
Automatic Image Marking Process

 Aeman I.G. Masbah
 School of Computing and Engineering

University of Huddersfield
Huddersfield, UK

E-mail: Aeman.Masbah@hud.ac.uk

 Joan Lu
 School of Computing and Engineering

University of Huddersfield
Huddersfield, UK

E-mail: J.lu@hud.ac.uk

Abstract-Efficient evaluation of student programs and timely
processing of feedback is a critical challenge for faculty.
Despite persistent efforts and significant advances in this field,
there is still room for improvement. Therefore, the present
study aims to analyse the system of automatic assessment and
marking of computer science programming students’
assignments in order to save teachers or lecturers time and
effort. This is because the answers are marked automatically
and the results returned within a very short period of time.
The study develops a statistical framework to relate image
keywords to image characteristics based on optical character
recognition (OCR) and then provides analysis by comparing
the students’ submitted answers with the optimal results. This
method is based on Latent Semantic Analysis (LSA), and the
experimental results achieve high efficiency and more accuracy
by using such a simple yet effective technique in automatic
marking.

Keywords-Automatic Image Marking Process; Optical
Character Recognition; Test and Evaluation; Operational Test
and Evaluation.

I. INTRODUCTION
 Computer-based Assessment Systems (CAS) has grown
exponentially in the last few years because of the growing
number of university students and increasing contributions
of e-learning approaches to asynchronous and ubiquitous
education.

The marking of student assignments can be classified as
manual and automatic. Unfortunately, instructors and
teaching assistants are already overburdened with work
teaching computer science courses; they have little time to
devote to additional assessment activities. As a result, an
automated tool for grading student assignments must be
devised.

Many educators have used automated systems to assess
and provide quick feedback on large volumes of student
programming assignments [1][2]. Such systems typically
focus on the compilation and execution of student programs
against some form of instructor-provided test data.
However, this approach ignores any testing that the student
has undertaken, and fails to provide both the assessment and
feedback necessary for facilitating Test-Driven
Development (TDD) [3].

Marking the programming assignments of many students
is not often an easy job for instructors. Thus, making the
marking easier benefits the automated marking program.

Such innovation in marking programming class assignments
electronically is, arguably, as important as the learning
curriculum for programming classes [4]. Automated
marking applications are more accurate in detecting errors
and providing feedback.

This paper presents a novel automatic image marking
process technique. Section 2 discusses the related work, and
section 3 describes the design of the proposed technique.
Section 4 presents the experimental results, and section 5
concludes the study.

II. RELATED WORK
 The problem of marking automation has attracted much
research attention. Early studies on computerisation
considered the practicality of the general approach to
different programming dialects by exploring diverse
evaluation systems. The early Ceilidh framework checked
understudy assignments in dialects that included Standard
ML [5] in a similar way as that presented in this work, but
without high-level, consistent joining using a cutting-edge
Learning Management System (LMS) [6].

Recent studies have focused on the specifics of Java
assessment and interactive learning. Truong et al. [7]
attempted to assess semi-automatically Java programs via
static analysis without compiling and executing programs.
Tremblay et al. [8] assessed Java programs using a
command-line tool available to students who use a Unix-
based system and noted the possibility of a future Web-
based application. Blumenstein et al. [9] developed a
generic GAME system that can be used as a framework for
the automated grading of assignments in programming
languages, including Java.

Web-CAT is a web-based application that is
implemented using the WebObjects framework of Apple
[10]. This application is designed to be language
independent, but focuses on grading object-oriented
programs that are written in Java. For Java programs,
students write JUnit-compatible test cases and submit them
along with the assignments in their other classes. The
reports produced by these tools are merged into one
seamless source code mark-up, which can be viewed on the
Web by students.

Redish et al. [11] developed a tool called
AUTOMARK to evaluate student style based Pascal
programs. Berry et al. [12] [13] developed another tool to
assess student programs written in C language depending on

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

mailto:Aeman.Masbah@hud.ac.uk

style. Jones used the concept of testing to automate the
evaluation of student programs [14].

 Furthermore, Jackson and Usher developed a tool called
ASSYST to automate student programs depending on their
correctness, efficiency, complexity and style [1]. Jumaa
developed a tool to evaluate structural languages such as
Pascal, FORTRAN, C and Basic based on Halstead,
McCabe, Style and Lipow and Thayler models [15]. The
instructor evaluated student programs against it. The tool
proved to be suitable for intermediate courses. As for
advanced courses with big projects, it was impractical for the
instructor to write a model program for each assignment.
Also, in the industry it is difficult to write a model
program in order to assess an industrial program.

