
General Framework for Context-Aware Recommendation of Social Events

Wolfgang Beer, Walter Hargassner
Software Competence Center Hagenberg GmbH

Softwarepark 21, Austria
Hagenberg, Austria

{wolfgang.beer; walter.hargassner}@scch.at

Christian Derwein, Sandor Herramhof
Evntogram Labs GmbH
Leonfeldner Strasse 328

Linz, Austria
{sandor; chris}@evntogram.com

Abstract—Modern e-commerce systems offer a multitude of
products and services in global marketplaces. The modern
consumer is therefore overwhelmed by millions of options,
variants and choices of products and services. With the rise
of global marketplaces with their huge amount of items,
recommendation systems became the basis for modern e-
commerce systems. The traditional approaches for implement-
ing recommendation engines, such as content and collaborative
filtering, solve the challenge of calculating a recommendation
set of items for a given user. While these traditional approaches
cope well with large sets of static user and item information,
they lack a general approach for including highly dynamic
context-information. As the e-commerce market swiftly changes
to mobile computing platforms, such as smartphones and
tablets, the use of context-information for generating item
recommendations is of great interest. In this work, we propose
a concept for a general framework for the implementation of
such context-aware recommendation engines, specifically for
mobile platforms.

Keywords-context awareness; context aware recommen-
dation; decision support; recommendation system;

I. INTRODUCTION

The modern consumer is overwhelmed with options and
choices. Global marketplaces, such as ebay, Amazon, Apple
iTunes or Google Play, offer millions of different products
and services in hundreds of different categories. These
categories span a wide spectrum of product families from
traditional hardware to software and mobile apps, ebooks,
electronics, video and music streaming or even food. Today
global marketplaces offer unlimited possibilities to publish
and instantly deliver all kinds of products and services.
While the publishing and delivery of products and services
is getting easier for companies, it is difficult to uniquely
present a specific product to customers. According to the
huge number of products available in global marketplaces
and the consumers limited time and motivation to check
all similar products, recommendation engines are of crucial
interest for modern consumers. Recommendation systems,
such as the product recommendation at Amazon or ebay,
are already present for several years. Without traditional
recommendation systems, the consumer soon gets lost within
the huge amount of available products. To counter that,
global marketplaces soon recognized the need for transparent

product recommendation within their systems. In 2006 the
Netflix Prize competition was initiated with a 1 million
dollar prize for achieving a ten percent or more improvement
of Netflix’s video recommendation algorithm. The training
set that Netflix published for the price competition contained
around 100 million ratings from about 500.000 anonymous
customers on 17.000 videos. The contest attracted 48.000
competing teams from 182 different countries. The winning
team (BellKor) from AT&T Research Labs (made up of Bob
Bell and Chris Volinsky, from the Statistics Research group
in AT&T Labs, and Yehuda Koren) was able to improve
the performance of Netflix’s recommendation algorithm by
8.43 percent. So it is obvious that traditional recommenda-
tion systems play an important role in modern consumer
markets. On the other side many interesting aspects of
recommendation systems have not been fully addressed by
the research community so far. Bell et al. identified several
such research aspects during their work on the Netflix
prize competition [1]. One of these aspects, which we
will also address in this work, is the relation of temporal
effects and the realization that parameters describing the data
are not static but dynamic functions. So the client-centric
view on recommendation systems much depends on the
consumer’s actual context. Client-centric recommendation
system approaches, such as implementations on smartphones
and mobile devices, should focus on the user’s demands
in a tight relation to the users actual situation. So for a
user the context-related dimensions time, location, weather,
activity and companions play a major role in any decision.
Bell et al. also identified that a combination and blending
of several quite simple recommendation approaches often
result in excellent recommendations. In this work, we also
argue that building a framework for blending of multiple
dimensions, containing context-related information such as
time and distance and linked data information, can lead
to reliable and customizable client-centric recommendation
models.

