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Abstract—We present a new numerical code CHIC (Coupling 
Habitability, Interior and Crust) for the simulation of the 
thermal evolution of terrestrial planets, with a focus on the 
numerical aspects of the code and its validation. 
The thermal evolution of the mantle  is calculated either by 
solving the energy conservation equation supplemented by 
boundary-layer theory (1D parameterized thermal evolution 
model) or by solving the energy, mass, and momentum 
conservation equations (2D/3D convective thermal evolution).  
For the latter setting, the equations can be solved either in the 
Boussinesq or extended Boussinesq approximation. The code 
provides information on the temperature field, convective 
velocities and convective stresses in the mantle. Simulations 
can also be run in steady-state regime. The code provides a 
user updatable library of thermodynamic properties of iron 
and common mantle silicates as well as associated equations of 
state, which allow to compute material properties at high 
pressure and temperature. CHIC has been benchmarked with 
different convection codes, and compared to published 
interior-structure models and 1D parameterized models. The 
CHIC code handles surface volcanism, crustal development, 
and different regimes of surface mobilization like plate 
tectonics. It is therefore well suited for studying scenarios 
related to the habitability of terrestrial planets. CHIC is an 
advanced simulation code that can be applied to a diverse 
range of geodynamic problems and questions. 

Keywords - fluid dynamics; convection; numerical modeling; 
thermal evolution; planetology. 

I.  INTRODUCTION 
Numerical and parameterized models for convection and 

thermal evolution are essential tools to understand different 
geophysical processes in and between the interior of a planet 
and its atmosphere. These processes include for example the 
CO2-cycle, the subduction cycle (delivering volatiles to the 
mantle), the release of volatiles by volcanic outgassing, the 
evolution of continents (stabilizing plate tectonics) and the 
possible maintenance of a magnetic field by strong cooling 
of the core. All those mechanisms may be important for the 
habitability of Earth, i.e., for its ability to host life, and may 
also play an important role for other planets. The magnetic 
field shields lighter volatiles in the atmosphere from erosion 
to space, whereas subduction of carbonates is an important 
phenomena that helps to regulate surface temperatures over 
geophysical timescales [1].  

Several 2D and 3D convection codes have been 
developed over the past decades to investigate Earth-like 
planets. They typically concentrate solely on either the 
thermal evolution or do steady-state snapshots of the mantle 
and crust. Some models include the evolution of the core [2] 
or of the atmosphere [3][4]. Here, we describe a new code 
called CHIC that has been developed at the Royal 
Observatory of Belgium. The code is written in Fortran and 
is used to investigate different geophysical processes and 
feedback cycles on Earth-like planets. The planets are 
assumed to consist of several different spherical layers 
(shells). The lowermost shell represents the core and is 
overlain by a silicate shell (mantle and crust) and a potential 
water-ice layer. The uppermost shell represents the planet’s 
atmosphere. All shells are thermally coupled, i.e., the heat 
flux and temperature are continuous at each interface 
between the different layers. The surface temperature is 
allowed to vary with time depending on the greenhouse 
gases in the atmosphere, or is taken constant if changes in the 
atmosphere are neglected. 

The CHIC code is able to treat both 1D parameterized 
models (using the thermal boundary layer theory to 
determine the temperature evolution in a terrestrial or ocean 
planet) and 2D/3D models to investigate the detailed 
convection pattern in a silicate mantle or ice layer over time 
– both models have their advantages and disadvantages.  

In a convection model (either modelling a 3D sphere or a 
2D spherical annulus), lateral variations in the mantle can be 
investigated, including mantle plumes, local melt regions, 
and plate motions. A 1D model on the other hand assumes a 
laterally averaged profile for temperature and material 
properties like the density. As a result, simulations of, for 
example, the volcanic history of a terrestrial planet may 
differ between 1D and 2D/3D models. 

1D thermal evolution models also have several 
advantages over 2D/3D convection models. The employed 
parameterization [5] is applicable to a large parameter space, 
including the simulation of both liquid and solid materials. 
Especially strongly convecting systems (e.g., liquid core or 
ocean) can be treated – which is generally unfeasible for 
planetary convection codes, as they will either produce 
numerical instabilities or require a high amount of 
computational power. 1D models, on the other hand, are very 
fast compared to convection models. Depending on the 
specific application, a 1D thermal evolution model runs in 
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the order of seconds or minutes, whereas 2D/3D models (that 
typically need a high resolution to avoid numerical errors) 
run for days or months. 

