hannover, Germany.
8 Photo-Object: Claus-Peter Rückemann, Minden, Germany.
9 media: YES 20160629 {LXC:DETAIL--M-} {UDC:(0.034)(044)770} LXDATASTORAGE://...

img_0086.jpg

Figure 3. Information peeling: Media entries from knowledge resources
objects (multi-disciplinary geosciences collection, LX, excerpt).

The examples objects are referred by conceptual knowledge
and contextual knowledge references. The excerpt shows
referenced media for “Kaali crater” after the peeling process
from the object. The excerpt of an object associated with a
knowledge object is shown in Figure 4.

1 Lilium ... [Biology, Botany]:
2 (lat.) Lilium martagon.
3 Earth mull vegetation.
4 Indicator: Eutrophic, leach enriched, clayey and loamy soils, shadow

and penumbra location.
5 ...
6 Syn.: Türkenbundlilie
7 Syn.: martagon lily
8 Syn.: Turk’s cap lily ...

Figure 4. Information peeling of Lilium martagon knowledge resources
object (multi-disciplinary geosciences collection, LX, excerpt).

The excerpt shows an object “Lilium martagon” associated
with the “Kaali crater” object after the information peeling
process from this object. Figure 5 lists an excerpt of associated
bibliographic references for an object.

1 cite: YES 20070000 {LXK:Kaali Kraater; Kaali crater; meteorite; impact} {UDC:
...} {PAGE:----..----} LXCITE://Tiirmaa:2007:Meteorite

2 cite: YES 20160000 {LXK:Kaali Kraater; Kaali crater; meteorite; impact} {UDC:
...} {PAGE:----..----} LXCITE://Tiirmaa:2016:Scars

3 cite: YES 20120000 {LXK:Kaali Kraater; Kaali crater; meteorite; impact;
Excalibur; sword} {UDC:...} {PAGE:----..----} LXCITE://Faure:2012:Estonians

4 cite: YES 20160000 {LXK:Kaali Kraater; Kaali crater; meteorite; impact;
Tutankhamun; dagger} {UDC:...} {PAGE:----..----} LXCITE://
Comelli:2016:Tutankhamun

Figure 5. Information peeling: Citation entries from knowledge resources
objects (multi-disciplinary geosciences collection, LX, excerpt).
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The referenced citation entries are the result of the information
peeling process from the Kaali crater object and refer to
bibliographic references for meteorite craters on the island of
Saaremaa [30] as well as to meteorite craters in Estonia [31].

Other references point to information for meteorite-material-
usage, e.g., in context with archaeological and historical or
mythical context.

One example is King Arthur’s sword Excalibur (‘Ex-Kali-
bur’) [32], which is directly associated with Kaali and the
mother goddess Kali and its metal material. An association
exists via metal object classification and “sword” synonyms
(Figure 6).

1 Cutter
2 Dagger
3 Knife
4 Lance
5 Poniard
6 Saber
7 Sabre
8 Scimitar
9 Sword

Figure 6. Synonyms of ‘cutter-sword’ group from knowledge resources
objects (LX, excerpt).

The association links to King Tutankhamun’s ‘dagger’ in Egypt
[33], which is made with meteorite iron from impact craters
in the Libyan desert, as proved by available modern analysis.

This reference shows a remarkably comparable set of facts
and references (king, sword, meteorite, iron, impact, . . .) for
which we still have the authentic realia object.

D. Workflow implementation and phases

For the case study, the required data and configuration is
manually selected for the preparatory phase. The consequent
modules act on basis of that data, especially conceptual knowl-
edge and factual knowledge.

The central Cogwheel Module cogwheel_criteria
in the knowledge mining gearbox utilises a sequence
lximpactsselect_crae_criteria containing a number of
components

1) lximpactsselect_crae_date

2) lximpactsselect_crae_confirmed

3) lximpactsselect_crae_age_historic

4) lximpactsselect_crae_diameter

for handling the criteria for the event date range, confirmed and
not confirmed events, the date range, and the crater diameter. In
this case the components can be considered as filter processes.

The spatial modules of the workflow (cogwheel_world,
cogwheel_region) utilise the features latitude and longitude,
wet / land criteria, criteria evaluation, spatial distance compu-
tation, map projection, and visualisation.