Section II gives a short overview on state-of-the-art in rec-
ommendation systems and related work on how to introduce
context-awareness in recommendations. Section III focuses
on the requirements a general framework for context-aware
recommendation systems has to fulfill. Section IV gives an

141Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

abstract overview on our approach for introducing context-
information in traditional recommendation methods and sec-
tion V defines a practical software architecture to implement
our approach. Section VI concludes with an application case
study that introduces context-aware recommendation to the
domain of social events.

II. RELATED WORK

The importance of context-awareness in software systems
has been discussed by research communities in many dif-
ferent application domains, including ubiquitous and per-
vasive computing, mobile computing, e-commerce, infor-
mation retrieval, marketing and management as well as
in several engineering disciplines. The term context-aware
software was first used in the Xerox PARC research project
PARCTAB in 1994 [2]. In this work, the term was defined
and used for software that is able to adapt according to
its actual location, the collection of nearby people, hosts
and accessible devices. Also the possibility to track the
changes of context information over time, in other words to
store historic context information, was mentioned. Over the
years, different research groups enriched this basic definition
of context and context-aware software. Brown et al. [3],
for example, widened the scope of context information to
temperature, time, season and many other factors. Due to the
fact that the number of context information factors is nearly
unlimited, the definition of context by Anhind K. Dey is one
of the most commonly used:

Context is any information that can be used to
characterize the situation of an entity. An entity
is a person, place, or object that is considered
relevant to the interaction between a user and
an application, including the user and application
themselves. [4]

This definition of context specifies that context contains any
kind of information about an entity in order to understand its
situation. So context information is not limited to location
information, but could also mean information about the
social situation of a person or the persons mood. Usually,
such a sort of context information is hard to collect, but
there are a reasonable number of research projects that try
to collect even this kind of information. An interesting fact
about the above definition of context is that Dey identifies
three base classes that classify all objects: person, place
and object. This kind of classification has practical reasons
but is also fixed to a location-dependent view of context
information. Over the last ten years several architectures and
implementations of software middleware frameworks were
published that emphasised the aggregation and interpretation
of context-information [5].

In addition to context-acquisition, processing and interpre-
tation, traditional algorithms for designing recommendation
systems need to be considered. Traditional recommendation
systems take a set U of users and a set of products (items) P ,

which should be recommended to a user. A recommendation
system then provides an utility function f that measures the
relevance of a product out of set P to a given user. This
utility function f (f : U × P → R, where R is an ordered
set of numbers) assigns a number to each item (or even to a
compound set of items) in a way that captures the relevance
or preference of an user. The objective of recommendation
systems is to find or learn this utility function f . Function
f is used to predict the relevance of items out of P and of
new appearing items with similar attributes. In the literature
different approaches exist for finding a function f by using
an available dataset. Traditional recommendation approaches
are distinguised into two major strategies: content filtering
and collaborative filtering.

A. Content Filtering

The content filtering approach creates profiles for each
item and user, in order to characterize and compare its nature
[6]. Each profile contains a specific set of attributes, which
can be used to compare objects. For example, a restaurant
could have a cuisine attribute, describing the type of food
it offers, a location attribute, a vegetarian tag, and so on. A
recommendation function f chooses items that are similar
to items the user has already chosen or rated before. The
utility function compares the user’s profile and calculates the
similarity of a user profile with the available items. There-
fore, the user profile allows the recommendation engine to
create a list of items that could fit to a given user profile.
Many implementations of this approach additionally refer to
Linked Data information, such as RDF stores and Semantic
Web repositories, to classify and search systematically for
related information.

B. Collaborative Filtering

In collaborative filtering approaches, the recommendation
function chooses items that were preferred by other users
with similar attributes. So collaborative filtering approaches
depend on either explicit or implicit user ratings of items.
By rating different items a user can feed explicit ratings
into the recommendation engine, while implicit feedback is
collected by the system through the analysis of the users be-
haviour (previous purchases, navigation path, search terms,
...). Collaborative filtering is domain-free, which means that
it can be applied to any application area and to different data
aspects, which could be hard to formulate into an explicit
profile. Collaborative filtering is more accurate than content
filtering [6], but has the challenge of starting without any
initial data sets (cold start problem). It is not directly possible
to address new users or objects for which the system has
no initial data set available. Popular collaborative filtering
methods are neighborhood methods and latent factor models.
The Pearson’s correlation coefficient sim(u, v) is often used
to calculate the popular neighborhood method kNearest
Neighbor, in order to measure the similarity between the

142Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

Figure 1. General approach for estimating the overall relevance of items for a given user in multiple dimensions

target user u, and a neighbor v. The symbol ru corresponds
to an average rating of user u and P denotes the set of
products or items.

sim(u, v) =

∑
i∈P (ru,i − ru)(rv,i − rv)√∑

i∈P (ru,i − ru)2
√
(rv,i − rv)2

(1)

Another method uses association rules to explicitly model
the dependency and similarity of items. So a rule could
e.g. be: when a customer buys ItemA and buys ItemB,
then the rule recommends to buy ItemC. One of the most
widespread methods for calculating latent factors is matrix
factorization, which is described in detail in [6]. Most of the
modern recommendation systems use a combination (hybrid
approach) of content filtering and collaborative filtering
approaches to further improve the accuracy of recommenda-
tions. Beside these traditional approaches for implementing
recommendation algorithms, several groups are working
on the challenge of customizing recommendations and to
build flexible recommendation queries. REQUEST: a query
language for customizing recommendations was published
by Adomavicius et. al. in 2011 [7], which promotes a
custom query language to build flexible and customized
recommendation queries based on multidimensional OLAP-
cubes. Several contributions have been made by research
groups that built various application scenarios for context-
aware recommendation systems, ranging from tourism [8],
restaurants [9], or even people (e.g. glancee.com).

III. FRAMEWORK REQUIREMENTS

Within this section we would like to discuss require-
ments a general framework for implementing context-aware
recommendation systems has to fulfill. To discuss each
requirement in detail would exceed the scope of our work,

so we focus on several requirements that had a high priority
for our use-case in VI.

A. Flexible and dynamic customization

A client-centric view on the recommendation process
demands for a flexible user interface to enable the cus-
tomization and fine tuning of recommendation impact factors
for non-technical users. So the users should be able to
control the learning and recommendation process at a most
fine grain level, while the configuration and presentation
should be on an abstract and understandable level. The user
should be able to specify a variable number of impact factor
dimensions and even to add custom defined impact factors.
The framework should normalize all the chosen impact
factors and automatically provide a list of recommended
items that is sorted according to the weighted sum of
normalized impact factors.

B. Temporal aspect

Temporal aspects [10] deal with the change of the context
and with the change of the content profiles over a timeline.
A recommendation framework has to consider the fact that
the importance of specific datasets may change over time.
It makes a big difference, if a person has bought an item
yesterday or 10 years ago. A general framework has to cope
with this varying impact.

C. Transparency

To raise the users confidence in recommendations, it is of
crucial importance to give immediate and transparent feed-
back on recommendations. The recommendation framework
has to provide a human understandable explanation for a
given recommendation set. Sundaresan, from ebay research,
published a great article about the 6 questions you have to

143Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

Figure 2. General software architecture for the implementation of a context-aware recommendation system

address during the design and implementation of recommen-
dation engines [11] (What, Where, When, Why, Who and
How). He also points out that recommendation engines that
address the transparency aspect (the Why question), offer
a better conversion rate in e-commerce applications. There
are several user studies that clearly show that addressing the
transparency aspect improves the performance of recommen-
dation engines [12].

D. Performance

In order to provide recommendations for mobile applica-
tions that consider the actual context of a mobile user, it
is necessary to deliver immediate results. Recommendations
that consider the location and activity of an user, have to
react in time to provide recommendations in the specific sit-
uation, when a user needs them. As actual recommendation
approaches harvest and analyse a huge amount of data, this
requirement is critical for every implementation.

E. Quality

As users are implicitely benchmarking recommendation
engines according to the quality of recommendations they
are able to provide, it is necessary for a general framework
to provide a standard approach for evaluating the quality
of recommendation engines. A framework has to provide
implicit and explicit quality evaluations, which means that
the framework constantly evaluates the quality of results by
using test data sets, as well as to explicitly ask the users for
quality feedback.

