
Combining Artificial Bee Colony and Genetic Algorithms to Enhance the GPGPU-

based ANN Classifier for Identifying Students with Learning Disabilities

Tung-Kuang Wu, Shian-Chang Huang,

Chin-Yu,Hsu, Chih-Han Tai

Dept. of Information Management
National ChangHua University of Education

Changhua City, Taiwan
e-mail: tkwu@im.ncue.edu.tw,

shhuang@cc.ncue.edu.tw, sw9856@gmail.com,
p198711@gmail.com

Ying-Ru Meng

Dept. of Special Education
National HsinChu University of Education

HsinChu City, Taiwan
e-mail: myr321@mail.nhcue.edu.tw

Abstract—Diagnosis of students with learning disabilities (LD)

is a difficult procedure that requires extensive man power and

takes a long time. Fortunately, through genetic-based (GA)

parameters optimization, artificial neural network (ANN)

classifier may be a good alternative to the above procedure.

However, GA-based ANN model construction is computation-

intensive and may take quite a while to process. In this study,

we examine another optimization algorithm, the artificial bee

colony (ABC) algorithm, which is based on the foraging

behavior of honey bee swarm, to search for the appropriate

parameters in constructing ANN-based LD classifier. We also

integrate ABC algorithm with GA evolution strategy by first

applying the former to derive a set of values of the ANN

parameters and then use these values as the starting points for

the latter GA evolution procedure. In addition, to speed-up the

above process, a low-cost general purpose graphics processing

unit (GPGPU), specifically, the nVidia graphics card, is

adopted for the ANN model training and validation. The

experimental results show that ABC can achieve better correct

identification rate (CIR) than GA with less computation time.

In addition, the strategy of using ABC as a pre-processing step

for GA evolution has improved the correct identification rate

by as much as 2.5% in two of our three data sets when

compared to using GA alone.

Keywords-learning disabilities; neural network; CUDA; ABC

I. INTRODUCTION

The term “learning disabilities” (LD) was first used in
1963 [1]. However, experts in this field have not yet
completely reach an agreement on the definition of LDs and
its exact meaning [2]. In fact, a person can be of average or
above average intelligence, without having any major
sensory problems (like visual or hearing impairment), and
yet struggles to keep up with people of the same age in
learning and regular functioning. Due to such implicit
characteristics of learning disabilities, the identification of
students with LDs has long been a difficult and time-
consuming process. In the United States, the so called
“Discrepancy Model” [3], which states that a severe
discrepancy between intellectual ability and academic
achievement has to exist in one or more of these academic

areas: (1) oral expression, (2) listening comprehension (3)
written expression (4) basic reading skills (5) reading
comprehension (6) mathematics calculation, used to be one
of the commonly adopted criteria to evaluate whether a
student is eligible for special education services. However,
the newer Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM 5) by the American
Psychiatric Association (APA) [4] has eliminated this
requirement and replace it with four other criteria.

In Taiwan, the diagnosis procedure pretty much follows
the “Discrepancy Model” despite the shift of criteria made
by the APA. The sources of input parameters required in
such prolonged process include information from parents,
general education teachers, students’ academic performance
and a number of standard achievement and IQ tests. To
guarantee collection of required information regarding
students suspected with LD, usually checklists of various
aspects are developed to assist parents and regular education
teachers. The Learning Characteristics Checklists (LCC), a
Taiwan locally developed LD screening checklist [5], is
commonly used in most counties of Taiwan. Among the
standard tests, the Wechsler Intelligence Scale for Children,
Third or Fourth Edition (WISC III or IV) plays the most
important role in this LD diagnosis model. WISC-III consists
of 13 sub tests [6]. The scores of the sub-tests are then used
to derive 3 IQs, which include Full scale IQ (FIQ), Verbal IQ
(VIQ), Performance IQ (PIQ), and 4 indexes, which include
Verbal Comprehension Index (VCI), Perceptual
Organization Index (POI), Freedom from Distractibility
Index (FDI), Processing Speed Index (PSI). There are also a
number of locally developed standard achievement tests
(AT), which typical consist of reading, math, and fields that
are related to students’ academic achievement.