The respective components are provided by GMT suite
applications, especially pscoast and gmtselect. The GMT
applications have to care for longitude, latitude, elevation and
contribute to the applying topographical data related criteria,
for topography related decision making within the information
object turnaround.

The later association of knowledge objects, referenced me-
dia objects, and citation objects is supported by conceptual
knowledge and discovery processes. In the consecutive phase
results are analysed and persistently documented in order to
improve the knowledge resources and mining algorithms.

Please keep in mind that it is not the intention of the exam-
ples that others should repeat the case study and its modules
but with realising the details required they can create modules
for their own knowledge scenarios, based on the methodology
using the named or their own, additional components.

V. SECONDARY CONTEXT AND RESULTING VIEWS

Earths’ impact crater objects from the classified LX factual
knowledge resources are used as a factual and conceptual
knowledge source for computing results, considering the re-
spective context and selection criteria. Result can be a group
of craters, fitting to all the criteria, after the mining algorithm
is applied to the integrated knowledge resources and methods.

The following sections describe the creation of secondary
views and possible new insights based on the Cogwheel
Modules Methodology and provide a discussion of the above
implementation case study with its resulting primary context.

A. Result of implemented workflow

Figure 7 shows the resulting output, including the necessary
topography (longitude, latitude, elevation), data, and informa-
tion used, after the result was visualised via GMT.

Criteria for decision making are the resulting target struc-
tures (meteorite craters) on land (topography and coverage),
especially confirmed Earth crater groups (meteorite impact
features, bullets, red, blue, and green colours), age and size
of (on-land) structures, and a reasonable catchment area for
Europe (blue),

A catchment center has been chosen, a circular area with a
respective radius of 3000 km, automatically fitted with the map
projection. The blue circle marks a reasonable area to cover
the continent of Europe in this context. The blue and green
bullets mark the craters inside that area. The data, items, and
marks are automatically computed and visualised.

The final resulting object (bullet, green colour), which fits
all criteria is the Kaali crater field, Saaremaa, Estonia. This
result is based on a large amount of knowledge resources and
application resources in the preparatory phase, an advanced
gearbox with compute intensive Cogwheel Modules, and a
workflow implementation using a range of large supportive
data and component resources, as described. Further analysis
can, e.g., select a relevant area containing the resulting object
in order to create additional context with the object itself.
Another strategy can be to find comparable objects and context,
which were outside the range when having first phrased the
question.

The region of positive final result of the applied knowledge
mining is computed and presented via GMT, too. Figure 8
shows the region of the Kaali crater field on the island of
Saaremaa, Estonia in its topographic context.
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Figure 7. Knowledge mining methodology applied (LX factual and conceptual knowledge, factual data). Criteria are resulting crater groups (meteorite impacts,
all coloured bullets), age and size of (on-land) structures, area, topography (all coloured bullets). Final result: Kaali crater field (green), Saaremaa, Estonia.

Figure 8. Detail of final result of knowledge mining in topographic context:
Region around center of Kaali crater field, Saaremaa, Estonia.

The bullet and the cross mark the center of the crater field
(labeled Kaali Crater 9). The yellow ring marks an area of
25 km around the major crater.

B. Resulting spatial description
Arbitrary different representations can be computed and

generated from the result matrices. It is possible even to
generate many different types spatial descriptions.

The Keyhole Markup Language (KML) is an Extensible
Markup Language (XML) based format for specifying spatial

data and content. It is considered an official standard of the
Open Geospatial Consortium (OGC).

The KML description can be used with many spatial com-
ponents and purposes, e.g., with a Google Earth or Google
Maps presentation [25], with a Marble representation [26],
using OpenStreetMap (OSM) [27] and national instances [28]
in order to create arbitrary context.

Figures 9, 10, and 11 show the complementary excerpts from
KML data generated for the results of the discovery with this
case study.

The excerpts contain the objects of the Kaali crater field,
Saaremaa, Estonia. In detail, the first excerpt holds the top
part of the generated KML.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <kml xmlns="http://www.opengis.net/kml/2.2" xmlns:gx="http://www.google.com/kml/

ext/2.2">
3 <Document>
4 <!-- (c) CPR, LX-Project, 1992 to 2016 -->
5 <name>Kaali Meteor Crater Field</name>

Figure 9. KML data top (excerpt) generated for results of the discovery
from factual knowledge (LX): The Kaali crater field, Saaremaa, Estonia.

