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Abstract—This paper presents a GPU implementation of a
partial demosaicing scheme that is specially designed for stereo
matching of CFA image. This method consists of three main
techniques keys: the adapted matching cost for CFA image, the
estimated Second color component based on Hamilton’s estimate
method and a robust cost aggregation window. Experiments
are carried out to explore the performance for this method on
GPU both at matching quality and matching efficiency, with
comparison with version on CPU. The experiments on different
size image pairs from Middlebury dataset show that this method
can be substantially accelerated on GPU when the image size is
large and has still space for improvements in performance.
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I. INTRODUCTION

In most implementation of stereo matching, such as in
intelligent cars and integrated robot systems, color image pairs
can be acquired by two types of cameras: the one equipped
with three sensors associated with beam splitters and color
filters providing the so-called full color images, of which each
pixel is characterized in Red, Green and Blue levels, and the
one equipped only with a single-sensor.

In the second case, the single-sensor can not provide a
full color image directly but actually deliver a color filter
array (CFA) image, of which every pixel is characterized
by a single color component that can be one of the three
color components: Red, Green and Blue. So, the missing color
components has to be estimated at each pixel. This process of
estimating the missing color components is usually referred to
as CFA demosaicing and produces a demosaicing color image
where every pixel is represented by an estimated color point
[1]. This estimation step brings some artifacts in color density
values, so, it is interesting to find one stereo matching directly
based on CFA image.

As the demosaicing methods intend to produce demosaiced
color images, they attempt to reduce the presence of color
artifacts, such as the false colors ot zipper effects, by filtering
the images [2]. So, some useful color information for stereo
matching may be lost in the color demosaiced images. As
a result, the demosaiced color image pairs stereo matching
quality usually suffer either from color artifacts or from the
alteration of color texture caused by demosaicing schemes.

The method that is used in this paper is an alternative
solution to match pixels by analyzing directly the CFA images
without reconstructing the full color image by demosaicing
processing, but only estimating a second color component. The
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method is a local dense stereo matching method that was first
proposed by Halawana [3]. Here, we study its potential for
Graphics Processing Unit (GPU) implementation.

The following contents are organized in three parts. The
Section II presents the partial demosaicing matching method
including the estimation of the second color component and
the adapted matching cost. The Section III describes the
experiment platform and CUDA implantation. The Section IV
details the experimental results. At the end is a conclusion.

II. PARTIAL DEMOSAICING MATCHING METHOD
A. Second Color Component

The partial demosaicing matching method starts with the
mosaiced CFA images. Here, the CFA images are those images
obtained according to the Bayer color filter, each two-by-two
submosaic contains 2 green, 1 blue and 1 red filter, each
covering one pixel sensor and the mosaiced CFA image is the
one whose pixel contains only one color component according
to the Bayer color filter.

Different from the classic methods, which estimate all
the missing color components for every pixel in the CFA
images, the partial demosaicing method estimates only one
color component, the Second Color Component (SCC), for
every pixel. Here, the SCC is defined as the color component
that is available in the same line. This means that SCC is the
green color for all the red and blue pixels while for the green
pixels the SCC is the red color component for even lines and
the blue color component for odd lines. Summarized as (1).

G(x,y) for red and blue pixels

R(z,y) for green pixels in even lines (1)

B(z,y) for green pixels in odd lines

SCC(z,y) =

B. Hamilton’s Estimate Method

This method is an edge-adapted demosaicing method pre-
sented by Hamilton and Adams [4]. To select the interpola-
tion direction, this method takes into account both gradient
and Laplacian second-order values by using the green levels
available at nearby pixels and red (or blue) samples located
two apart.

We take the case GRG, as illustrated in Fig. 1, as example,
to estimate the missing green level at the red pixels, this
method uses the following algorithm:

a) Approximate the horizontal A* and vertical AY gradients

thanks to absolute differences as (2).
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b) Interpolate the green level as (3).

Fig. 1: Estimation of SCC in case of GRG.
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Since this method well combines two color component
data in partial derivate approximations by exploiting spectral
correlation in the green plane estimation, the precision is well
guaranteed.