Diagnosis of students with LDs then involves mainly
interpreting the standard test scores and comparing them to
the norms that are derived from statistical method. As an
example, in case the difference between VIQ and PIQ is
greater than 15, representing significant discrepancy between
a student’s cultural knowledge, verbal ability, and his/her
ability in recognizing familiar items, interpreting action as
depicted by pictures, is a strong indicator in differentiating
between students with or without LD [6]. A number of

105Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

similar indicators together with the students’ academic
records and descriptive data (if there is any) are then used as
the basis for the final decision. Confirmed possible LD
students are then evaluated for one year before admitting to
special education. However, it is important to note that a
previous study reveals that the certainty in predicting
whether a student is having a LD using each one of the
currently available predictors is in fact less than 50% [7].

The above identification procedure involves extensive
manpower and resources. Furthermore, a lack of nationally
regulated standard for the LD diagnosis procedure and
criteria result in possible variations on the outcomes of
diagnosis. In some cases, the difference can be quite
significant [8].

With the advance in artificial intelligence (AI) and its
successful applications to various classification problems, it
is interesting to investigate how these AI-based techniques
perform in identifying students with LDs. In our previous
study, we have shown that ANN classifier does well in
positively identifying students with LDs [8]. In subsequent
studies, we combined various feature selection techniques
and genetic-based parameters optimization with the ANN
classifier, which further improve the overall identification
accuracy [9]. However, despite the ANN-based classifier
performs well in LD diagnosis problem, the procedure is
computation-intensive and may take quite a while to process.
Accordingly, multi-threaded programming, grid-based and
cloud-based parallel computing have been used to speedup
the ANN model training and validation [10][11][12].

In this paper, we are still focusing on the ANN
classification model and work on porting the computation
intensive ANN classifier to the general purpose graphics
processing units (GPGPU). In addition, the ABC algorithm
is evaluated and compared to the GA approach in terms of
performance in optimizing the above mentioned ANN
classifier.

The rest of the paper is organized as follows. Section 2
briefly describes the history of applying AI techniques to
special education and gives a short introduction to ABC
algorithm that is used in our implementation. Sections 3 and
4 present our experiment settings, design and corresponding
results. Finally, Section 5 gives a brief conclusion of the
paper and lists issues that deserve further investigation.

II. RELATED WORK

Artificial intelligence techniques have long been applied
to special education. However, most of the studies occurred
more than one or two decades ago and mainly focused on
using the expert systems to assist special education in
various ways [8]. There were also numerous classification
techniques other than neural networks that were developed
and widely used in various applications [13]. Among all the
classification techniques, ANN has received lots of attentions
due to its demonstrated performance and has gained wide
acceptance [14].

An ANN is a mathematical representation that is inspired
by the way the brain processes information. Many types of
ANN models have been suggested in literature, with the
most popular one for classification being the multilayer

perceptron (MLP) with back propagation. The goal of this
type of network is to create a model that correctly maps the
input to the output using historical data so that the model can
then be used to predict the outcome when the desired output
is unknown. MLP with back propagation is typically
composed of an input layer, one or more hidden layers and
an output layer, each consisting of several neurons. Each
neuron processes its inputs and generates one output value
that is transmitted to the neurons in the subsequent layer.
Figure 1 provides an example of an MLP with one hidden
layer and one output neuron.

Input
Layer

Hidden
Layer

Output
Layer

x1

x2

xn

h1

h2

h
n

b1

b2

bn

b

y

w11

w21

wn1

wnn

w2n

w1n

w1

w2

wn

Input
Layer

Hidden
Layer

Output
Layer

x1

x2

xn

h1

h2

h
n

b1

b2

bn

b

y

w11

w21

wn1

wnn

w2n

w1n

w1

w2

wn

Figure 1. MLP with one hidden layer.

The output of i-th hidden neuron is computed by
processing the weighted inputs and its bias term bi as follows:











+= ∑

=

j

n

j

iji

h

i xwbfh
1

 (1)

where wij denotes the weight connecting input xj to hidden
unit hi. Similarly, the result of the output layer is computed
as follows:











+= ∑

=

j

n

j

j

output xwbfy
1

 (2)

with n being the number of hidden neurons and wj represents
the weight connecting hidden unit j to the output neuron. A
threshold function is then applied to map the network output

y to a classification label. The transfer functions
hf and

outputf allow the network to model non-linear relationships

in the data. Also note that the number of hidden layer nodes
does not need to be the same as the number of input nodes.