CHIC couples a 1D parameterized module with a 
convection module in either 2D or 3D. The different 
modules can be applied as needed: for the core, either only 
changes in the core-mantle boundary (CMB) temperature are 
investigated, or a 1D model of the iron core including inner 
core freezing is applied (Figures 1(a) and 1(b)); the thermal 
state of the mantle and high-pressure ice layers are 
investigated either via a convection model or a 1D 
parameterized model; the atmosphere and a potential water 
ocean (Figures 1(c) and 1(d)) are investigated with a 1D 
module. CHIC is therefore a powerful tool for the 
investigation of the evolution of terrestrial or ocean planets - 
from interior to atmosphere - and their possible habitability.  

Figure 1.  Possible configurations that are investigated with CHIC:  
a) mantle with variable CMB temperature, b) mantle with core evolution 
and inner core freezing, c) mantle and core with an atmosphere, d) mantle 

and core with a deep ocean on top (we neglect here a possible atmosphere).  

 
The outline of the paper is as follows. In Section II, we 

describe the different modules of CHIC, followed by the 
benchmark results in Section III to show the validity of the 
code in various applications. Finally, in Section IV, we 
summarize the possibilities of a coupled 1D - 2D/3D code 
and the planned future work. 

 

II. MODEL 
CHIC uses various modules for the different shells of a 

terrestrial or ocean planet. The basic modules used in CHIC 
are listed below. The density of the material and other 
physical properties are determined as described in Section II-
A, and can be applied to both 1D and 2D/3D modules. The 
input file used for the simulations is similar for all modules, 
which simplifies comparison of the 1D model with the 2D 
mantle model.  

A. Interior structure model and material properties 
We developed an interior structure model to assess the 

radius of a terrestrial planet for given mass and composition, 
and to determine the depth-dependent pressure, density and 
other thermodynamic properties for an initial temperature 
profile. We assume, that the planet is differentiated into an 
iron core, a silicate mantle (containing olivine, perovskite 
and post-perovskite) and an ocean layer. We derive average 
mantle and core values for the thermodynamic properties 
(e.g., thermal conductivity) to be used in the thermal 
evolution models.  

To obtain profiles for the depth-dependent pressure p and 
gravity g, we solve the Poisson equation (1) and the 

hydrostatic pressure equation (2). The density ρ, the thermal 
expansion coefficient α and the heat capacity cp at local 
conditions are obtained from equations of states of the 
relevant materials [6][7]. 

The gravitational acceleration g(r) depends on the gravity 
value at the surface of the planet (calculated from its mass 
and planet radius), the radius r and the density profile ρ(r). G 
is the gravitational constant.  

 dg/dr = 4πGρ - 2g/r (1) 

The gravitational and differential pressure forces are 
assumed to satisfy hydrostatic equilibrium. The pressure p 
decreases with increasing radius depending on local gravity 
and density, yielding a pre-defined atmospheric pressure at 
the surface:  

 dp/dr = -g ρ (2) 

The mass m(r) below a sphere of radius r increases with 
increasing radial coordinate until the pre-defined planet's 
mass M is reached.  

 dm/dr = 4πr2ρ (3) 

Our interior structure model solves (1) to (3) by 
integration from the center of the planet outwards (starting 
from zero gravity and mass in the interior), thus yielding the 
radius of a planet for given composition (in terms of water, 
silicate and iron mass fraction) and mass. 

B. Core evolution model 
Our 1D core evolution module determines the variation 

of upper core temperature with time via the energy 
conservation equation 

 ρccp,cVcεcdTc/dt = -qcAc (4) 

where the index “c” denotes core values, Vc is the core 
volume and Ac the core surface area, εc is a constant relating 
the average core temperature to the CMB core temperature, t 
is the time and qc is the heat flux from the core into the 
mantle 

 qc = -kmdT/dr|r=Rc (5) 

We neglect radioactive heat sources in the core, as well as 
potential tidal heating effects. For 2D/3D convection models, 
the temperature gradient at the core-mantle boundary (CMB) 
is calculated over the two bottom shells of the mantle grid 
with laterally averaged temperatures; in the 1D 
parameterized model, the temperature drop over the lower 
thermal boundary layer of the mantle is used instead. 