It contains the formal configuration, e.g., the XML version, the
encoding, and the KML schemes to be used in addition with a
general name for the generated spatial description. The middle
part contains most of the factual data, which was compiled
during the preparatory phase, the knowledge mining, and the
consecutive phase.

It includes the major and minor crater groups with their
coordinates and elevation and also includes balloon style label
popup information.
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1 <Folder>
2 <name>Minor Meteor Crater</name>
3 <Style id="meteorcraterminor">
4 <BalloonStyle>
5 <text>$[description]</text>
6 </BalloonStyle>
7 <IconStyle>
8 <Icon>
9 <href>http://maps.google.com/mapfiles/kml/paddle/grn-blank.png</

href>
10 </Icon>
11 </IconStyle>
12 </Style>
13 <Placemark>
14 <name>Kaali Kraater 1</name>
15 <description>Kaali Impact Crater Field</description>
16 <styleUrl>#meteorcraterminor</styleUrl>
17 <LookAt>
18 <longitude>22.664737</longitude>
19 <latitude>58.371270</latitude>
20 <altitude>0.0000000000</altitude>
21 <range>9352719.7459717896</range>
22 </LookAt>
23 <ExtendedData>
24 <Data name="isBookmark">
25 <value>true</value>
26 </Data>
27 </ExtendedData>
28 <Point>
29 <coordinates>22.664737,58.371270,24.1</coordinates>
30 </Point>
31 </Placemark>
32 ...
33 </Folder>
34 <Folder>
35 <name>Major Meteor Crater</name>
36 ...
37 </Folder>
38 ...

Figure 10. KML central data (ex.) generated for results of the discovery
from factual knowledge (LX): The Kaali crater field, Saaremaa, Estonia.

The third excerpt holds the bottom part of the generated
KML with the range markers. The ellipses mark the location
of longer passages of data generated for the KML code,
which repeat comparable entries and entities but which are
not relevant for the demonstration here.
1 ...
2 <Folder>
3 <name>Circle 1 km radius around major crater</name>
4 <description><![CDATA[circle radius 1 km]]></description>
5 ...
6 <tessellate>1</tessellate>
7 <coordinates> 22.686508001199286,58.37271385997719,0.0 ... </

coordinates>
8 ...
9 </Folder>

10 </Document>
11 </kml>

Figure 11. KML data bottom (excerpt) generated for discovery results
from factual knowledge (LX): The Kaali crater field, Saaremaa, Estonia.

The complement of both parts form the XML based document,
which can be structured and documented to any required
extent. It allows to separate structure and style for the required
data representation and application.

There are many more features with the components and
KML, which can be used in context with spatial mapping,
computation, and visualisation, without describing details.

C. Resulting associated information: Spatial mapping

The resulting satellite view shows the area of the Kaali crater
field, Saaremaa, Estonia (Figure 12). Besides the major crater,
further features of the crater field are not immediately visible.
The reason is that the features are small in relation and they
can be hidden from the satellite view, e.g., under vegetation.

Figure 12. The resulting area of the Kaali crater field, Saaremaa, Estonia
(Google Earth data, flat view). Major crater visible without mark.

The integrated knowledge from different context can deliver
relevant information. For example, topography, elevation data,
vegetation coverage, water bodies, infrastructure information
are important information, which can be used in context with
the knowledge mining.

The final result from the knowledge mining with the clas-
sified LX factual knowledge can be projected onto online
satellite data of the area of the Kaali crater field. The result
from object and sub-objects is shown in Figure 13.

Figure 13. The resulting area of Kaali crater field, Saaremaa, Estonia, factual
knowledge (craters red and green) (LX) projected onto Google Earth data.

The interactive map shows the nine craters known for the
crater field. The major crater is marked in red colour, the minor
craters are marked in green colour.

The final result from the knowledge mining with the classi-
fied LX factual knowledge can be projected onto online vector
and navigation data (Figure 14).
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Figure 14. The resulting area of Kaali crater field, Saaremaa, Estonia, factual
knowledge (craters 1 to 9) (LX) projected onto OSM data via Marble.