The training of a neural network is the process of
presenting the network with sample data and modifying the
weights to approximate the desired function. In particular, an
epoch indicates one iteration through the process of
providing the network with a sample input and updating the
network’s weights. Let Ni, Nh and No respectively represent
input feature size, number of hidden and output nodes, the
total order of complexity is then O(Ni×Nh×No+Nh×No) for one

106Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

epoch [14]. Since a typical ANN training process usually
takes 500 epochs, the computation complexity for training
of an ANN model is roughly equal to 500×N×O(Ni×Nh×

No+Nh×No), where N represents the size of input samples for

training.
In the field of special education, ANN has been used in a

number of applications [8]. To improve the ANN
classification accuracy, genetic-based algorithms have been
used in the training and construction of ANN model [15]. A
number of other approaches, such as particles swarm (PSO),
ant colony (ACO) and asynchronous parallel pattern search
(APPS) have also been proposed and applied to various
optimization problems. In addition to the above optimization
methods, a newer ABC algorithm simulating the foraging
behavior of honey bees has also been proposed and shown to
be performing better than GA and the other two optimization
methods [16]. In this model, the colony of artificial bees
consists of three different types of bees, which are employed
bees, onlookers and scouts. The first half of the colony
consists of employed bees and the second half includes
onlookers. Each employed bee is in charge of one food
source. In other words, the number of employed or on-looker
bees is equal to the number of food sources. The employed
bee may become a scout when its food source has been
exhausted. Without regard to all the details, the procedure of
ABC can be simply presented in Table I.

TABLE I. ABC PROCEDURE.

1. Generate initial n food sources Si, i=1, 2 …, n.

2. Each employed bee i, i =1, 2 …, n, computes and memories the fitness

of each food source Si.
3. cycle = 1
4. repeat

4.1. For each on-looker bee i, i =, 2 …, n, selects a new food source

with roulette wheel method (with probability calculated using

fitness values, Pi =
)(

)(

1

kCIR

iCIR

n

k

∑
=

) and generates its new position (vij)

according to the following equation: vij=xij+φij∗(xij−xkj), i, k∈{1,

2,…, n}, j∈ {1, 2,…, D}, xij is the current position of food

source evaluated by employed bee i for parameter j to be
optimized, k is a randomly selected number that is not equal to i,

φij is also a random number in the range [-1,1], and D is the

number of parameters to be optimized.
4.2. For each employed bees i, computes the new fitness value. If the

fitness value of the food source is not improved for a continuous
limit tries, abandons the food source. The employed bee, i,
becomes a scout and randomly generates a new food source.

4.3. Memorizes the best food source.
4.4. cycle = cycle +1

5. Until cycle = MCN

According to Table I, there are three major parameters
with ABC procedure: (1) maximum cycle number (MCN),
which is similar to the number of generations in GA, (2) the
number of food source (also, the number of employed as
well as on-looker bees), which resembles the population size
in GA, (3) the maximal continuous exploitation attempts to
a food source without improvement, limit, before an
employed bee becomes a scout. This parameter may prevent
ABC from trapping into some local maximum, which is
somewhat similar to mutation mechanism in GA.

However, optimization procedures such as those
mentioned above (like GA or ABC) usually require
numerous applications of the ANN training and validation
processes (depending on the number of chromosomes / food
sources and evolution generations / number of cycles), and
thus usually takes quite a long time to process. Accordingly,
researches have been applying parallel processing, which
may provide affordable computational power, to speedup
the time-consuming process. For network connected cluster
or grid environment, message passing interface (MPI) is
usually used to coordinate computing nodes for completing
a common task. On the other hand, to take full advantage of
the currently available multi-core processor technology,
OpenMP may be used explicitly to direct multi-threaded,
shared memory parallelism. In addition to nodes or CPU-
level parallelism, the fast advancing GPU technology now
finds its way to all kinds of applications that require
computation power [17]. Although originally designed for
3D graphics application, the Compute Unified Device
Architecture (CUDA) by nVIDIA has made the low-cost
and general purpose use of GPU possible [17].

In this study, we will work on porting the ABC
algorithm to the enhancement of the ANN classifier for LD
identification, and use GPU to speed-up the ANN training
and validation processes.