We either treat the core consisting of pure iron or a 
mixture of iron and lighter elements like sulfur. We can 
consider possible freezing of the core, when the core 
temperature falls below the melting temperature. This model, 
however, only works if the freezing of the core starts at the 

85Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation



core center (leading to a solid inner core as on Earth). This 
may not be the case for Mercury or Ganymede, where iron 
may solidify in the upper part of the core and sink down as 
(so-called) iron snow. We only model planets without the 
iron snow regime and adopt the model of [2], which 
determines latent heat released by iron solidification and 
gravitational energy produced by differentiation of the core 
into an inner and outer core. Both mechanisms lead to an 
increasing temperature at the CMB temperature and thus 
have an influence on the thermal evolution of the mantle, as 
well. For super-Earths (i.e., planets up to 10 Earth masses), 
we neglect lighter elements in the core, as the EOS for 
mixtures of iron and lighter elements have only been derived 
in a limited pressure range not suitable for super-Earths. 

C. Mantle: 1D parameterized model  
The 1D module to assess the thermal evolution of the 

mantle of a terrestrial planet is based on [5][8]. We refer to 
these references for full details on the model. The model 
determines the evolution of  the upper mantle temperature Tm 
over time by considering that the loss of energy due to 
mantle cooling and heat flux out of the mantle is balanced by 
the heat flux into the mantle and the radioactive heat 
production in the mantle: 

 ρmcp,mVlεmdTm/dt = -qlAl + qcAc + QmVl (6) 

The index “m” denotes mantle values. Vl is the volume of 
the mantle from core to lithosphere (thus excluding the 
conductive lithosphere), and Al is the area at the boundary 
between mantle and lithosphere. The constant εm relates the 
average mantle temperature and Tm. The mantle temperature 
decreases due to heat flux out of the mantle into the 
lithosphere ql, increases due to inflowing heat flux from the 
core qc and increases with heat released by radioactive heat 
sources Qm. 

We also consider possible melting events and crust 
formation over time, leading to additional terms in (6). For 
details on the crustal evolution, as well as the definition of 
the thermal boundary layers and calculation of the 
temperature in the lithosphere, we refer to [8]. 

Note, that the 1D parameterized model only considers the 
evolution of the temperature over time, and assumes 
effective convection. To understand the convection 
mechanism and its strength depending on mantle parameters 
and planet size (possibly triggering plate tectonics at the 
surface), a more sophisticated 2D/3D convection model is 
needed. 

D. Mantle: 2D / 3D convection model 
The CHIC code uses a finite volume (FV) field approach 

to solve the conservation equations of mass, momentum and 
energy. A finite grid is placed in the mantle, with shells from 
the CMB to the planet surface, and a predefined number of 
grid points per shell. We then define Voronoi cell volumes 
around each grid point and solve the system of equations on 
each cell volume considering the flux in and out of the cell 
and the energy production in the cell, see Figure 2. 

The grid is either defined in Cartesian coordinates in a 2D 
or 3D box or in polar coordinates for a 2D cylindrical sphere 
(a cut through the planet at the equator representing the 
temperature profile of a cylinder with the 2D plane as a 
basis) or a 2D spherical annulus (an equatorial cut that 
mimics the temperature profile of a sphere in 3D, [9]). For 
the 2D models with spherical or cylindrical geometry, it is 
often useful to employ a regional sector of the 2D spherical 
model (as shown in Figure 4) to save computational power. 
In addition to the grid, randomly distributed particles, that 
move along the convective stream lines, are used to transport 
local information as for example the water content. 

 

 
Figure 2.  Geometries implemented in CHIC. Top: 2D Cartesian box and 

3D Cartesian box. Bottom: 2D cylinder and 2D spherical annulus. 

 
We solve the equation system for an incompressible 

medium with the Extended-Boussinesq approximation 
(EBA), which yields an adiabatic temperature increase with 
depth (see [5] for details on the model). For a dissipation 
number Di of zero, the formulation reduces to the 
Boussinesq approximation (BA).  

