
2D-Packing Images on a Large Scale

Dominique Thiebaut
Dept. Computer Science

Smith College
Northampton, Ma 01063

Email: dthiebaut@smith.edu

Abstract—We present a new heuristic for 2D-packing of
rectangles inside a rectangular area where the aesthetics of
the resulting packing is amenable to generating large collages
of photographs or images. The heuristic works by maintaining
a sorted collection of vertical segments covering the area to
be packed. The segments define the leftmost boundaries of
rectangular and possibly overlapping areas that are yet to be
covered. The use of this data structure allows for easily defining
ahead of time arbitrary rectangular areas that the packing must
avoid. The 2D-packing heuristic presented does not allow the
rectangles to be rotated during the packing, but could easily be
modified to implement this feature. The execution time of the
present heuristic on various benchmark problems is on par with
recently published research in this area, including some that do
allow rotation of items while packing. Several examples of image
packing are presented.

Keywords—bin packing; rectangle packing; multi-threaded and
parallel algorithms; heuristics; greedy algorithms; image collages.

I. INTRODUCTION

We present a new heuristic for placing two-dimensional
rectangles in a rectangular surface. The heuristic keeps track
of the empty area with a new data structure that allows for
the natural packing around predefined rectangular areas where
packing is forbidden, and the packing flows in a natural way
around these “holes” without subdividing the original surface
into smaller packing areas. The main application for this
heuristic is to generate collages of large collections of images
where some images are disproportionally larger than the others
and positioned in key locations of the original surface. This
feature could also be applied in domains where the original
surface has defects over which packing is not to take place.

We are especially interested in avoiding packings that place
the larger items concentrated on one side of the surface, and
keep covering the remainder of the surface using decreasingly
smaller items. These are not aesthetically pleasing packings.

This form of 2D-packing is a special case of the 2D Or-
thogonal Packing Problem (OPP-2) which consists in deciding
whether a set of rectangular items can be placed, rotated or
not, inside a rectangular surface without overlapping, and such
that the uncovered surface area is minimized. In this paper
we assume that all dimensions are expressed as integers, and
that items cannot be rotated during the packing, which is
important if the items are images. 2D-packing problems appear
in many areas of manufacturing and technology, including
lumber processing, glass cutting, sheet metal cutting, VLSI
design, typesetting of newspaper pages, Web-page design or

data visualization. Efficient solutions to this problem have
direct implications for these industries [11].

Our algorithm packs thousands of items with a competitive
efficiency, covering in the high 98 to 99% of the original
surface for large collections of items. We provide solutions for
several benchmark problems from the literature [5], [12], [14],
and show that our heuristic in some cases generates tighter
packings with less wasted space than previously published
results, although running slower than the currently fastest
solution [15].

To improve the aesthetics of the resulting packing, we
use Huang and Chen’s [13] surprising quasi-human approach
borrowed from masons who pack patios by starting with
the corners first, then borders, then inside these limits (also
similar to the way one solves a jigsaw puzzle). Our algorithm
departs from Huang and Chen’s in that it implements a greedy
localized best-fit first approach and uses a collection of vertical
lines containing segments. Each vertical segment represents the
leftmost side of rectangular area of empty space extending to
the rightmost edge of the area to cover. The collection keep
the lines ordered by their x-coordinate. All the segments in a
line have the same x-coordinate and are ordered by their y-
coordinate. Representing empty space in this fashion permits
the easy and natural definition of rectangular areas that can
be excluded from packing, which in turn offers two distinct
advantages: the first is that some rectangular areas can be
defined ahead of time as containing images positioned at key
locations, and therefore should not be packed over. The second
is that subsections of the area to pack can easily be delineated
and given to other threads/processes to pack in parallel. Simple
scheduling and load-balancing agents are required to allow
such processes to exchange items as the packing progresses.

The impetus for this algorithm is to pack a large number
of images, typically thousand to millions, in a rectangular
surface of a given geometry to form large-scale collages. In
such applications items are not rotated 90 degrees since they
represent images. This type of packing is referred to as nesting
[7].

II. REVIEW OF THE LITERATURE

Possibly because of its importance in many fabrication
processes [11], different forms of 2D-packing have evolved
and been studied quite extensively since Garey and Johnson
categorized this class of problems as NP-hard [9]. It is hence
a challenge to create a comprehensive review of the literature,
as any 2-dimensional arranging of rectangular items in a
rectangular surface can be characterized as packing. Burke,

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

Fig. 1. The basic concept of the packing heuristic.