III. HARDWARE PLATFORM & IMPLEMENTATION ISSUES

The data sets used in this study are summarized in Table
II, which together with the corresponding pre-processing
(such as normalization and feature selection) are exactly the
same as those used in [10][11][12].

TABLE II. DATA SETS AND THEIR FEATURE SIZE USED IN THIS STUDY

 sample size number of features

data set 1 652 7

data set 2 125 7

data set 3 159 10

A workstation running Ubuntu 12.04 with hardware
specifications listed in Table III is set up for the above
objectives. The communication between CPU and GPU is
accomplished through a PCI express bus with theoretical
maximum 16GB/sec bandwidth (Although the GPU supports
higher PCIe 3.0 standard, the main board we use supports
only up to PCIe 2.0).

TABLE III. HARDWARE DETAILS USED IN THIS STUDY

 Processing Unit No. of cores Memory

PC
Intel Xeon Processor E3-
1230 v2 @ 3.30GHz

4 physical cores 16 GB

GPU
nVIDIA GeForce GTX

660 @ 1.03GHz

960 physical cores
(5 stream multi-processors, each
with 192 stream processors)

2 GB

The implementation of the ANN classifier (for LD
identification) is divided into two parts: (1) the PC host is
responsible for the optimization procedures (either GA or
ABC), and (2) the GPU takes care of the most time-

107Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

consuming neural network model training and validation
procedure, as shown in Figure 2. Switching in between the
PC host and GPU, there are two I/O operations (data
transfer through PCI express slot) in each iteration of GA or
ABC in Figure 2. For GA, each generation may contain only
two I/Os, while for ABC the number may reach six within
one cycle in the worst cases. This is due to the fact that in
each cycle of ABC, there may consist of fitness function
computations as a result of employed, on-looker and scout
bees. Considering the bandwidth between CPU and GPU,
the I/O operation may potentially become the bottleneck of
overall computation. However, the advantage of such a
design is that it is easy to incorporate different kind of
optimization algorithms in the future.

Figure 2. Computation workload distribution between the PC host and
GPU.

Three parameters of an ANN classifier with one hidden
layer, include number of hidden nodes (ranges in between 1
and 26), learning rate and momentum (both range in between
0.0 and 1.0), together with random number seed (which
might affect the initial weights and bias of neural network)
are encoded into the food sources (for ABC) or
chromosomes (for GA). The training and validation of ANN
model are sub-divided into six (for training) and four (for
validation) independent procedures as shown in Table IV.
Each of the ten procedures contains various numbers of
computations that may potentially be parallelized by
transforming them to the so called kernel functions.

TABLE IV. MAPPING OF ANN PROCEDURE TO GPGPU.

1. ANN Training Stage
For (i=1 � EPOCH) {

Initialize ANN input vector
Compute results of Input layer neurons
Compute results of Hidden layer neurons
Compute result of Output layer neuron & its error
Adjust Output layer neurons’ weights
Adjust Hidden layer neurons’ weights }

2. ANN Validation Stage
Initialize ANN input vector
Compute results of Input layer neurons
Compute results of Hidden layer neurons
Compute result of Output layer

As an example, for a GA-optimized (with size of
population equals P) Nf-fold cross-validation ANN

experiment with Ni input nodes and Nh hidden nodes, the
total number of multiplications added up to P×Nf×Ni×Nh for

the second procedure (Compute results of Input layer
neurons) in the training stage of Table IV.

Figure 3. Pseudo kernel function code for computing results of Input layer
neurons in the ANN training stage.

Each of the multiplications of the above example
corresponds to the so called thread in CUDA’s term and
implemented as a kernel function as shown in Figure 3.
These threads are then distributed to the 960 available cores
of the GTX 660.

IV. EXPERIMENT DESIGNS AND RESULTS

The long-term goal of our series studies has been
constructing an accurate ANN classifier for the identification
of students with learning disabilities. The purposes of this
study are to achieve the goal by evaluating ABC algorithm
and exploring ways to further improve its performance. In
addition, we would also like to speedup the above process
with the adoption of GPGPU. The outcomes of this study
will be compared to results by using the other optimization
methods (such as GA).

We have designed and conducted four experiments for
the purposes addressed above. In all the four experiments,
CIR of ANN five-fold cross validation is used to evaluate the
fitness and final outcomes of optimization (GA or ABC).