In the EBA approximation, the non-dimensional 
conservation equations of energy, mass and momentum can 
be expressed as [10] 

∂T/∂t + u·∇T + Di(T+T0)ur = ∇2 T + 0.5Di ηἑII
2/Ra + H(7) 

 ∇·u = 0 (8) 

 ∇P  − ∇[η(∇u + ∇uT)] = Ra T er (9) 

Here, T is temperature, T0 surface temperature, t time, 
and Di the dissipation number. The convective pressure is 
denoted by P; u is the velocity and ur the radial velocity, 
whereas er is the radial unit vector. The Rayleigh number Ra 
is a measure for the convective vigor of the material, and H 
is the heat source (e.g., radioactive heat source). η is the 
viscosity and ἑII is the second invariant of the strain rate. 

The equations (7)-(9) are written in a non-dimensional 
form, as is typically done for convection simulations [11]. 
The non-dimensionalization is obtained by dividing the 
dimensional value of each variable by a reference value as 
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given in [11]. The quantities given in Section III are also 
non-dimensional values.  

The energy equation is solved with a second-order 
implicit Euler method. For the results reported here, we also 
apply an upwind scheme. To solve the conservation equation 
of mass and momentum, we either use a direct solver or a 
coupled mass and momentum solver. The direct solver uses 
one solver matrix for (8) and (9) and applies a penalty 
formulation following [12]. The iterative, coupled solver 
employs a SIMPLER pressure correction algorithm 
following [12][13]. In this paper, we apply the direct solver. 

The resulting linear equations (for mass, momentum and 
energy equation) are solved iteratively using either the 
Fortran Pardiso solver [14] or a biconjugate gradient (BiCG) 
solver with an under-relaxation scheme. The BiCG solver is 
slower compared to the Pardiso solver but can be easily 
parallelized. 

The equations above depend on the viscosity of the 
material η. The viscosity depends on several factors 
including the temperature, pressure, grain size, water content 
and strain rate of a material. In Earth’s mantle, creep of 
minerals is typically described by dislocation creep (motion 
of dislocations through the crystal lattice) and diffusion creep 
(deformation of crystalline solids by the diffusion of 
vacancies through their crystal lattice). The latter is largely 
independent of the strain-rate, whereas dislocation creep 
does not depend on the grain size. In CHIC, the user can 
choose between a dislocation viscosity, a diffusion viscosity 
and a mix of both formulations. The smaller viscosity is the 
dominant viscosity for material motion. 

The general equation that we use for the viscosity follows 
an Arrhenius law [15][16] 

 η = ΑἑII
1-n/ndp/nCOH

-r/n exp( (E+pV)/(nRT) ) (10) 

A is a material-dependent constant, n is the stress 
exponent, d is the grain size, COH is the concentration of 
water (for dry materials r=0), r is the water exponent, E the 
activation energy and V the activation volume. p is the 
pressure and R the gas constant. Note, that the pressure p is 
the hydrostatic pressure and not the convective pressure as in 
(9). The parameters for both diffusion and dislocation creep 
are taken from [15][16] for both wet and dry materials. The 
concentration of water COH is traced via particles in CHIC 
and does not only influence the viscosity, but also the local 
melt temperature, which is smaller in the presence of water 
than for dry materials [17]. 

Note, that even though the Arrhenius viscosity (10) is 
preferentially used for simulations of terrestrial planets, for 
benchmarks and basic convection simulations, often an 
approximated viscosity is used, the so-called Frank-
Kamenetskii approximation (FKA), given by 

 η = Α exp(- γTT + γpz) (11) 

Here, γT and γp are either the logarithm of a pre-defined 
viscosity contrast with respect to temperature or pressure, 
respectively, or they are derived from the parameters in (10) 

[18]. z is the non-dimensional depth (0 at the surface and 1 at 
the CMB). Note, that for the application to terrestrial planets 
(especially for plate tectonics planets), the FKA (11) is not 
suitable and the Arrhenius viscosity (10) should be applied 
[18]. 

E. Additional modules 
CHIC can also be used for ocean planets and icy moons, 

where a silicate-iron shell is covered by a deep water or ice 
sphere. Another module treats the evolution of the 
atmosphere with time, where we consider outgassing of 
greenhouse gases CO2 and H2O. The model can be applied to 
planets with a Mars- or Venus-like atmosphere [3].  