Fig. 2. Running times and regression fits for packings of 100 to 50,000 random rectangles on one core of a 3.5 GHz 64-bit AMD 8-core processor.

Kendall and Whitwell [5] and Verstichel, De Causmaecker,
and Vanden Berghe [20] provide among the best encompassing
surveys of the literature on 2D-packing and strip-packing
research.

While exact solutions are non-polynomial in nature and
slow, researchers have achieved optimal solutions for small
problem sizes. Baldacci and Boschetti, for example, reports
four know approaches to the particular problem of 2D or-
thogonal non-guillotine cutting problem [3], Beasley’s optimal
algorithm [4] probably being the one most often cited. Unfortu-
nately such approaches work well on rather small problem sets.
Baldacci and Boschetti, for example, report execution times in
the order of tens of milliseconds to tens of seconds for problem

sets of size less than 100 on a 2GHz Pentium processor.

Scientists from the theory and operations-research com-
munities have also delved on 2D-packing and have generated
close to optimal solutions [6], [8]. The Bottom-Left heuristic
using rectangles sorted by decreasing width has been used
in various situations yielding different asymptotic relative
performance guarantees [1], [2], [19] [16]. Other approaches
concentrate on local search methods and lead to good solutions
in practice, although computationally expensive. Genetic al-
gorithms, tabu search, hill-climbing, and simulated annealing
[18] [17] are interesting techniques that have been detailed
by Hopper and Turton [11] [12]. These meta-heuristics have
heavy computational complexities and have been outperformed

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

Fig. 3. Two examples of potential rectangle placements. In (a) the proposed location for the rectangle (shown in dashed line) is valid and will not intersect

with other placed rectangles (not shown) because 1) its horizontal projection on the line Li directly left of it is fulling included in a segment of Li, and 2) its

intersection with Lines Lj , Lk , and Lm is fully covered by segments of these lines. In (b) the proposed location for the rectangle is not valid, and will result

in its overlapping with already placed rectangles since its intersection with Line Lj is not fully included in one of Lj ’s segments.

recently by simpler best-fit based approaches, including those
of Hwang and Chen [13] [14], or Burke, Kendall and Whitwell
[5]. Huang and Chen show that placement heuristics such as
their quasi-human approach inspired by Chinese masons out-
performs the meta-heuristics in minimizing uncovered surfaces
in many cases, although requiring relatively long execution
times. Burke et al. propose best-fit heuristic that is a close
competitor in the minimization of the uncovered surface but
with faster execution times.

Probably the fastest algorithm to date is that of Imahori
and Yagiura [15] which is based on Burke et al.’s best-fit
approach. Their algorithm is very efficient and requires linear
space and O(n log n) time, and solves strip-packing problems
where the height of the surface to pack can expand infinitely
until all items are packed. They report execution times in
the order of 10 seconds for problems of size 220 items. Our
application is slower, as our timing results show below, but
provide a better qualitative aesthetic packing in a fixed size
surface with similarly small wasted area. Because the time
consuming operation of a collage of image is in the resizing
and merging of images on the canvas which vastly surpasses
our packing time by several orders of magnitude, the added
value of the quality of the aesthetics of the packing makes our
algorithm none-the-less attractive compared to the above cited
faster contenders.

In the next section we present the algorithm, its basic
data structure, and an important proposition that controls the
packing and ensures the positioning of items without overlap.
We follow with an analysis of the time and space complexities
of our algorithm, and show that the algorithm uses linear
space and requires at most O(N3log(N)2) time, although
experimental results show closer to linear evolution of the
execution times. This is due to the fact that the algorithm
generally finds a rectangle to pack in the first few steps of
the process, and the execution time is proportional mostly

to the number of rectangles. Only the last few remaining
rectangles take the longest amount of time to pack in the left
over space. We compare our algorithm to several test cases
taken from the literature in the benchmark section, and close
with several examples illustrating how the algorithm operates.
The conclusion section presents future research areas.

III. THE ALGORITHM

A. Basic Data-Structures

The algorithm is a greedy, localized best-fit algorithm that
finds the best fitting rectangles to pack closest to either one of
the left side or top side of the surface. Figure 1 captures the
essence of the algorithm and how it progresses.