IV. APPROACH

To implement a general framework for context-aware rec-
ommendation systems for mobile applications it is necessary
to define the impact of context related, dynamic informa-
tion on the recommendation of items for users. Compared
to the traditional recommendation approaches, which were
already discussed in Section II, we combine these traditional
collaborative filtering approaches with user related context-
information. For each application scenario there exists a col-
lection of context aspects that are relevant for a recommen-
dation in a certain situation. While the location information
might not be relevant for recommending books in an online
bookshop, it is of crucial importance for the recommendation
of nearby restaurants. Each dimension of a given context,
such as location, weather or even companions is represented
through an impact function. An impact function defines the
influence of one dimension of a given context on the overall
relevance for a given user. All impact functions are of the
given form

fi : U × P × C → R

where U represents the set of users, P the set of products
and C a dimension of a given context (e.g. location, number
of nearby friends, ...). The weighted sum of all normalized
impact functions results in an overall relevance for a product
p, a given user u and context c, where wi represents a
weight, that the end user defined for a specific dimension of
the context:

144Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

f(u, p, c) =
∑
i<P

fi(u, p, c)wi(c) (2)

A general framework for context-aware recommendation
systems has to offer the basis for customizable recommen-
dation engines, that consist of a variable and dynamic set of
impact functions that can either be predefined by the frame-
work (e.g. aspects such as distance, user ratings, history,
friends, ...), or explicitly defined by users. Furthermore, the
users are able to dynamically define and adapt the weight
of different impact functions according to their preferences,
which is shown in Fig. 1.

As Fig. 1 shows, the customized recommendation system
within this example contains six different impact functions.
Each of these impact functions calculates the relevance
of an item for a given user for a specific dimension of
a given context, such as distance, friends (companions),
genre, ratings, prices or artist. The general framework is
not limited to these six impact functions. The designers of
recommendation systems should provide a domain-specific
set of additional functions, in order to improve the quality
of recommendations for the users in different application
domains. The radar chart in the lower left corner of Fig. 1
visualizes the weight an individual user defined for a given
set of impact functions. Each user specifies the personal
weight of each dimension of the context. Another important
feature of this approach is, that each of the impact functions
can be defined and calculated by using completely different
strategies. While the distance impact function could be a
simple spatial query, the rating impact function could be
implemented as traditional collaborative filtering approach.

V. SYSTEM ARCHITECTURE

The general software architecture for context-aware rec-
ommendation systems, that implements the approach in
section IV is devided into a client-server model, that im-
plements several subsystems. As it is shown in Fig. 2,
the server defines all necessary subsystems for data access
and third-party information retrieval, user interfaces for
manual content selection and correction, as well as the
recommendation module. The server database contains a
matrix of given ratings, user and product profiles as well
as additional semantic information. All additional semantic
data can be accessed by using semantic web standards and
query languages, such as RDF and SPARQL. The purpose of
accessing these sources of semantic information is to receive
additional item-based similarity measurements that are used
in combination with the traditional collaborative filtering
result. External sources of semantic information, such as
Facebook or Last.FM, are either directly imported and
duplicated, or directly accessed through a defined service
interface. The decision if an external information source is
either imported or directly accessed depends on the third-
parties’ service level agreements.

The recommendation module is responsible for calcu-
lating the recommendation approach in section IV and to
communicate the resulting product ratings to the clients. The
client-server communication is implemented as a lightweight
REST (Representational state transfer) service approach. On
the client-side, a local application is visualizing the resulting
list of recommendations and is collecting the necessary
context information in combination with the user’s feedback
on the given recommendations.