 

III. RESULTS AND DISCUSSION 
To validate our code, we applied several benchmark tests 

for the convection module. To our knowledge, unlike for the 
mantle convection calculation, benchmark results for the 1D 
parameterized model have not been published. Therefore, we 
have validated our code by reproducing results of [8]. The 
results are very similar [19], but differ in detail because not 
all parameters used in the studies are known. The module has 
been integrated into the CHIC code and has been extended to 
include a regolith layer and compared to [20], yielding again 
comparable results.  

We compared our 1D parameterized model to the 
convection module by applying the 2D spherical annulus. In 
Figure 3, we plot the thermal evolution of Mars determined 
for a Boussinesq approximation, a Newtonian viscosity law 
(n=1 in (10)) and fit the pre-factor such that we obtain a 
reference viscosity of 1020 Pas at 1600 K and 3 GPa. We use 
an activation energy of E=300 kJ/mol and an activation 
volume of 2.5 cm3/mol. The initial mantle temperature is 
2000 K and the CMB temperature is 2300 K, the surface 
temperature is set to 220 K. Heat sources are homogeneously 
distributed in the mantle and are taken Earth-like [5]. For the 
2D model, we use a quarter sphere with a radial resolution of 
80 shells.  

 
 

 
Figure 3.  Upper temperature, CMB temperature and lid thickness for a 

thermal evolution of Mars applying either the 2D spherical annulus (black 
curve) or the 1D parameterized model (red). 

 
The mantle initially heats up due to radioactive decay,  

convection then leads to efficient cooling of the mantle. In 
the convection model, we define the lid over the depth where 
the conductive heat transport is more efficient than the 
convective heat transport. The lid thickness is then fitted by a 
third-order polynomial since oscillations occur. The obtained 
lid thickness is in the beginning larger than for the 1D model 
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(where we plot the total conductive layer thickness including 
both the lid and the upper thermal boundary layer), but 
shows a similar increase with time after 2Gyr. The different 
lid thicknesses at the beginning of the evolution can be 
explained by a delayed on-set of convection in the 2D model, 
which also leads to a slightly weaker mantle cooling at the 
beginning and hence a shift in the upper mantle temperature 
compared to the 1D model. 

For the convection model, we applied several standard 
benchmarks published in the literature. The most basic 
benchmark has been developed for convection in a 2D 
Cartesian box [21] and uses either isoviscous convection or 
temperature- and pressure-dependent viscosity in the 
Boussinesq approximation. A free-slip boundary condition is 
applied to the walls of the box. The non-dimensional 
temperature at the surface of the box is set to 0 and at the 
bottom to 1. The simulations are run until steady-state is 
reached (i.e., temperature variations drop below a tolerance 
value of 10-10).  

In Table I, we compare our results (for a fixed resolution 
of 80(200)x80 cells, depending on the aspect ratio) to 
published results. Note, that in [21] different resolutions have 
been used, and we give the min and max values for 
resolutions of at least 33x33 cells. We list the three most 
important quantities: the root-mean-square (RMS) velocity, 
the maximum of the upper mantle temperature profile at the 
middle (x=0.5ℓ, where ℓ is the length divided by height, i.e., 
the aspect ratio) and the surface Nusselt number, which is a 
measure of the ratio of convective to conductive heat 
transport at the surface of the box. For more information on 
the benchmark setup we refer the reader to [21]. CHIC yields 
results in good agreement with all cases published in [21], 
see Table I, and lies either in the range of published results 
or differs by less than 0.5%.  

TABLE I.  BENCHMARK COMPARISON OF CHIC (CH) TO [21] (BL). 

 
RMS velocity Max temperature Nusselt number 

CH BL CH BL CH BL 
1a 42.92 42.74-42.87 0.425 0.421-0.427 4.920 4.864-4.896 

1b 194.3 192.4-198.0 0.432 0.415-0.437 10.60 10.42-10.69 

1c 835.1 823.7-842.5 0.440 0.431-0.446 21.81 21.08-22.07 

2a 496.6 458.3-503.3 0.725 0.716-0.741 10.43 10.04-10.07 

2b 183.1 166.7-193.1 0.390 0.385-0.403 7.271 6.806-7.409 

C1: isoviscous material, ℓ=1, a) Ra=1e4, b) Ra=1e5, c) Ra=1e6.   
C2: FKA (11), a) Rasurf=1e4, γT=ln(1000), γp=0, ℓ=1, b) Rasurf=1e4, γT=ln(16384), γp=ln(64), ℓ=2.5. 