One of the very early applications in the course of
automated program marking, Hollingworth’s grader, was
specifically developed to test punched card programs [16].
Many other applications with similar functions have been
introduced, for instance, the Online Judge [17], and, more
recently, Sakai, which was developed with much more
sophisticated ware introduced by Suleman [18]. Although
the varieties of Automated Marker available can differ in
name or other peripheries, their principal functionality is to
evaluate programs written by students indirectly through the
output. This process of indirect test is not without some
deficiency. According to experts, the deficiency of the
indirect approach of testing programs includes, but is not
limited to, “limited quality of feedback”, “heavy hindrances
on evaluation” and “over sensitivity to minor errors”.
Another noticeable pitfall of the available series of
automatic program markers is the inability to mark non-
textual programs, interactive programs and tasks with
specific algorithms; some examples are animation or
drawing programs that students are sometimes required to
write. Pragmatically, it is important to explore ways of
upgrading the functionalities of the already existing
automated markers and suggest solutions to the currently
noticeable pitfalls. Other common approaches, amongst the
available automated program makers in the literature, are
those that apply the file-system-based organisational
strategy. For instance, the Isong [19] automated program
marker was developed to focus on compiling student
programs automatically. This is done by comparing the
instructor-provided data against the student program output.
Isong’s marker was written with the help of Unix-shell
scripts. Reek developed a similar grader long before Isong’s
marker [2]. Like Isong’s marker Reek’s grader is also a
Unix-based system that was developed for inductor
programing courses. This grader also adopted the file-
system organisational strategy for evaluating assignments
and student submission. The submissions are graded against
instructor-provided data. Hence, instructors control the
grader’s feedback and evaluation process.

BOSS is also an automated program marker developed
with a battery of Unix-based programs, which adopts file-
system-based organisational strategy for submission of test
cases tested against instructor-provided test criteria [20].

Through these studies, the proposed system will differ from
other systems by depending on accuracy and efficiency in
the operations of automatic marking. It will use a new
technology based on Images and OCR.

III. RESEARCH APPROACH
 A systematic investigative process was employed to
increase or revise current knowledge of automatic marking.
This section discusses the research approach, which consists
of two sub-phases: (A) designing an improved automatic
image marking process system and (B) testing and
evaluating the developed system.

A. Automatic Image Marking Process System Design
 The entry point of the proposed system will be the
submission of the programming assignments in image
format. Optional Character Recognition (OCR) will then be
used to extract the text from the submitted assignments and
to save the text file. The proposed system is a combination of
OCR, web technology and database. Web technology is used
to develop a Web interface that enables students to submit
their assignments, and teachers to mark the submitted
answers and manage students’ marks. Furthermore, this
process will be explained with more detail in phases: (1)
submission process and (2) marking process. The database is
used to save the students’ marks, and the saved data are used
later by the teachers to generate their reports. This section
consists of two sub-sections: (1) submission process and (2)
marking process. Figure 1 shows the architecture of the
proposed system.

Figure 1. Architecture of the proposed system.

1. Submission Process
 The computer science programming assignments undergo
the stages of (1) compilation, (2) execution and (3) testing.
The submission process, which begins after the execution
stage, is described as follows:

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

• The student executes his/her programming assignment
using programming IDE.

• The student converts the result of the execution into an
image (e.g., a snapshot of the result).

• The student logs into the system using his/her metric
number. In order to enforce proper security, each user
must first register onto the system before he/she can use
any of the other functionalities. Registration ensures that
a proper ID and password are created for each new user.

• The student uploads the image that contains his/her
answer.

• The system creates a folder named after the metric
number of the student and then saves the uploaded
image inside the folder.

Figure 2. Web interface for uploading assignment answers.

The proposed system provides a web interface for

students to upload their assignment answers. Figure 2
shows the web interface.

2. Marking Process
The proposed system provides an automatic marking
process for the submitted answers. The marking process
is described as follows:
• The teacher logs onto the system using his/her

teacher ID.
• The teacher selects one of the submitted answers.

The system allows the teacher to upload the optimal
Answer and to enter the assignment mark. Figure3
shows the upload of the optimal answer.

Figure 3. The upload of the optimal answer and the assignment mark box.

• The system uses the OCR web service to extract the text

from the answer of the student and the optimal answer
of the teacher.

