
Using GPI-2 for Distributed Memory Paralleliziation of the Caffe Toolbox to Speed up

Deep Neural Network Training

Martin Kuehn, Janis Keuper and Franz-Josef Pfreundt

Competence Center High Performance Computing
Fraunhofer Institute for Industrial Mathematics

Fraunhofer-Platz 1
D-67663 Kaiserslautern, Germany

Email: {Martin.Kuehn, Janis.Keuper, Franz-Josef.Pfreundt}@itwm.fraunhofer.de

Abstract—Deep Neural Network (DNN) are currently of great
interest in research and application. The training of these net-
works is a compute intensive and time consuming task. To reduce
training times to a bearable amount at reasonable cost we extend
the popular Caffe toolbox for DNN with an efficient distributed
memory communication pattern. To achieve good scalability
we emphasize the overlap of computation and communication
and prefer fine granular synchronization patterns over global
barriers. To implement these communication patterns we rely on
the the ”Global address space Programming Interface” version 2
(GPI-2) communication library. This interface provides a light-
weight set of asynchronous one-sided communication primitives
supplemented by non-blocking fine granular data synchronization
mechanisms. Therefore, CaffeGPI is the name of our parallel
version of Caffe. First benchmarks demonstrate better scaling
behavior compared with other extensions, e.g., the IntelTMCaffe.
Even within a single symmetric multiprocessing machine with
four graphics processing units, the CaffeGPI scales better than the
standard Caffe toolbox. These first results demonstrate that the
use of standard High Performance Computing (HPC) hardware
is a valid cost saving approach to train large DDNs. I/O is an
other bottleneck to work with DDNs in a standard parallel HPC
setting, which we will consider in more detail in a forthcoming
paper.

Keywords–GPI-2; Caffe; DNN; SGD; GASPI.

I. INTRODUCTION

Deep Neural Network (DNN) architectures have improved
considerably the accuracy in data classification opening the
door for a plethora of use cases in image classification,
speech recognition or semantic text understanding. However,
the training of DNNs is a very compute intensive task. So,
the raising interest in these architectures created a tremendous
demand for compute resources which is further intensified by
a race to greater sizes of DNNs.

Another important factor is the time necessary for training
DNNs. To train a popular architecture like, e.g., GoogLeNet
can easily take several days on a Graphics Processing Unit
(GPU). To make things worse the training usually is an iterative
process of trials and modifications in the DNN architecture.
So, keeping training times tolerably is a key requirement to
actually apply DNNs in research and industry.

In response to this challenge, hardware vendors brought to
market special hardware, e.g., the DGX-1 sold by NVIDIA or
the S822LC (”Minsky”) sold by IBM. They try to integrate

TABLE I. APPROXIMATE COMPUTATION TIMES FOR ALEXNET
WITH BATCH SIZE B = 256 AND 450k ITERATIONS, GOOGLENET
AND INCEPTION V3 WITH B = 32 AND 1400k,2000k ITERATIONS.

SETUP CAFFE WITH CUDA 8 AND CUDNN 6 FOR GPUS AND
INTELTMCAFFE WITH MKL17 FOR CPUS.

CPU K80 P100 KNL
AlexNet [2]:
time per iteration 2s 0.9s 0.1s 0.6s
time till convergence 250h 112h 13h 75h
GoogLeNet [3]:
time per iteration 1.3s 0.36s 0.08s 0.32s
time till convergence 361h 100h 31h 89h
Inception V3:
time per iteration - - 0.33s -
time till convergence - - 180h -

as much compute power in terms of floating point operations
per second (FLOP/s) as possible in a single compute node.
While this special hardware comes also with a special price it
is also not as flexible to apply to other problems in computer
science. On the other hand, there already exists a plethora
of compute systems in the world used for High Performance
Computing (HPC) [1]. Usually these consist of hundreds of
nodes usually connected with high bandwidth, low latency
networks like InfiniBand networks. A considerable number of
them are even equipped with GPU accelerators.

Our aim is to make these HPC resources available to the
field of data analytics. The advantage of this approach is
twofold. First, it provides the data analytics community access
to the needed hardware quickly because it is already up and
running. Secondly, in the long run it avoids the separation of
resources that are used in the field of data analytics and in the
traditional HPC field. This not only simplifies the buildup and
the operation of these compute resources but it also increases
the flexibility to mix data analytics and other compute jobs
on the same cluster. The latter increases the load factor and
reduces costs.