Each pixel with coordinates (z,y) in the partially demo-
saiced color images is characterized by a two-dimensional
partial color denoted I pA. As shown in (4), this partial color
point is composed of the available color component and the
estimated second color component.

N

(G(z,y), B(z,y))"
C. Adapted Matching Cost

The method is a local dense stereo matching method also
called window-based approach. It respects the very assumption
that the color information of neighbors of a left pixel is close
to those of the same neighbors of its homologous right pixel
in the right image. So, the matching costs are defined between
the window around the left pixel and the window around the
candidate right pixels in the corresponding line (epipolar line)
in the right image. The window is shifted over all possible
pixels so that a matching cost between the left pixel and
each candidate in the right image is obtained. By the Winner-
Takes-All method, the final disparity estimation is realized by
selecting the window with the lowest matching cost.

Ipa(z,y) =
(R(z,y),G(x,y))T if x is odd and y is even
(R(z,y), G(z,y))T if x is even and y is even “)
(G(z,y), B(z,y))T if x is even and y is odd
)

if x is odd and y is odd
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The matching cost, SSD (Sum of Squared Differences cost),
is adapted as (5).

SSD*(xy,y,8) =

S I hpalzi+iy+)

i=—wj=—w

(&)

— Lpa(zi+i—s,y+5)|?

Where the || || is the Euclidean norm. While s is the spatial
shift along the horizontal epipolar line and w the half-width
of the (2w + 1) x (2w + 1) aggregation window.

Since these pixels of horizontal lines with the same parity in
the left and right partially demosaiced color images are charac-
terized by the same two color components, we can reasonably
assume that the partial color points of two homologous pixels
are similar. Because the partial costs compare the partial color
points of left and right pixels located on the same horizontal
lines, they reach an extremum when the shift is equal to the
disparity.

III. EXPERIMENT

A. Experiment Platform and CUDA Implementation

We implement on GPU the partial demosaiced matching
method of H. Halawana [3]. We use the well known Middle-
bury databases [5] to evaluate the method on both accuracy
and computation time, as the image size grows. It is worth
noting that the method was only implemented in a sequential
computer (CPU) with no systematic evaluation of the trade-
off between quality and computation time. The ten datasets
used in our experiments are entitled ‘Aloe’, ‘Bowlingl’,
‘Clothl’, ‘Flowerpots’, ‘Lampshadel’, ‘Middl’, ‘Monopoly’,
‘Plastic’, ‘Rocksl’ and ‘Woodl’. All the datasets of 2 views
are used here (full-size (width: 1240...1396, height: 1110),
half-size (width: 620...698, height: 555), and third-size (width:
413...465, height: 370) ) . In these datasets, the color stereo
images are acquired by high resolution cameras equipped with
one-single-sensor [6]. That’s to say, the full color images are
in fact color images that have been demosaiced by a specific
chip integrated in the camera. They could contain artifacts
caused by the demosaiced step. What’s more, the work of
applying a demosaicing step on CFA images, which have
been generated by sampling color components from these
previously demosaiced color images involves applying two
successive demosaicing steps on the CFA images acquired by
the camera. However, since Middlebury is the most frequently
utilized database, an evaluation on this database will allow
future comparative evaluation with new methods.

Our experiments are carried out both on CPU and GPU.
For the CPU, we use a Intel(R) Core(TM)2 Duo CPU E8400
of 3.00GHz, with two cores having a cache of 6144KB. The
GPU used in the experiments is a GPU GeForce GTX 570 of
NVIDIA. It has 15 multiprocessors of 32 cores, GPU clock
speed 1.54GHz, Memory clock rate 2000MHz, Memory Bus
width 320 bits while the total amount of global memory is
1280 Mb (constant memory 65536 Kb, shared memory per
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block 49152 Kb). The system, on which the experiment is
evaluated is Ubuntu 11.04 32 bits.

The programming interface we used for parallel compu-
tation on GPU is the Compute Unified Device Architecture
(CUDA). The parallel computation work is realized by a
kernel function, which is executed concurrently by multiple
threads on data elements. All these threads are organized
into a two level concepts: grid and block. A kernel has one
grid, which contains multiple blocks. Every block is formed
of multiple threads. The dimension of grid and of blocks
can be one-dimension, two-dimension or three-dimension. The
performance of GPU with CUDA is closely related to thread
organization and memory accesses, which should attract much
attention according to various computation works and GPU
platform. Based on our experiment platform, given an image
of size Wx H as example and briefly lay out the CUDA settings
and the parameter values mentioned in our algorithm.