• The system compares both texts (i.e., the submitted and
optimal answer) and computes the similarity percentage.

Figure 4. Submitted image that represents the student’s answer.

The accuracy of the text extraction is positively affected by
a high image quality. Figure 4 shows the submitted image
for the student’s answer.

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

Figure 5 shows the text extracted from the image using
the OCR web service.

Figure 5. Text extracted from the image using the OCR web service.

B. Testing and Evaluation
 Test and Evaluation (T&E) is the process by which a
system or its components are compared against the
requirements and specifications through testing. The results
are evaluated to assess the progress of design, performance,
supportability and more. Developmental Testing and
Evaluation (DT&E) is an engineering tool used to reduce
risk throughout the acquisition cycle. Operational Test and
Evaluation (OT&E) is the actual or simulated employment,
by typical users, of a system under realistic operational
conditions [21]. In this phase, the proposed system is tested
against the student answer samples to check the matching
percentage of the proposed system.

IV. EXPERIMENTAL RESULT
 The proposed system is tested on a sample of 65 student
answers. The targeted samples are divided into five groups
as follows: (1) Group A, (2) Group B, (3) Group C, (4)
Group D and (5) Group E.

Group A consists of students' answers with zero
matching optimal answers, while Groups B ,C and D consist
of students' answers with partial matching of optimal
answers. Group E consists of students' answers with
identical matching of optimal answers.

The students upload different answers to computer
science programming questions. The teacher selects a
specific answer, uploads the optimal answer, and gives the
total mark for a particular question. The system calculates
the matching percentage using (1). Figure 6 shows the
matching percentage for each group.

Percentage of matching =

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑁𝑁𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁𝑙𝑙
𝑇𝑇𝑜𝑜𝑚𝑚𝑚𝑚𝑙𝑙 𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑚𝑚ℎ𝑁𝑁 𝑜𝑜𝑜𝑜𝑚𝑚𝑙𝑙𝑜𝑜𝑚𝑚𝑙𝑙 𝑚𝑚𝑙𝑙𝑙𝑙𝑎𝑎𝑁𝑁𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁

 … “(1)”

Mathematically, this can be explained as the
simultaneous representation of all optimal answers uploaded
in the assignments corpus as points in semantic space, with
the initial dimensionality of the sequences of answers in the
developing system. To classify the correct representation of
optimal answers, we represent it as a vector, and determine
which answer is nearest to the optimal answer, where the
distance measure between two vectors xn and yn is defined as:

𝑑𝑑 �(𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛)𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙�(x𝑛𝑛 − y𝑛𝑛)𝑥𝑥𝑘𝑘
𝑙𝑙

𝑘𝑘=0

�

Figure 6. The matching percentage for each group.

The entire sample is submitted and evaluated. A zero
matching percentage is obtained if these answers do not
match each other as shown in Group A. B 42.8%, C 42.85%
and D 83.33% decreased matching percentage is obtained if
these answers partially match each other as shown in Group
B, C and D. E 100% matching percentage is achieved in
group E when the submitted and optimal answers exactly
match each other.

The matching accuracy depends on the adoption of OCR
and the advanced analysis that is applied to the submitted
answers. However, such accuracy is negatively affected by
the quality of the uploaded image that represents the student
answer. Image quality is one of the most important factors
for improving the quality of recognition. A resolution of 200
DPI to 400 DPI is recommended for a better recognition. An
example of a system output is shown in Figure 7.

0
10
20
30
40
50
60
70
80
90

100

 A B C D E
Percentage % 0 42.8 42.85 83.33 100

Pe
rc

en
ta

ge
 %

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

The content of the submitted image is extracted, and
each line of the extracted content compared with the
corresponding line in the optimal answer to check whether
they match each other.

Figure 7. Example of output.

V. CONCLUSION AND FUTURE WORK
 An approach to automatically evaluating computer
students’ assignments has been described. The framework
is based on Optical Character Recognition (OCR).
Automatic Assignment Scoring (AAS) aims to extend the
system’s capabilities to provide more efficient and accurate
results, as well as to save teachers or lecturers time and
effort. This paper has illustrated the students’ group
matching with optimal answers. The 100% matching
percentage is achieved in group A. The experimental results
validate the efficiency of the proposed system in the
automatic marking process.

In future, the proposed system will be integrated with
the interface of Huddersfield University website.
Furthermore, the prototype will be evaluated through task-
based trials and comparative qualitative evaluation and
testing with other systems.