 
A similar benchmark has been published in [10] for the 

Extended Boussinesq approximation and compressible 
materials in a 2D Cartesian box. We compare the benchmark 
results using EBA (see Section IID) for a resolution of 80x80 
cells to the results in [10], see Table II.  

CHIC compares well to the published results for EBA 
with deviations of few percent at most. A similar benchmark 
for a 2D cylindrical shell including compressibility is in 
preparation for publication and includes 10 different codes, 
including CHIC. The accuracy of the CHIC code is 
comparable to the Cartesian simulations. 

 

TABLE II.  BENCHMARK COMPARISON OF CHIC (CH) TO [10] (KI). 

 
RMS velocity Average temperature Nusselt number 

CH KI CH KI CH KI 
1a 38.38 38.39-38.50 0.4911 0.4909-0.4914 4.125 4.05-4.10 

1b 61.43 61.35-61.50 0.4935 0.4937-0.4942 5.203 5.10-5.16 

1c 111.7 111.5-111.7 0.4980 0.4987-0.4996 6.997 6.86-6.95 

1d 174.0 173.5-174.2 0.5018 0.5033-0.5045 8.710 8.54-8.66 

1e 269.2 267.9-269.5 0.5056 0.5083-0.5101 10.80 10.6-10.7 

1f 474.2 465.0-466.8 0.5097 0.5161-0.5178 14.25 13.9-14.1 

2a 33.70 33.76-33.92 0.4822 0.4816-0.4823 3.408 3.34-3.38 

2b 54.14 54.17-54.41 0.4854 0.4851-0.4861 4.255 4.16-4.22 

2c 98.36 98.80-98.86 0.4920 0.4926-0.4940 5.648 5.52-5.60 

2d 152.3 152.3-153.4 0.4980 0.4997-0.5017 6.957 6.79-6.90 

2e 232.8 231.0-232.8 0.5041 0.5080-0.5109 8.516 8.26-8.40 

3a 23.78 23.95-24.24 0.4678 0.4658-0.4671 2.209 2.15-2.19 

3b 38.77 39.07-39.50 0.4685  0.4664-0.4682 2.675 2.60-2.65 

3c 70.22 70.85-71.66 0.4734 0.4719-0.4747 3.399 3.30-3.36 

3d 106.4 107.1-108.2 0.4793 0.4789-0.4823 4.031 3.89-3.97 

3e 152.3 147.0-148.0 0.4868 0.4893-0.4938 4.663 4.40-4.44 

C1: Di=0.25, ℓ=1, a) Ra=1e4, b) Ra=2e4, c) Ra=5e4, d) Ra=1e5, e) Ra=2e5, f) Ra=5e5. 
C2: Di=0.5, ℓ=1, a) Ra=1e4, b) Ra=2e4, c) Ra=5e4, d) Ra=1e5, e) Ra=2e5. 
C3: Di=1.0, ℓ=1, a) Ra=1e4, b) Ra=2e4, c) Ra=5e4, d) Ra=1e5, e) Ra=2e5. 

 
A two-code benchmark for the different geometries 

(between CHIC and GAIA [22]) has been realized for a 
Boussinesq material [23]. For the 2D box, we apply a 
resolution of 80(160 for ℓ=2)x80 cells, for the 3D box 
20x20x20 cells and for the 2D shells we apply 80 shells in 
radial direction with 754, 377, 189, 440, 419 and 754 points 
per shell for the 6 considered cylindrical/spherical cases. 
Note, that we compare the 2D spherical annulus of CHIC to 
the case of 3D sphere of GAIA.  

Both codes are well in agreement, with deviations below 
5% apart from the 3D box (12.5% deviation), where we 
applied a lower resolution than in [23], see Table III. The 
plots in Figure 4 show the steady-state for all cases. 

TABLE III.  BENCHMARK COMPARISON OF CHIC (CH) TO [23] (NT). 