In our experiments, we use the two-dimension blocks of
16 x 16 size. Every thread takes care of one pixel and the
size of grid is obtained by WHLO=L » HHIS=1 for 3 given
WxH image. In the SCC estimation step, a grid of WxH
threads is created and each thread takes care of one pixel in
the estimation, and the shared memory is employed to for fast
memory access. For the matching cost computation, a grid of
Wx H threads is employed to compute the matching cost for
every pixel at a set of given disparity and then pick out the best
homologous candidate pixel by the Winner-Takes-All method,
here, the main data is stored on Global memory space while
the shared memory space is used to support the computation
of matching cost and the comparison in WTA processing.

B. Experiment Process

The procedures on CPU and on GPU are almost the same.

As the datasets are all full color images, at the very
beginning of the experiments, a simulation step for every pair
of images is realized to obtain their CFA images needed by
keeping only one of the three color components at every pixel.
This work is done by GPU and by CPU separately . The whole
evaluation is performed according to the spatial arrangement
of the Bayers CFA. Then, for every CFA image, we do partial
demosaicing step. Here, the partial demosaicing estimates only
the missed Second Color Component (SCC) for every pixel
by Hamilton’s estimate method in the left image and in the
right image. So, the left demosaiced color image and the right
one are produced. The estimation method is the edge-adaptive
demosaicing method proposed by Hamilton as presented in
the precedent section.

The original full color image is shown in Fig. 2(a) and the
left demosaiced color image using Hamiltons method is shown
in Fig. 2(c). They look somewhat similar. However, zooming
on the square areas outlined in these images as presented in
Fig. 2(b) and Fig. 2(d), shows that textured areas are locally
different.

Then the local stereo matching algorithm and the Winner-
Takes-All method are taken into actions. In this step, as shown
in Fig. 3 for every pixel in the left image, the method finds out
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(b): Zoom on full color
image

(a): Left full color image

(c):Left partially
demosaiced color image

(d):Zoom on partially
demosaiced color image

(f): Zoom on estimated

(e):Estimated disparity
map disparity map

Fig. 2: ‘Aloe’ left image.

its homologous pixel from a group of candidate pixels in the
right image and compute their disparity s by computing the
matching cost SSD, which is modified to adapt to the partial
demosaiced color images.
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Fig. 3: matched pixel and its candidate ones in the right image.

A matching is considered as valid when the absolute differ-
ence between the estimated disparity and the given benchmark
dy (z,y) is lower or equal to §, which is the disparity error
tolerance. In the experiments we set this coefficient to 1.

At the end, a disparity map, as illustrated in Fig. 2(e), is
estimated for each pair of image.

IV. EXPERIMENTAL RESULTS AND DISCUSS

The experiment are executed on all the ten chosen datasets.
Here, we take the ‘Aloe’ image group as an example. As it
is shown in Fig. 4 that with the increase of the half-window,
the computation time increases significantly. When the half-
window is given as w, for every pixel in the left image and
for their every possible candidate pixel in the right image, we
should compute a group of (2w+1) X (2w+1) pixels to obtain
the matching cost. So, when the half-window w increases, the
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Fig. 4: Compute-time and rate of correctly matched pixels (RCMP) obtained with the adapted SSD computed on

the full sizeAloe stereo image pair for J set to 1.
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Fig. 5: GPU outperforms CPU in terms of computation time. The maximum, the minimum and the
average acceleration factor obtained in the executions on ’Aloe’ image pair based on half-window from
1 to 10 are marked. The acceleration increases along with the image dimensions.

TABLE I: COMPARATIVE EVALUATION ON THE FOUR MIDDLEBURY DATA SETS OF THE THREE
DIFFERENT SIZES BY DIFFERENT GPU PROGRAMMING VERSION. ‘COMPUTATION TIME (CT) ° AND

‘PERCENTAGE OF BAD PIXELS (PBP)’ .