VI. USE-CASE: EVNTOGRAM

The following use-case was selected out of a running
project in cooperation with EVNTOGRAM, which is a
platform operator for personalized and context-sensitive
recommendation of social events. The philosophy of EVN-
TOGRAM is to analyze the users’ habbits and activities, as
well as their social interaction, in order to offer personal-
ized and context-aware recommendations for social events,
specifically in the domain of music events, such as concerts
and music festivals. The general framework, explained in
section IV and section V, helps to include various context-
dimensions into the calculation of the relevance of an event
for a given user. EVENTOGRAM records these context-
dimensions, such as the users’ activities, social interaction,
music listening habbits and individual ratings, in order to
sort a list of music events according to the calculated
relevance, as it is shown in Fig. 3. In a first prototype
EVENTOGRAM is trying to find out which subset of
context-dimensions is providing good recommendations for
the users. In that sense ’good’ means the feedback the user
is providing for a given ordering of items.

VII. CONCLUSION

In this work, we propose a general approach as well as
a general software architecture for the implementation of
context-aware recommendation systems was presented. The
approach as well as the framework offers high flexibility
according to the definition and configuration of new impact
functions, which influence the recommendation of items for
given users. The framework is domain-free, which means
that this approach can be implemented and adapted for
different application domains. The context-aware recommen-
dation of items of all kind, ranging from products in e-
commerce to activities and services in sport and fun will
get much attention in future software development. We think
that a general framework for designing and implementing
such recommendation systems for different application do-
mains is of great importance. The next steps within our work
will be to gather empirical feedback from the community
within the given use-case of recommending music related
events.

145Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

Figure 3. EVNTOGRAM Music Event Recommendation App

REFERENCES

[1] R. M. Bell, Y. Koren, and C. Volinsky, “The
bellkor solution to the netflix prize,” [retrieved: jan.
2013]. Available: http://www2.research.att.com/ volin-
sky/netflix/ProgressPrize2007BellKorSolution.pdf

[2] B. Schilit, N. Adams, and R. Want, “Context-aware com-
puting applications,” in Mobile Computing Systems and Ap-
plications, 1994. WMCSA 1994. First Workshop on Mobile
Computing Systems and Applications. IEEE, 1994, pp. 85–
90.

[3] P. J. Brown, J. D. Bovey, and X. Chen, “Context-aware
applications: From the laboratory to the marketplace,” IEEE
Personal Communication, vol. 4, no. 5, Oct. 1997, pp. 58–64.

[4] A. Dey and G. Abowd, “Towards a better understanding
of context and context-awareness,” in CHI 2000 Workshop
on The What, Who, Where, When, and How of Context-
Awareness, 2000.

[5] W. Beer, V. Christian, A. Ferscha, and L. Mehrmann, “Model-
ing context-aware behavior by interpreted eca rules,” Euro-Par
2003 Parallel Processing, 2003, pp. 1064–1073.

[6] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” IEEE Computer, vol. 42,
no. 8, Aug. 2009, pp. 30–37.

[7] G. Adomavicius, A. Tuzhilin, and R. Zheng, “Request: A
query language for customizing recommendations,” Info. Sys.
Research, vol. 22, no. 1, Mar. 2011, pp. 99–117.

[8] W. Beer and A. Wagner, “Smart books: adding context-
awareness and interaction to electronic books,” in Proceedings
of the 9th International Conference on Advances in Mobile
Computing and Multimedia, MoMM ’11. New York, NY,
USA: ACM, 2011, pp. 218–222.

[9] V.-G. Blanca, G.-S. Gabriel, and P.-M. Rafael, “Effects of
relevant contextual features in the performance of a restaurant
recommender system,” in In RecSys11: Workshop on Context
Aware Recommender Systems (CARS-2011), 2011.

[10] Y. Koren, “Collaborative filtering with temporal dynamics,”
in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD
’09, New York, NY, USA: ACM, 2009, pp. 447–456.

[11] N. Sundaresan, “Recommender systems at the long tail,” in
Proceedings of the fifth ACM conference on Recommender
systems, ser. RecSys ’11, New York, NY, USA: ACM, 2011,
pp. 1–6.

[12] R. Sinha and K. Swearingen, “The role of transparency in
recommender systems,” in CHI ’02 extended abstracts on
Human factors in computing systems, ser. CHI EA ’02. New
York, NY, USA: ACM, 2002, pp. 830–831.

146Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