In the first experiment, we compare the performance of
ABC and GA algorithms in optimizing our LD ANN
classifier without the use of GPU. MCN and Limit (as
explained in Table I) are set to 50 (the same as GA’s
number of generation) and 20 (will be examined in more
details in experiment 3), while varying the number of food
source. For genetic algorithm, real-value encoding is
adopted with the crossover rate, mutation rate, population
size and number of generation set to 0.8, 0.1, 100 and 50,
respectively. Note, both ABC and GA codes are not
parallelized (i.e., with OpenMP), which mean they utilize
only one of the four available CPU cores. The results are
shown in Table V.

TABLE V. PERFORMANCE COMPARISON BETWEEN SEQUENTIAL GA

AND ABC IMPLEMENTATIONS. (ALL NUMBERS ARE AVERAGES OF 10
CONSECTIVE EXECUTIONS OF CODE AND ALL TIME IN SECONDS)

1 2 3
data set

method CIR
execution

time
CIR

execution

time
CIR

execution

time

GA 87.5% 9296 84.9% 3317 86.9% 6363

ABC(10*) 87.2% 1307 85.3% 713 86.5% 1026

ABC(20*) 87.6% 3390 85.6% 1261 87.0% 2126

ABC(30*) 87.6% 5399 85.8% 1751 87.2% 3188
* number of food sources.

108Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

As we can see, ABC can achieve approximately the
same (or slightly better) CIR as GA algorithm (using 100
chromosomes) does with number of food sources equals 20,
while take only about one third of time.

The second experiment is pretty much similar to the first
one except the ANN code is now ported and executed in
GPU with the number of food sources varying from 20 to
100. The results are shown in Table VI.

TABLE VI. PERFORMANCE COMPARISON BETWEEN GPU-ASSISTED
GA AND ABC IMPLEMENTATIONS. (ALL NUMBERS ARE AVERAGES OF 10
CONSECTIVE EXECUTIONS OF CODE AND ALL TIME IN SECONDS)

1 2 3
data set

method
CIR

execution

time
CIR

execution

time
CIR

execution

time

GA 87.9% 1304 85.2% 368 87.3% 641

ABC(20*) 87.9% 1342 85.2% 335 88.5% 480

ABC(40*) 88.1% 1590 86.2% 451 89.0% 722

ABC(60*) 88.1% 1889 86.3% 537 89.0% 894

ABC(80*) 88.2% 2339 86.7% 645 88.9% 1100

ABC(100*) 88.2% 2598 87.0% 729 89.1% 1267
* number of food sources.

The first thing to note in Table VI is that the GPU
version ABC no longer has the edge in execution time as the
sequential one. The major reason would be the increased
number of I/Os (in each cycle of ABC) as we mentioned in
Section III. We also notice that more food sources
correspond to better CIR, which is not much surprise.
However, the execution time does not seem to increase
proportionally with the number of food sources. Apparently,
more food sources mean the time spent in GPU computation
is longer, which reduces the percentage of time wasted in
I/O. Accordingly, using more food sources to improve the
overall CIR of LD classifier should be a viable option in this
case. Finally, like the sequential version, ABC with number
of food sources equals 20 performs comparatively to GA in
terms of CIR.

In the third experiment, we try to evaluate the effect of
adjusting the limit parameter of ABC. As explained in
Table I, limit is the threshold for an employed bee to
escape away from some potential local maximum. We try
to vary limit from 20 to 40 on data set 2 and record the
count of final best CIR that is contributed by the scout bee
(referred to as success count hereafter). For example, in
Table VII the success count equals 3 when limit is set to
20, which means three final best results (out of ten
consecutive executions of ABC optimized ANN classifier)
are achieved as a result of new food sources discovered by
scout bees. However, the success count dropped as limit
increases, which indicates the effect of scout bee becomes
less significant (or completely no contribution when
success count drops to zero). Accordingly, it appears that
setting limit to 20 may be a good balance in our study. In
addition, with the original ABC algorithm, the scout bee
operates by abandoning all the previous work and then
randomly generates a new food source for a fresh start.
Instead of just throwing all the efforts so far, we record the
best food source (among all exploitation before reaching

limit) by the employed bee and apply the mutation strategy
(as that used by the GA algorithm) on this food source to
derive a new one for the scout. The results of the modified
mutated strategy (using data set 2) are also presented in
Table VII. As we can see, the modified mutated strategy
appears to guarantee the contribution of scout bee. Also, in
general the averaged CIR does show some improvement as
a result of this slight modification.