The integration shows craters 1 to 9 of the Kaali crater field
area projected onto OSM data via Marble.

D. Resulting associated information: Media references

The integrated knowledge resources can contain references
to any data, e.g., media objects. Media objects contain own
references, e.g., classification, citations, documentation, and
keywords and can therefore contribute in many ways to new
insight – besides their intrinsic media content. The following
photo data (Figure 15) from the media references for “Kaali
crater” were delivered in association from the final result of
the knowledge mining workflow.

{k1 {k2 {k3

{k4 {k5 {k6

Figure 15. Integrated media photo objects associated with the knowledge
object “Kaali crater”, Saaremaa, Estonia, referring to [34] (LX resources).

The references of these media photo objects (Figure 3)
are part of objects in the knowledge resources. Media results
(1–5) [34] and specimen (6) photos from the Natural Sciences
Specimen Archive are dated June 29, 2016.

The photos and physical samples have been taken in 2016
by the Knowledge in Motion (KiM) natural sciences and
archaeology sections at the Kaali meteorite crater field on the

island of Saaremaa, Estonia, during the Geo Exploration and
Information (GEXI) [35] Baltic research and studies campaign.

In detail, the resulting photo objects of the examined site
(from left to right, from top to bottom) show in this sort order:

1: Major crater, view in northern direction.
2: Major crater, view in north-eastern direction.
3: Major crater, view in western direction.
4: Path towards major crater, view from southern direction.
5: Vegetation, Lilium martagon, at top of crater rim (re-

ferring to Figure 4).
6: Specimen crater pond material (quartz, melane parti-

cles, lacustrine deposits, biogenic material).
The references included in the knowledge mining workflow
(Figure 5) provide the complementary information that fine
particles from the Kaali crater include impactor remains (esp.
significant Ni-Wüstite, Ni-Maghemite, Ni-Goethite, Hematite,
Magnetite, Taenite, Kamacite), spherules and splash-forms.

The analysis of the referenced media content, e.g., Lilium
martagon, delivers the information that this flower is an
indicator plant [36], indicating natural resources, e.g., show-
ing mining resources. This will also show context with the
references, both with impactor remains and with activities in
prehistorical and historical times and associated remains and
mythical context.

The media references are part of the context created for
the views. These references can also be used when creating a
secondary context, e.g., a spatial and dynamical visualisation,
based on the results.

E. Consecutive criteria and range markers
The above resulting media references are directly referenced

with the Kaali crater, especially with the major crater of the
crater field. If we use further criteria, e.g., available with the
spatial context and projection, we can associate additional
context, e.g., Points Of Interest (POI), in the range around
the Kaali crater. The generated KML can be used to express
such ranges (Figures 16 and 17). The spatial algorithms and
features available with the respective applications can be used
to create complementary insight from individual context.

For example, further context for a primary view can be cre-
ated by calculation of context considering a range. Considering
range means calculating distance in a spatial representation.

The resulting perspective satellite view shows the area of
the Kaali crater field, Saaremaa, Estonia, including circular
range markers (Figure 16). The range markers (visible 1 km
and 2 km diameter) mark an area around the major impact
in the crater field. The same data is used with Marble (in
this zoom the 1 km diameter range marker is visible in the
window) and OSM context data (Figure 17). Not only that
all the known crater structures appear to be located inside the
close range around the major impact: That way the results can
be analysed in arbitrary different context with the integrated
knowledge, information, algorithms, and methods available
from the chosen target.

Consecutive associations and further consecutive references
can be computed, making use of the new context and features
[37].
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Figure 16. Secondary context with satellite data: Range markers at the area of the Kaali crater field, Saaremaa, Estonia (Google Earth), with range markers,
major, and minor craters in a portable, interactive, and dynamical environment, presenting the resulting knowledge in context of a perspective satellite view.

Figure 17. Secondary context with street data and legends: Resulting area of the Kaali crater field, Saaremaa, Estonia (Marble, OSM data), with range markers,
major, and minor craters in a portable, interactive, and dynamical environment, presenting the resulting knowledge in context of land use and transportation.