The toolbox Caffe [4] is very popular to build and train
DNNs. It is easy to use and a wealth of predefined DNNs are
available to get to results quickly. The popular Convolutional
Neural Networks usually have a performance advantage on
Caffe versus the TensorFlow framework. However, the paral-
lelization of Caffe, as it is provided in its original version,
is limited to a single Symmetric Multi Processing (SMP)
compute node. IntelTMdeveloped a MPI based prallel version

75Copyright (c) IARIA, 2017. ISBN: 978-1-61208-567-8

INFOCOMP 2017 : The Seventh International Conference on Advanced Communications and Computation

of Caffe, which we will use as benchmark. Our goal is to
provide a parallel version of Caffe based on a Partitioned
Global Address Space (PGAS) Application Programming In-
terface (API), that can exploit one sided commmunication
more efficiently than MPI. This speeds up the DNN training by
distributing the computational load on several servers equipped
with a GPU or a set of powerful Central Processing Units
(CPUs).

To ensure high scalability it is crucial to organize the
inter node communication efficiently. To exploit the precious
network bandwidth to the maximum it is important to overlay
as much of the inter node communication with computation
as possible. The Global address space Programming Interface
version 2 (GPI-2) library [5] developed by our group provides
an efficient interface for one sided, asynchronous data trans-
fers. This interface is the basis of an efficient and well scaling
distributed memory parallelization of the Caffe toolbox. So,
we call our parallel version of Caffe CaffeGPI.

The rest of the text is organized as follows. In Section
II details on our parallelization approach and communication
pattern are given. In Section III the implementation of the
communication pattern is described. In Section IV our first
benchmarks are presented and in Section V the results are
discussed.

II. PARALLELIZATION APPROACH

Although the numerical operations involved in the training
of DNNs are typically basic linear algebra operations on
dense matrices, which have a rather good FLOP to byte
ratio, the bandwidth of the communication networks must be
used efficiently to keep the latency low between the training
iterations.

A. Stochastic Gradient Descend
The Stochastic Gradient Descend (SGD) [6] algorithm is

a standard for training DNN and is implemented in the Caffe
toolbox. It is the standard choice for such famous DNNs like,
e.g., GoogLeNet or AlexNet. The training data xi is partitioned
into batches which are iteratively applied to the DNN to
modify the weights w which are also called the model. Each
iteration consists of a forward propagation and a backward
propagation. In the forward propagation, the data batch is
inferred while during the backward propagation a gradient on
the weights is computed and later on applied on the model.

Require: ε > 0
1: for all t = 0 . . . T do
2: randomly draw batch M ← B samples from X
3: Init∆wt = 0
4: for all x ∈M do
5: aggregate update ∆w ← ∂wxj(wt)
6: end for
7: update wt+1 ← wt − ε∆wt

8: end for
9: Return wT

Figure 1. Mini-Batch SGD with samples X = {x0, . . . , xm}, iterations T ,
step-size ε, batch size B

The two basic parallelization strategies commonly used
for SGD are data parallelism or model parallelism [7]. In

the model parallelism, the net and its weights are distributed
among different ranks of the parallel computer, while the batch
stays the same for all ranks. In data parallelism the DNN is
duplicated on every rank while the data batch is split into
equal fractions for each rank. The computed gradients on each
rank are aggregated and then applied to the model which
is distributed back to all the ranks. We concentrate on the
data parallelism approach here which is favorable for DNN
containing many convolutional layers like the popular AlexNet
or GoogLeNet. An advantage of this approach is a constant
aggregated IO turnover over the ranks fetching the training
data.

As the DNN is organized in layers we write the model of
layer l in the iteration k as w(l,k), the partial gradient on rank r
as ∆w

(l,k)
r . Using this notation the iterative data parallel SGD

algorithm can be shortly noted as

wl,k+1 := wl,k − ε
s∑

r=1

∆wl,k
r . (1)

Higher order terms are neglected here without loss of
generality. These terms usually depend on the history of the
models wl,k, which are inherently broadcasted to all the ranks
to perform the next forward propagation phase.