TABLE VII. EFFECT OF LIMIT PARAMETER ON DATA SET 2 (ALL

NUMBERS ARE AVERAGES OF 10 CONSECTIVE EXECUTIONS OF CODE)

limit

strategy
 20 25 30 35 40

CIR 87.0% 87.0% 86.9% 87.0% 87.0%
random

scout success

count*
3 1 0 0 0

CIR 87.3 86.9 87.3 87.2 87.0
mutated

scout success

count*
3 2 3 3 2

* success count indicates the number of times that the best results are
derived by the scout (out of ten consecutive runs).

In the last experiment, we use ABC or GA as the
preprocessing step of each other. More specifically, we
perform the procedures depicted in Figure 2 twice by first
adopting ABC (or GA) and preserving the optimized ANN
parameters and random number seeds in the form of food
sources (or chromosomes). The food sources (or
chromosomes) are then used as the initial values for the
following GA (or ABC) procedure. The two variations are
referred to as ABC2GA (first ABC followed by GA) and
GA2ABC (first GA followed by ABC), respectively. Both
numbers of cycle / generation and food source / population
are set to 50 and 100. In the case of ABC, limit is set to 20
with the mutated strategy (as used in previous experiment)
adopted. The outcomes are listed in Table VIII. Also
shown in Table VIII are results in previous studies
[10][11][12], referred to as GA-grid1, GA-grid2 and
API2APPS.

TABLE VIII. PERFORMANCE COMPARISON AMONG VARIOUS METHODS

(ALL NUMBERS ARE AVERAGES OF 10 CONSECTIVE EXECUTIONS OF CODE
AND ALL TIME IN SECONDS)

1 2 3 data set

method
CIR

execution

time
CIR

execution

time
CIR

execution

time

 GA 87.9% 1,304 85.2% 368 87.3% 641

ABC 88.2% 2,598 87.3% 729 88.9% 1,267

GA2ABC 88.3% 3,870 87.4% 1,092 89.3% 1,892

ABC2GA 88.4% 3,881 87.7% 1,091 89.8% 1,893

GA-Grid1 87.8% 4,931 87.5% 1,623 87.5% 2,521

GA-Grid2 - - 87.2% 7,769 88.3% 13,234

API2APPS 88.2% 3,207 87.3% 1,285 87.6% 2,178

It appears that ABC2GA performs slightly better than
its counterpart (GA2ABC). Yet, most important of all,

109Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

both perform better than methods used in all other
previous implementations with the same data sets in terms
of average CIR. Another matter deserved mentioning is the
cost incurred by the leasing of Amazon EC2 virtual hosts
for the experiments in [11] (referred to by GA-grid2) was
nearly 2500 US dollars (including environment setup, code
testing and final production). However, in this study, we
have demonstrated that with the right methodologies (like
ABC), a 200 US dollars low cost graphics card can
achieve much better results both in CIR and execution
time.

V. CONCLUSIONS AND FUTURE WORK

In this study, we modify the original ABC algorithm, i.e.,
the characteristic of scout bee, and applied this modified
ABC to enhance the ANN classifier for identifying students
with learning disabilities. A low cost GPU is also used to
speed-up the ANN training and validation processes. As our
experiments show (Table VIII), the resulted solution (ABC-
optimized and GPU-assisted ANN classifier) itself not only
outperforms its GA counterpart (for as many as 2.1% gain),
but also in average achieve better CIR than our previous
studies. Furthermore, when this modified ABC is used as the
pre-processing step (for finding initial starting points) for GA
evolution, the CIRs can be further improved by nearly 1%
(data set 3). This is the best that we have ever got on these
three data sets in terms of average CIR.

However, there are still a few things that we may be
working on. The first of all would be improving the
performance in terms of execution efficiency. It appears that
our current implementations take too much time in the I/O
operations (data transfer between CPU and GPU memory).
We will try to port the optimization algorithms (GA or ABC)
to GPU to reduce unnecessary I/Os in the future. On the
other hand, we may also distribute the optimization code into
a number of virtual nodes, which according to our past
experience should further improve the CIR, and use
(multiple-)GPU as the computation engine.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Council of Taiwan, R.O.C. under Grant NSC 103-2511-S-
018-007.