The algorithm maintains ordered collections of vertical
segments representing rectangular areas of empty space. Seg-
ments are vertical but could also be made horizontal without
impeding the operation of the algorithm. These vertical seg-
ments can be thought of as the left-most height of a rectangle
extending to the right-most edge of the surface to pack. Vertical
segments with the same x-coordinate relative to the top-left
corner of the surface to cover are kept in vertical lines. The
algorithm’s main data structure is thus a collection of lines
ordered by their x-coordinates, each line itself a collection of
segments, also ordered by their y-coordinates. The collections
are selected to allow efficient exact searching, approximate
searching returning the closest item to a given coordinate,
inserting a new item (line or segment) while maintain the
sorted order. Red-black trees [10] are good implementations
for these collections.

The main property on which the algorithm relies to position
a new rectangle on the surface without creating an overlap with
already positioned rectangles is expressed by the following
proposition:

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

Fig. 4. The packing of 100 items in 16 objects as proposed by Hopper as the “M1a” case.

Proposition 1: A new rectangle can be positioned in the

surface such that its top-left corner falls on the point of

coordinates (xtl, ytl) and such that it will not intersect with

already positioned rectangles if it satisfies two properties

relative to the set of vertical lines:

1) Let Lleft be the vertical line whose x-coordinate xleft is

the floor of xtl, i.e. the largest x such that x <= xtl.

In other words, Lleft is the vertical line the closest

to or touching the left side of the rectangle. For the

rectangle to have a chance to fit at its present location,

the horizontal projection of the rectangle on Lleft must

intersect with one of its segments that completely contains

this projection.

2) The horizontal projection of the rectangle on any vertical

line that intersects it must also be completely included in

a segment of this line.

Figure 3 illustrates this proposition.

B. Basic Operation

The algorithm starts with two vertical lines, L0 and L∞.
The first line originates at the top-left corner of the surface to

cover, and contains a single segment whose length defines the
full height of the surface to pack. L∞ is a vertical line located
at an x-coordinate equal to the width of the surface to pack.
L∞ contains no segments. It identifies the end of the area to
pack. Any rectangle that extends past the end of the area to
cover will cross L∞, and because this one does not contain
segment, the second part of the proposition above will reject
the rectangle.

To simplify the description of the algorithm, we use the
generic term line to refer to lines and segments. The algorithm
packs from top to bottom and from left to right. Starting with
the vertical line L0 it finds the item R0 with the largest height
less than L0. If several items have identical largest height,
the algorithm picks the one with the largest perimeter and
tests whether it can be positioned without overlapping any
other already placed items. The algorithm tries three different
locations: at the top of L0, at the bottom of L0, or at the centre
of L0. The item is positioned at the first location that offers
no overlap, otherwise the next best-fitting item is tested, and
so on.

The positioning of R0 shortens L0, as shown in Figure
1(b). A new line L1 is added to the right of R0 to indicate a
new band of space to its right that is free for packing.

The goal is to place all larger items first and automatically
the smaller ones find places in between the larger ones.

In Figure 1(c) the algorithm finds R1 as the rectangle
whose width is the largest less than L1 and positions it against
the left most part of L1. Adding R1 shortens L1, indicating that
all the space right of the now shorter L1 is free for packing.

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

Fig. 5. The packing of 97,272 randomly generated items in a a rectangular surface. The application is multithreaded, each thread associated with a rectangular

border. 5 large lime-green rectangles with different geometries are placed in various locations before the computation starts.

Again, a new line L2 is added to delineate a band of empty
space to the right of R1.

We implement the data-structures for the lines as trees
sorted on the line position relative to the top-left corner of the
initial surface, so that a line or a group of lines perpendicular
to particular length along the width or height of the original
surface can be quickly found.

Note that in our context these line-based data-structures
allow for the easy random positioning of rectangles in the
surface before the packing starts, as illustrated in Figure 1(d)
where a rectangle R0 is placed first in the middle of the surface
before the packing starts.

C. The Code and its Time and Space Complexities

We now proceed to evaluate the time complexity of our
heuristic, whose algorithmic description is given in Algorithm
1. In it, N is the number of items to pack, rects is the list of
items to pack, VL the collection of vertical lines, and vl one
such individual line.