B. Design Principles

Figure 2. Data Parallel SGD as frequently implemented.

To exploit the full potential of this parallelization approach
the data transfers of the model and gradients have to be
designed very carefully, since the total amount of data that has
to be transferred during each iteration grows with the number
of compute ranks.

As a consequence a typical HPC interconnect, like EDR
InfiniBand, should be used to provide enough bandwidth to
exploit the scalability of the problem. These networks are com-
monly used to connect the nodes in current HPC clusters. An-
other important aspect is to use these interconnects efficiently.
Foremost this means to overlap computation and communi-
cation to avoid that their run times add up fully. Instead both
should ideally take place at the same time so that no additional
time for communication is necessary. Unfortunately this is not
the case for the standard Caffe which enters separate phases for
computation and communication (see Figure 2). The second
principle is to avoid global synchronization points between the
ranks. Instead data dependencies are enforced locally and very
fine granular. The communicated data chunks are pipelined to
keep the ranks busy most of the time with either computing,
communication or both. Barriers to synchronize the ranks are
avoided and used only where absolutely necessary. However,
it is important to note that our approach strictly regards all

76Copyright (c) IARIA, 2017. ISBN: 978-1-61208-567-8

INFOCOMP 2017 : The Seventh International Conference on Advanced Communications and Computation

the data dependencies immanent of the SGD algorithm unlike
the so called ”asynchronous SGD” algorithms described in
literature [8].

C. Overlapping Computation and Communication
During the backward propagation the partial gradients

∆w
(l,k)
r are computed separately for each layer and in an

inverse order. The next read access to the model of a certain
layer is in the forward propagation of the following time step.
So, especially for the layers at the bottom of the DNN quite
some time is available to reduce the partial gradients and to
update the model of that layer (see Figure 4 for illustration).

The communication pattern is turn based, one layer of
the DNN per turn. In each turn, a partial gradient ∆w

(l,k)
r

is computed for the respective layer li and forwarded to the
receiving ranks. Incoming partial gradients of previous layers
from other ranks are checked, aggregated if available and
forwarded to receiving ranks as well. In the same manner,
updates on the model of previous layers are forwarded to the
receiving nodes. In all these cases the data transfers are only
triggered but not awaited for conclusion.

1: for all l = L, . . . , 1 do
2: compute local gradient ∆w

(k,l)
r

3: check for arrived gradients from previous layers
4: reduce arrived gradient data locally
5: trigger sends of available gradient data
6: trigger sends of arrived model data
7: end for
8: finalize local communication phase

Figure 3. Turn based communication pattern on rank r.

In the finalization phase, all loose ends of the communi-
cation to the local rank r are finalized. After that the local
instance of the DNN is ready for the next iteration. Please
note that even between iterations there is no global barrier
applied. So, every rank that received a complete update of
the model can immediately start with the next training phase
without having to wait for other ranks to get their full update.

Layer 1

Layer 2

Layer n-1

Layer n

...

t

=

=

=

=

forward Local backward

Distributed model accumulation

+

+

+

+

global update

Figure 4. Sketch of the data parallel SGD communication pattern
implemented in this work.

Particularly, this scheme allows to overlap the computation
of the gradient ∆w

(l,k)
r with the communication of gradients

and models of previous layers. And it avoids global barriers
between the ranks.

III. IMPLEMENTATION

Our parallel version of the Caffe framework is done as
minimally invasive as possible. Basically, the setup routine of
the DDN and the backward propagation routines are modified.
Additionally, a layer-wise model update is introduced in the
Solver class.

During the backward propagation over the layers, the
calculations of the gradients are followed by calls to the newly
added communication routines to reduce the local gradients
and to broadcast the updated model.

A. Basics of GPI-2

To implement the overlapping, one sided communication
pattern the GPI-2 library has been used, which is a PGAS com-
munication API for C/C++ and Fortran applications. Fulfilling
the Global Address Space Programming Interface (GASPI)
specification (see webpage [9]), it provides truly asynchronous
one-sided communication primitives supplemented by a non-
blocking light-weight and fine granular data synchronization
mechanism. GPI-2 exploits interconnects supporting Remote
Direct Memory Access (RDMA) as, e.g., InfininBand net-
works. On these networks the data transfers can be almost
completely offloaded to the network infrastructure reducing
the load on the computational resources to a minimum. No
intermediate copies are necessary which saves memory band-
width. Apart from that, GPI-2 is a very lean library and gives
the user more direct control over the particular data transfers
as, e.g. the usual Message Passing Interface (MPI) library.