REFERENCES

 [1] D. Jackson and M. Usher, "Grading student programs
using ASSYST," in ACM SIGCSE Bulletin, 1997, pp.
335-339.

[2] K. A. Reek, "A software infrastructure to support
introductory computer science courses," in ACM
SIGCSE Bulletin, 1996, pp. 125-129.

[3] K. Beck, Test-driven development: by example:
Addison-Wesley Professional, 2003.

[4] J. Al-Jáafer and K. E. Sabri, "Automark++: A case tool
to automatically mark student Java programs," Int. Arab
J. Inf. Technol., vol. 2, pp. 87-96, 2005.

[5] S. P. Foubister, G. Michaelson, and N. Tomes,
"Automatic assessment of elementary Standard ML

programs using Ceilidh," Journal of Computer Assisted
Learning, vol. 13, pp. 99-108, 1997.

[6] Q. Wang, H. L. Woo, C. L. Quek, Y. Yang, and M. Liu,
"Using the Facebook group as a learning management
system: An exploratory study," British Journal of
Educational Technology, vol. 43, pp. 428-438, 2012.

[7] R. Saikkonen, L. Malmi, and A. Korhonen, "Fully
automatic assessment of programming exercises," in
ACM Sigcse Bulletin, 2001, pp. 133-136.

[8] G. Tremblay, F. Guérin, A. Pons, and A. Salah, "Oto, a
generic and extensible tool for marking programming
assignments," Software: Practice and Experience, vol.
38, pp. 307-333, 2008.

[9] M. Blumenstein, S. Green, A. Nguyen, and V.
Muthukkumarasamy, "Game: A generic automated
marking environment for programming assessment," in
Information Technology: Coding and Computing, 2004.
Proceedings. ITCC 2004. International Conference,
2004, pp. 212-216.

[10] S. H. Edwards and M. A. Perez-Quinones, "Web-CAT:
automatically grading programming assignments," in
ACM SIGCSE Bulletin, 2008, pp. 328-328.

[11] K. Redish and W. Smyth, "Program style analysis: A
natural by-product of program compilation,"
Communications of the ACM, vol. 29, pp. 126-133,
1986.

[12] R. E. Berry and B. A. Meekings, "A style analysis of C
programs," Communications of the ACM, vol. 28, pp.
80-88, 1985.

[13] W. Harrison and C. R. Cook, "A note on the Berry-
Meekings style metric," Communications of the ACM,
vol. 29, pp. 123-125, 1986.

[14] E. L. Jones, "Grading student programs-a software
testing approach," Journal of Computing Sciences in
Colleges, vol. 16, pp. 185-192, 2001.

[15] Jumaa, “A Computer Model for Evaluation of
Programs,” University of Engineering and Science,
1992.

[16] J. Hollingsworth, "Automatic graders for programming
classes," Communications of the ACM, vol. 3, pp. 528-
529, 1960.

[17] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon, "On
automated grading of programming assignments in an
academic institution," Computers & Education, vol. 41,
pp. 121-131, 2003.

[18] H. Suleman, "Automatic marking with Sakai," in
Proceedings of the 2008 Annual Research Conference of
the South African Institute of Computer Scientists and
Information Technologists on IT Research in Developing
Countries: Riding the Wave of Technology, 2008, pp.
229-236.

[19] J. Isong, "Developing an automated program checker,"
Journal of Computing Sciences in Colleges, 2001, pp.
218-224.

[20] M. Luck and M. Joy, "A secure on-line submission
system," Software-Practice and Experience, vol. 29, pp.
721-40, 1999.

[21] K. T. Weber and J. S. Janicki, "Cardiopulmonary exercise
testing for evaluation of chronic cardiac failure," The
American Journal of Cardiology, vol. 55, pp. A22-A31,
1985.

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

	I. Introduction
	II. Related work
	III. Research approach
	A. Automatic Image Marking Process System Design
	1. Submission Process
	B. Testing and Evaluation

	IV. Experimental Result
	V. Conclusion And Future Work
	An approach to automatically evaluating computer students’ assignments has been described. The framework is based on Optical Character Recognition (OCR). Automatic Assignment Scoring (AAS) aims to extend the system’s capabilities to provide more...
	In future, the proposed system will be integrated with the interface of Huddersfield University website. Furthermore, the prototype will be evaluated through task-based trials and comparative qualitative evaluation and testing with other systems.
	References