324

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Google Earth provides satellite data and POI, Marble with
OSM provides vector street and feature data and different
POI data. The secondary context examples using satellite and
OSM data showed the range circles and the generated selection
legend with the circles from the generated KML data as well
as the legends on available transportation infrastructure context
and on area context, e.g., forest areas, farm areas, residential
areas, and lake reservoirs.

The spatial context provides an arbitrary number of thematic
knowledge, which can be integrated with the results in order to
compute new views and insight. The applied components allow
to combine an arbitrary number of methods. For example,
perspective visualisations can give additional information and
enable to create references in that “spatial-range” context of
integrated knowledge KML based animations can allow flight-
over animations in the context of the associated thematic
knowledge. These are just two of many examples for the spatial
context only.

The region referenced fuzzy contextualisation for spatially
expressed thematic context, e.g., weather and climate map data
[38], can, e.g., also make the method beneficial for businesses
like planning agencies and insurance companies.

These are the core items of the methodology implemented
for this case study, from preparatory phase and knowledge min-
ing to the consecutive phase with the analysis of results. There
are no optional items, which should be described in detail, as
the fine-tuning always depend on what the implementor wants
to achieve for a certain task.

VI. CONCLUSION

Creating context and views for gaining insights from content
of knowledge resources is a most challenging task. This re-
search successfully deployed the Cogwheel Modules Method-
ology for advanced knowledge mining and generating data,
especially for knowledge integration and the goal of creating
new views, which lead to new insights and cognition.

The methodology case study implementation showed how
primary context and secondary can be created and how the
views can be visualised. The examples showed a series of
newly generated spatial views, which open a wide new context
of complementary dimensions, which can further be used to
associate additional references. The case study also showed
that this way the context can be extended very efficiently and
that new insight can be the result, which was out of scope
before.

The implementation proved that the methodology can be an
excellent support for advanced knowledge mining. Generating
views also means using general and specialised tools, which
allow to add new knowledge from resources.

As soon as views proof to extend a context efficiently the
process can be used for creating automated learning processes
and saving the views with long-term knowledge resources for
future use. Besides the practical benefits for knowledge mining
the methodology also contributes to the further development
of multi-disciplinary knowledge resources.

Creating spatial views is one of an arbitrary number of
possible applications. The major phases of the methodology

were applied for the implementation. Nevertheless, creating
spatial Cogwheel Modules with spatial components and multi-
disciplinary knowledge from knowledge resources demon-
strated the methodology in a very instructive way.

The paper provides the results from the research and data-
centric implementation of a case study of integrated knowledge
and methods for answering knowledge mining challenges like
complex questions and a number of instructive examples for
creating primary and secondary context views.

The case study is focussing on knowledge mining challenges
associated with geosciences and archaeology. Therefore, one
category of the relevant generated context is spatial context,
implemented in modules for spatial analysis and visualisation.

The base of the view creation is the identification and
mapping of required resources – knowledge resources and
partial solutions, mapping of complementary components in
their context, and excerpts of associated knowledge used for
information peeling generating a base for the information
processing. The resources provide conceptual and factual
knowledge in integration with appropriate context data and
application components for computing and visualisation.

The mapped application components – tools and filters
– were used complementary for handling the complex re-
sources, systematically peeling of information nuclei and
facets, milling, and consecutive information processing, in-
cluding decision making integrating spatial and conceptual
criteria. The results of the knowledge mining information
object turnaround, can itself become part of the knowledge
resources.

The methodology and the view creation can be applied to
many application scenarios, especially where a solution can
only be gained by integration of different data and approaches.
Examples are multi-disciplinary knowledge mining scenarios
integrating natural sciences and archaeology. Comparable rea-
sonable results are not possible with any tested services, e.g.,
even large search engines accessing data in depth and width
of the knowledge spectrum.

The various approaches also provide potential for optimi-
sation for special priorities. In most cases, the optimisation
can consider the individual challenges and the use of special
algorithms and applications.

Future work concentrates on analysis of complementary
context features, beyond spatial views, and further improv-
ing the long-term multi-disciplinary knowledge resources. On
module side for knowledge mining the creation, utilisation, and
documentation of advanced components with the Cogwheel
Modules is in focus.
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