All these features make GPI-2 a perfect match to imple-
ment the overlap of computation and inter node communi-
cation in Caffe. Being an open source library GPI-2 can be
downloaded at [5].

B. Implementation of Data Transfers

In the Caffe data structures that define the DNN the
arrays that carry the model and the gradient data are placed
inside GPI-2 data segments. Providing the gaspi segment use
function, GPI-2 cooperates perfectly with special memory
regions in Caffe which are allocated by cudaMallocHost to
enhance data transfers to the GPU. The GPI-2 library allows
to write remotely (inter node) and directly to these segments.
All the data transfers are triggered with a gaspi write notify
call to the library. The receiver of the data chunk checks on
the respective notification and acts on the received data if
necessary.

The gradient data is reduced in a reduction tree pattern
aggregating the final gradient on the master rank. The master
rank performs the update on the current model to compute
an update for the next iteration. Then the updated model is
broadcasted to all the other ranks in another tree pattern. The
gradient data is always sent from higher rank numbers to lower
rank numbers while the updated model is broadcasted from
lower rank numbers to higher rank numbers. As the size of
the gradients equals the size of the models we take advantage
of the full duplex feature of switched networks.

The reduction and the broadcast trees are build from scratch
to keep control over the tree topolgy and to interwine closely
the communication pattern with the computation.

77Copyright (c) IARIA, 2017. ISBN: 978-1-61208-567-8

INFOCOMP 2017 : The Seventh International Conference on Advanced Communications and Computation

1) Reduction of the Gradient: To reduce the local gradients
in a binomial, tree each rank checks for incoming gradient data
in its receive buffer. If available the gradient data is reduced
(added to) with its own gradient data of that layer. If the
rank has a receiver in the tree pattern the reduced gradient is
forwarded to this receiver using a call to gaspi write notify.
The communication tasks are performed once in the loop over
the layers as depicted in section II-C. The gradient data is
processed as available. No waiting takes place for a specific
data chunk.

2) Broadcast of the model: The broadcast of the model is
performed similarly as the gradient reduction. As no reduc-
tion steps are necessary the incoming model data from the
sender is just forwarded to its receiver ranks using a call to
gaspi write notify.

IV. FIRST BENCHMARKS

To evaluate our parallelization approach we start to com-
pare CaffeGPI with the original Caffe on a SMP machine
containing 4 GPUs. This setup is quite similar to specialized
workstations produced to train DNNs. The original Caffe
uses the standard thread parallel communication pattern in
this benchmark. In the CaffeGPI benchmark, 4 independent
processes are started on the same node, one for each GPU,
communicating through the network card. The SMP machine
is a single node of the Taurus cluster at the ZIH in Dresden
containing 2 IntelTMXeon E5-2680v3 CPUs, 64GB Random-
access memory (RAM) and 4 NVIDIA K80 GPU. The network
is InfiniBand FDR. As DNN we choose the familiar AlexNet.
Figure 5 depicts the scaling behavior at 1, 2, and 4 GPU.

Figure 5. Scaling results for AlexNet an overall batch size of 256 on a
single node with multiple GPUs interconnected via PCIe. Based on Caffe

1.15, Cuda 8, CuDNN 5.1.