Partial_Demosaiced Full_Color Gray_level
Image Size PBP CT(s) [ PBP CT(s) [ PBP CT (s5)
Third size 28.76 0.214 25.81 0.191 | 2458 0.146

Rocksl  Half size 32.24 0.679 27.87 0.715 | 25.82 0913
Full size  37.06 5.811 31.20 5.717 | 2893  8.235

Third size 27.08 0.214 2496 0.192 | 2396 0.115

Aloe Half size  29.33 0.698 2578 0.697 | 2494  0.68
Full size  30.26 5.955 2898 5.875 | 26.04 5.595

Third size 39.18 0.234 29.77 0.229 | 28.76 0.276

Cones  Half size 46.98 2.123 3736 1.548 | 3691 3.024
Full size 52.14 20.569 4485 11.502 | 45.16 19.881

Third size 45.27 0.23 32.23 0.23 29.86 0.284

Teddy  Half size 53.69 2.12 38.38 1.55 3777 3.246
Full size  57.36 27.09 46.58 11.51 | 47.37 24922

Avg. 39.95 5.495 32.82  3.330 | 31.68 5.610

computing complexity is a squared function of w, which is a
real challenge to the capacity of the processors.

Meanwhile, with the increase of the half-window, and so,
the computation intensity, CPU’s computation time increases
more importantly than GPU’s computation time. Moreover,
as illustrated in Fig. 5, as the image dimensions augment,
the acceleration factor obtained by using GPU has expanded
from 1.75 to 20.75. This means that the GPU offers powerful
computation capacity in intense computation thanks to the
parallel organization of the blocks and the threads on GPU.

The performance of GPU is significantly influenced by the
dimension of the image. The nearer to the complete load of
the employed streaming multiprocessor on GPU, the higher
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performance we get.

The Ratio of Correctly Matched Pixel (RCMP) is the
percentage of the well matched pixels in all the pixels of
the image to be matched. As it is shown in Fig. 4, for ‘Aloe
’ image pair, the RCMP reaches the smooth peak when the
half-window is between 4 and 8 (for those textureless image
pairs, the half-window should be bigger to have their peak
of RCMP). In fact, whatever the image type, the matching
performance increases with aggregation window half-width.
Small windows do not contain enough information to allow
a correct matching. At the opposite, too large aggregation
windows may cover image regions containing pixels with
different disparities, which explains the decrease of matching

37



INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

performance. Though on CPU and on GPU, all the single-
precision floating-point computations follow the same ac-
curacy standards. The accuracy-loss is more important on
GPU owning to the accuracy problem of floating-point, that
is why the results by CPU and that by GPU may have
some deviations, especially when some cumulations in the
computation exists. In our experiments, we use the floating
point in the computation of matching cost with SSD and in
the aggregation based on fixed support window, the deviation
occurs at these computations, which can explain the tolerances
between the RCMP by CPU and that by GPU shown in Fig.
4(b).

In addition, this method is also compared with the classic
fixed windows matching methods (treating full color image
and gray-level image separately) we used in former experi-
ments, the results are shown in Table I. This method performs
worse on all these four pairs both in matching quality and
in computation time. That is because this method requires
too many refers to the logical operations in the programming
and too many branches in data treatments, which is the real
weakness of GPU architecture. These branches and logical
operations lead to great load on to the GPU system when
loading data from the memory space and wastes GPU’s CUDA
cores, which are powerful in arithmetical operation, by making
them do logical works.

V. CONCLUSION

This paper presents a GPU implementation of a partial
demosaicing scheme specially designed for stereo matching
of CFA image. By analyzing the CFA image directly, this
method can handle the stereo matching works in case of
single-CCD cameras usage. This method has three main tech-
niques characters: the adapted matching cost for CFA image,
the estimated Second color component based on Hamilton’s
estimate method, and the robust cost aggregation window.
Experiments carried on show the performance of this method
on GPU. The results show that this method can benefit from
GPU’s parallel architecture. The experiments also show that
this method performs faster on GPU as the image size grows.
Future improvements should come from a better setting of
the memory arrangement in order to allow more coalescing
accesses.
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