Since N is the original number of items to pack, then
clearly the size of VL is O(N). Given a line vl of VL, we argue
that the average number of segments it contains (exemplified
by L1a and L1b in Figure 1) is O(N). The goal of the Loop
starting at Line 3 is to pack all rectangles, and it will repeat

N times, hence O(N). The combined time complexity of the
loops at Lines 5 and 7 is O(N) because they touch at most all
segments in all the lines, which is bounded by O(N). The time
complexity of Line 16 is clearly O(N log N), although on the
average the number of pairs to sort will be O(

√
N) rather than

O(N log N). The loop starting at Line 17 processes at most
O(N) pairs, and for each rectangle in it, must compare it to at
most O(N) line vl. So it contributes O(N2), which overpowers
the sorting of the list. Therefore the combined complexity of
the whole loop starting on Line 3 is O(N3). Empirically,
however, the algorithm evolves in nearly linear fashion as
illustrated in Figure 2 where various selections of rectangles
with randomly picked sizes are packed in a rectangular surface
that is selected ahead of time to be of a given aspect ratio, and
whose total area is 1/98% larger than the sum of all the items
to pack. We found this approach the best for packing quickly
the great majority, if not of all the items.

The space complexity is clearly O(N), since the packing of
a new item in the surface introduces at most 2 new segments
in the data structures.

D. Algorithmic Features

Our heuristic sports one feature that is key for our image-
collage application: Rectangular areas in which packing is
forbidden can easily be identified inside the main surface to

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

Fig. 6. The packing of 2,200 photos of various sizes and aspect-ratios, as many are cropped for artistic quality. The size of the photos is randomly picked by

the algorithm. All the photos belong to this author.

be packed, either statically before starting the packing or even
dynamically during run time. We refer to these areas as empty
zones. This feature offers the user the option of positioning
interesting images at key positions on the surface to be packed
ahead of time. In other domains of application these could
be areas with defects. Additionally, it allows parallel packing
approaches where rectangular empty zones can be given out
to new processes to pack in parallel, possibly shortening the
execution time.

IV. BENCHMARKS

A set of benchmark cases used frequently in the literature
are those of Hopper and Turton [12], and of Burke, Kendall
and Whitwell [5]. For the sake of brevity we select a sample
of representative cases and run our heuristic on each one. The
computer used to run the test is one core of a 64-bit Ubuntu
machine driven by a 3.5GHz AMD 8-core processor, with
16GB of ram. The heuristic is coded in Java. Note that all
published results are on different types of computers, ranging
from ageing memory-limited laptops to supped up desktops,
all with different processor speed and memory capacities.
To provide a more objective comparison, we make the fol-
lowing assumptions: a) all results reported in the literature
corresponded to compiled applications that are all memory
residents, b) they are the only workload running on the system,
c) MIPS are linearly related to CPU frequency, and thus we
scale the execution times of already published data reported

by the ratio of their operating CPU frequencies to that of our
processor (3.5GHz).

We follow the same procedure used by the researchers
whose algorithms we compare ours to, and we run our ap-
plication multiple times (in our case 30 times) on the same
problem set and kept the best result.

Table I shows the scaled execution times of the various
heuristics for problem sets taken from the literature. The times
are those reported in the literature multiplied by a scaling factor
equal to the 3.5GHz/speed of processor, where the processor
is the one used by the researchers. For the Burke column, the
speed of the processor is 850MHz. For the GRASP column,
2GHz, and for the 3-way column, 3GHz.

We observe that, as previously discovered [15] our packing
efficiency improves as the number of items gets larger (in
the thousand of items), which is the size of our domain of
interest. The execution times of our heuristic are faster than
those of Burke’s best-fit, or of GRASP, and at most five times
slower than the fast running 3-way best-fit of Imahori and
Yagiur [15]. This difference might be attributed to either the
choice of language used to code the algorithm, Java in our
case, versus C for theirs, in our multithreaded approach–see the
examples below–which adds a level of overhead, or possibly
some inefficiency in the selection of slower data structures.

In the next section we show several packings generated by
our heuristic.

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

TABLE I. PERFORMANCE COMPARISON TABLE

Burke GRASP 3-way DT

Case No. items optimal diff. time (s) diff. time (s) diff. time (s) diff. time (s)