REFERENCES

[1] S. A. Kirk, “Behavioral diagnosis and remediation of learning

disabilities,” Proc. of the Conference on the Exploration into
the Problems of the Perceptually Handicapped Child, 1963,

pp.1–7.

[2] J. M. Fletcher, W. A. Coulter, D. J. Reschly, and S. Vaughn,

“Alternative approach to the definition and identification of

learning disabilities: some questions and answers,” Annals of
Dyslexia, vol. 54, no. 2, 2004, pp. 304–331.

[3] J. Schrag, “Discrepancy approaches for identifying learning

disabilities,” http://www.specialed.us/discoveridea/topdocs/

nasdse/discld.pdf, retrieved: April, 2015.

[4] American Psychiatric Association, “Diagnostic and

Statistical manual of mental disorder-V (5th ed),” Washington,
DC: Book Promotion & Service LTD, 2013.

[5] Y.-R. Meng and L.-R. Chen, “On discussing the differences

about the learning characteristics of LD,” Bulletin of Special

Education, vol. 233，2002，pp. 75–93. (in Chinese)

[6] C. L. Nicholson and C. L. Alcorn, “Interpretation of the

WISC-III and its subtests,” Paper presented at the 25th Annual

Meeting of the National Association of School Psychologists,

Washington, DC, 1993, pp. 1–16.

[7] T.-S. Huang, “A Study on the characteristics of WISC-III for

students with learning disabilities,” Master thesis, Graduate
Institute of Special Education, National HsinChu University

of Education, Hsinchu, Taiwan. (in Chinese)

[8] T.-K. Wu, S.-C. Huang, and Y.-R. Meng, “Evaluation of

ANN and SVM classifiers as predictors to the diagnosis of

students with learning disabilities,” Expert Systems with
Applications, vol. 34, no. 3, April 2008, pp. 1846–1856.

[9] T.-K. Wu, S.-C. Huang, and Y.-R. Meng, “Effects of feature

selection on the identification of students with learning

disabilities using ANN,” Lecture Notes in Computer Science,

Springer Berlin/Heidelberg, vol. 4221, 2006, pp. 565–574.

[10] T.-K. Wu, S.-C. Huang, Y.-R. Meng, Y.-L. Lin, and H. Chang,
“On the parallelization and optimization of the genetic-based

ANN classifier for the diagnosis of students with learning

disabilities,” Proc. 2010 IEEE Conference on Systems, Man

and Cybernetics, 2010, pp. 4263–4269.

[11] T.-K. Wu, S.-C. Huang, Y.-R. Meng, and T.-H. Wu,
“Experiences on constructing neural network based learning

disabilities identification model with the Amazon elastic

compute cloud,” Paper presented at the 2012 International

Conference on Internet Studies (NETs 2012), Ausust 17-19,

2012, Bangkok, Thailand, pp. 1–10.

[12] T.-K. Wu, S.-C. Huang, T.-J. Chang and Y.-R. Meng (2014),

Improving learning disabilities students classification

accuracy by integrating api and apps algorithms on the

hadoop cloud environment, work presented at the 2014

International Conference on Internet Studies (NETs 2014),

August 16-17, 2014, Singapore, pp. 1.

[13] B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J.

Suykens, and J. Vanthienen, “Benchmarking state-of-the-art
classification algorithms for credit scoring,” Journal of the

Operational Research Society, vol. 54, 2003, pp. 627–635.

[14] C. M. Bishop, Neural Networks for Pattern Recognition,

Oxford University Press, Oxford, UK, 1995.

[15] E. Cantú-Paz and C. Kamath, “An empirical comparison of

combinations of evolutionary algorithms and neural networks
for classification problems,” IEEE Transactions on Systems,

Man, and Cybernetics-Part B: Cybernetics, vol. 35, no. 5,

2005, pp. 915–927.

[16] D. Karaboga, “An idea based on honey bee swarm for

numerical optimization,” Technical Report-TR06, Erciyes
University, Computer Engineering Department,

Kayseri/Türkiye, Oct., 2005.

[17] I. Buck, “GPGPU: General-purpose computation on graphics

hardware-GPU computation strategies & tricks,” ACM

SIGGRAPH course notes 8, 2004.

110Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