On a first glance our CaffeGPI should have a small disad-
vantage in this benchmark compared with the standard Caffe
toolbox because it needs to communicate via memory copies
inside the node. At a closer look the reduction of the partial
gradients puts a lot of load on the memory system, the PCIe
bus and the QuickPath Interconnect between the CPUs. In both
cases, memory copies between GPU-RAM and CPU-RAM
have to be performed. However in the benchmark of the stan-
dard Caffe all the GPUs execute their communication phase
at the same time leaving precious bandwidth idle during the

computation phase. In the CaffeGPI benchmark, the memory
copies between GPU-RAM and CPU-RAM are not overlapped
but interleaved with computation of the partial gradients. As
not all the GPUs perform their copies at the same time, the
memory transfers are distributed over a longer period of time.
The memory copies across the two sockets are performed
by the network card and overlapped with the computation.
Finally our implementation can demonstrate superior scaling
behavior as depicted in Figure 5. The second benchmark
compares CaffeGPI to IntelTMCaffe (see webpage [10]), a
distributed memory extension of Caffe based on the MPI. In
this benchmark, 1, 2 or 4 nodes of the same cluster were
used, but only one GPU per node. Here distributed memory
data transfers are performed in both scenarios. The benchmark
in Figure 6 demonstrates a superior scaling behavior of our
implementation in comparison to the IntelTMCaffe framework.
A speedup of 2.4 on 4 nodes compared to one node delivers a
reasonable performance figure to train AlexNet in a reasonable
time frame on standard HPC hardware.

Figure 6. Scaling results for AlexNet with an overall batch size of 256 on
distributed nodes with single GPUs interconnected via Infiniband. Based on

IntelTMCaffe 1.14, Cuda 8, CuDNN 5.1

V. CONCLUSION AND FUTURE WORK

The preliminary benchmarks presented in this work demon-
strate that our distributed memory communication pattern
implemented in the CaffeGPI framework scales well on four
distributed memory nodes equipped with one GPU per node.
The total performance is similar or even better than using
the standard SMP-parallel approach of Caffe on a SMP node
equipped with 4 GPU. Even on this single SMP node with
4 GPUs, our CaffeGPI scales much better than the standard
Caffe framework.

These results demonstrate that data scientists can rely on
available HPC compute resources to train their DNNs in a
reasonable time frame. Our toolbox CaffeGPI can help to
satisfy the need for more compute power in the area of data
science without having to buy vast amounts of specialized
hardware, which is difficult to apply economically for other
tasks in computer science.

We will continue to benchmark various hardware con-
figurations, e.g. a NVIDIA DGX-1 or an IBM S822LC
(”Minsky”). Further benchmarks will be done to analyze the

78Copyright (c) IARIA, 2017. ISBN: 978-1-61208-567-8

INFOCOMP 2017 : The Seventh International Conference on Advanced Communications and Computation

communication pattern introduced in CaffeGPI. Alternative
patterns will be evaluated that might improve the reduction and
the broadcast operations. We will also extend our benchmarks
on more DNNs and to wider batch sizes to evaluate their
scaling behavior and to find performance optimized training
parameters.

ACKNOWLEDGMENT

The authors thank the Center for Information Services and
High Performance Computing (ZIH) at TU Dresden for gen-
erous allocations of computer time.

REFERENCES
[1] “TOP 500,” http://www.top500.org, accessed: 2017-05-15.
[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[3] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1–9.

[4] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” arXiv preprint arXiv:1408.5093, 2014.

[5] “GPI 2.0,” http://www.gpi-site.com/gpi2, accessed: 2017-05-15.
[6] L. Bottou, “Large-scale machine learning with stochastic gradient

descent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp.
177–186.

[7] J. Keuper and F.-J. Preundt, “Distributed training of deep neural
networks: Theoretical and practical limits of parallel scalability,”
in Proceedings of the Workshop on Machine Learning in High
Performance Computing Environments, ser. MLHPC ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 19–26. [Online]. Available:
https://doi.org/10.1109/MLHPC.2016.6

[8] J. Keuper and F.-J. Pfreundt, “Asynchronous parallel stochastic gradient
descent: A numeric core for scalable distributed machine learning
algorithms,” in Proceedings of the Workshop on Machine Learning
in High-Performance Computing Environments, ser. MLHPC ’15.
New York, NY, USA: ACM, 2015, pp. 1:1–1:11. [Online]. Available:
http://doi.acm.org/10.1145/2834892.2834893

[9] “GASPI,” http://www.gaspi.de, accessed: 2017-05-15.
[10] “IntelTMcaffe,” https://github.com/intelcaffe/caffe, accessed: 2017-05-

15.

79Copyright (c) IARIA, 2017. ISBN: 978-1-61208-567-8

INFOCOMP 2017 : The Seventh International Conference on Advanced Communications and Computation