Case  
RMS  

velocity 
Average 

temperature 
Top Nusselt 

number 
CH NT CH NT CH NT 

2D box, ℓ=1, RBC a 55.73 53.06 0.6904 0.6872 2.001 1.956 

2D box, ℓ=2, RBC a 55.73 53.79 0.6904 0.6871 2.001 1.956 

2D box, ℓ=1, PBC b 56.88 54.62 0.7038 0.6993 2.069 2.014 

3D box, ℓ=1, RBC 65.43 57.21 0.6997 0.6927 2.200 2.363 

2D full cylinder c 36.24 35.25 0.5744 0.5711 1.439 1.439 

2D half cylinder 35.64 34.84 0.5751 0.5725 1.435 1.440 

2D quarter cylinder 35.64 34.87 0.5751  0.5725 1.435  1.440 

2D cylinder, CV d 16.80 17.11 0.4362 0.4377 0.967  0.995 

2D cylinder, CR e 14.46 14.51 0.4046 0.4039 0.891  0.914 

3D sphere f 15.56 16.19 0.3657 0.3374 0.782  0.744 

We apply a surface Rayleigh number of Ra=10 and a FKA (11) viscosity contrast of 1e5. 
a RBC stands for reflective boundary condition at the side wall with free-slip boundary. 

b PBC stands for periodic boundary conditions.  
c The sphere uses a radius ratio of 2, i.e., the core radius is half the planet radius. 

d CV means corrected volume such that ratio of core area divided by mantle volume is as in 3D. 
e CR means corrected radius such that ratio of core area divided by surface area is as in 3D.  

f We use a 2D spherical annulus instead of a 3D sphere with 4 initial plumes instead of 6. 
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Figure 4.  Convection patterns obtained with CHIC for different available 

geometries. See text and Table III for more details. 

 
The 2D spherical annulus furthermore has been compared 

to the results in [9]. The non-dimensional radius of the core 
is 1.2222 and the planet radius is 2.2222. We use a resolution 
of 32 shells with 256 points on each shell. The CHIC results 
are well in agreement with the published steady-state results, 
with differences of not more than 6%, see Table IV. 

TABLE IV.  BENCHMARK COMPARISON OF CHIC (CH) TO [9] (HT). 

 Ra 
Average RMS velocity Nusselt number 

CH HT CH HT 
1 1e4 39.87 37.7 4.39 4.18 

 1e5 174.1 ~160 7.61 ~7.39 

 1e6 719.3 ~640 16.53 ~14.4 
 Ra / H Average RMS velocity Average mantle temperature 

2 1e4 / 3.4 25.09 23.5 0.295 0.308 

 1e5 / 6.6 ~97 ~78.5 ~0.369 ~0.349 

 1e6 / 14 ~340 ~265 ~0.385 ~0.350 

isoviscous material, case 1: bottom-heated convection, case 2: internally-heated convection. 

 
For time-dependent simulations (indicated by “~”), larger 

deviations can appear between different codes (here up to 
22%). For this reason typically only steady-state simulations 
are used in community benchmarks.  

Figure 5.  Simulation of the subduction process of an oceanic plate 
including dehydration of the subducted slab and related melting processes. 

Recently, an increasing attention has been drawn to 
benchmarks for time-dependent simulations, for example for 
surface mobilization in a subduction zone (Figure 5, in 
preparation for publication), or for plastic deformation and 
episodic overturn [24]. 

 

IV. CONCLUSION AND FUTURE WORK 
CHIC is a new, advanced numerical code developed at 

the Royal Observatory of Belgium, and can be applied to 
different geodynamic applications, including the simulation 
of the thermal evolution of terrestrial planets. Both 1D and 
2D/3D geometries can be applied to the silicate mantle to 
investigate the thermal evolution (as well as convection and 
surface mobilization for the 2D models). The core, the ocean 
layer and the atmosphere are solved with the parameterized 
model. The thermal evolution of Mars’ mantle has been 
investigated with both the 1D model and the 2D spherical 
annulus model with comparable results. Furthermore, the 
code has been validated by comparison to published 1D 
parameterized models and benchmarks for the 2D/3D mantle 
convection model for all available geometries (Figure 4). 
CHIC is in good agreement with literature values. New 
benchmark projects with contributions from CHIC are 
currently in preparation for publication or in review. Readers 
interested in access to the code are asked to directly contact 
the authors of the paper. 
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