N1 10 40 0 ∼14.571 0 ∼34.286 5 <0.009 0 0.05

N2 20 50 0 ∼14.571 0 ∼34.286 3 <0.009 6 <0.01

N3 30 50 1 ∼14.571 1 ∼34.286 4 <0.009 10 <0.01

N4 40 80 2 ∼14.571 1 ∼34.286 6 <0.009 49 <0.01

N5 50 100 3 ∼14.571 2 ∼34.286 4 <0.009 5 0.03

N6 60 100 2 ∼14.571 1 ∼34.286 2 <0.009 22 0.01

N7 70 100 4 ∼14.571 1 ∼34.286 7 <0.009 14 <0.01

N8 80 80 2 ∼14.571 1 ∼34.286 3 <0.009 23 <0.01

N9 100 150 2 ∼14.571 1 ∼34.286 13 <0.009 5 0.04

N10 200 150 2 ∼14.571 1 ∼34.286 2 0.01 10 0.03

N11 300 150 3 ∼14.571 1 ∼34.286 2 0.01 2 0.49

N12 500 300 6 ∼14.571 3 ∼34.286 5 0.02 7 0.07

N13 3152 960 4 ∼14.571 3 ∼34.286 4 0.20 5 0.927

C7-P1 196 240 4 ∼14.571 4 ∼34.286 6 <0.009 17 0.02

C7-P2 197 240 4 ∼14.571 3 ∼34.286 4 <0.009 41 0.02

C7-P3 196 240 5 ∼14.571 3 ∼34.286 5 <0.009 24 0.01

Algorithm 1 Simplified Packing Heuristic
1: N = dimension(rects)
2: VL = {L0, L∞}
3: while not VL.isempty() do
4: success = false
5: for all line vl in VL do
6: list = { } // empty collection
7: for all segment sl in vl do
8: rect = rectangle in Rects with height closest to

but less than sl
9: if rect not null then

10: list.add(Pair(rect, sl))
11: end if
12: end for
13: if list.isempty() then
14: continue
15: end if
16: sort list in decreasing order of ratio of rect.length to

sl.length
17: for all pair in list do
18: rect, sl = pair.split()
19: if rect fits in VL then
20: pack rect at the top of sl
21: update VL
22: success = true
23: break
24: end if
25: end for
26: if success == true then
27: break
28: end if
29: end for
30: if Rects.isEmpty() then
31: break
32: end if
33: end while

V. PACKING EXAMPLES

In this section we provide several examples of packing
under various conditions and constraints, some of them taken
from the literature.

In Figure 4 we apply our heuristic to Hopper’s M1a case
[11] where 100 items must be packed into 16 different objects.
Our algorithm also packs the objects, although this is not a
requirement of the test. In this experiment our heuristic is
multithreaded and several threads pack the different objects.
A scheduler simply distributes the objects to separate threads,
picking the largest object first and assigning it to a new thread
implementing our packing heuristic. Then the scheduler picks
the next largest object (in terms of its area) and assigns it
to a new thread, and so on. The earliest starting threads are
given a random sample of the items to pack. Threads that start
last have to wait until earlier threads finish packing and return
items that couldn’t be packed. This automatically packs objects
in such a way that as few objects as possible are packed, and
some left empty, which may be desirable.

In Figure 5 the original surface is divided at run time
into smaller surfaces, or borders one inside the other as the
packing progresses, and individual threads are running the
packing on individual borders. Here again the threads are given
random samples of the original population of items and a load
balancing scheme allows for the exchange of items between
threads. This is represented by items with different colors. For
example, the items associated with the first thread are all dark
green, and some can be found in the light green, orange or
pink borders as they are rejected by the first thread once it has
packed the dark green band. Note that the utilization of the
surface is 99.30%.

In Figure 5 we have placed five large items (yellow-
green rectangles) on the surface before launching the packing
algorithm. Notice how the heuristic naturally packs around
these areas. Note also that as in Figures 4 and 5, we
follow Huang and Chen’s quasi-human approach [13] and

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

pack corners and borders first before proceeding with the
inside areas. Note that this modification of the algorithm fits
completely with the natural properties of the heuristic, and
enhances the visual aspect of the final packing.

VI. CONCLUSIONS

We have presented a new heuristic for packing or nesting
two-dimensional images in a rectangular surface. The heuristic
packs the items by creating a collection of segments that are
maintained in two data structures, one for horizontal segments,
and one for vertical segments. The segments represent the
leftmost and topmost side of rectangular surfaces that extend to
the edges of the original surface to pack. These data structures
permit to test quickly whether a new item can be positioned
in the surface without overlapping a previously placed item.

Our packing heuristic does not rotate items, but none-the-
less compares favourably with other heuristics published in the
literature that solve 2D-strip packing with rotation of items
allowed.

The data structure used to maintain the empty areas lends
itself well to positioning items in key places ahead of time, or
in subdividing the original surface into multiple holes that can
be either left empty, reserved for large size items, or assigned
to separate processes that will pack in parallel. Such holes may
contain defects (for example in a sheet of metal, or glass) that
need to be avoided by the packing process. A forthcoming
paper will explore scheduling and load-balancing approaches
for speeding up the packing.

Because our domain of application is that of image col-
lages, we have found that the the quasi-human approach of
Huang and Chen, along with subdividing the surface into
nested rectangular area significantly improves the aesthetic
quality of the packing compared to most heuristic that privilege
one side or corner and put all largest items there and finish
packing with the smaller items at the opposite end.

REFERENCES

[1] B. S. Baker, D. J. Brown, and H. P. Katseff, “A 5/4 algorithm for

two-dimensional packing,” Journal of Algorithms, vol. 2, pp. 348–368,

1981.

[2] B. S. Baker, E. G. C. Jr., and R. L. Rivest, “Orthogonal packings in two

dimensions,” SIAM Journal on Computing, vol. 9, pp. 846–855, 1980.

[3] R. Baldacci and M. A. Boschetti, “A cutting-plane approach for the

two-dimensional orthogonal non-guillotine cutting problem,” European

Journal of Operational Research, vol. 183, no. 3, pp. 1136–1149, 2007.

[4] J. Beasley, “An exact two-dimensional non-guillotine cutting tree search

procedure,” Operations Research, vol. 33, no. 1, pp. 49–64, January

1985.

[5] E. K. Burke, G. Kendall, and G. Whitwell, “A new placement heuristic

for the orthogonal stock-cutting problem,” Oper. Res., vol. 52, no. 4,

pp. 655–671, Aug. 2004.

[6] E. G. Coffman, M. R. Gazey, and D. S. Johnson, Approximation

algorithms for bin-packing an updated survey. Springer-Verlag, 1984.

[7] R. D. Dietrich and S. J. Yakowitz, “A rule-based approach to the trim-

loss problem,” International Journal of Production Research, vol. 29,

pp. 401–415, 1991.

[8] H. Dyckhoff, “Typology of cutting and packing problems,” European

Journal of Operational Research, vol. 44, pp. 145–159, 1990.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. New York: W. H. Freeman and

Company, 1979.

[10] L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced

trees,” Foundations of Computer Science, IEEE Annual Symposium on,

vol. 0, pp. 8–21, 1978.

[11] E. Hopper, “Two-dimensional packing utilising evolutionary algorithms

and other meta-heuristic methods,” Ph.D. dissertation, Cardiff Univer-

sity, United Kingdom, 2000.

[12] E. Hopper and B. C. H. Turton, “An empirical investigation of meta

heuristic and heuristic algorithms for a 2d packing problem,” European

Journal of Operational Research, vol. 1, no. 128, pp. 34–57, 2000.

[13] W. Huang and D. Chen. (2008, July) Simulated annealing. [Online].

Available: http://cdn.intechopen.com/pdfs/4629/InTech-An efficient

quasi human heuristic algorithm for solving the rectangle packing

problem.pdf

[14] W. Huang, D. Chen, and R. Xu, “A new heuristic algorithm for rectangle

packing,” Computers and Operations Research, vol. 34, no. 11, pp.

3270–3280, November 2007.

[15] S. Imahori and M. Yagiur, “The best-fit heuristic for the rectangular

strip packing problem: An efficient implementation and the worst-case

approximation ratio,” Comput. Oper. Res., vol. 37, no. 2, pp. 325–333,

Feb. 2010.

[16] C. Kenyon and E. Remilia, “Approximate strip-packing,” in Proceedings

of the 37th Annual Symposium on Foundations of Computer Science,

1996, pp. 31–35.

[17] T. W. Leung, C. K. Chan, and M. Troutt, “Application of a mixed

simulated annealing genetic algorithm heuristic for the two-dimensional

orthogonal packing problem,” European Journal of Operational Re-

search, vol. 145, no. 3, pp. 530–542, March 2003.

[18] D. Liu and H. Teng, “An improved bl-algorithm for genetic algorithm of

the orthogonal packing of rectangles,” European Journal of Operational

Research, vol. 112, no. 2, pp. 413–420, January 1999.

[19] D. Sleator, “A 2.5 times optimal algorithm for packing in two dimen-

sions,” Information Processing Letter, vol. 10, pp. 37–40, 1980.

[20] J. Verstichel, P. D. Causmaecker, and G. V. Berghe, “An improved best

fit heuristic for the orthogonal strip packing problem,” International

Transactions in Operational Research, June 2013.

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

