
Boundaries of Supercomputing

NP Revisited

Lutz Schubert and Stefan Wesner

HLRS

University of Stuttgart

Stuttgart, Germany

{schubert; wesner}@hlrs.de

Abstract—Supercomputers can reach an unprecedented degree

of scale and miniaturization reaches the quantum level of

manufacturing. Non-regarding this progress, however,

computing capabilities are and will remain insufficient to meet

the demands of many compute intensive scenarios. The major

obstacle thereby consists in the non-deterministic polynomial

(NP) nature of these problems. Recent research and

development seems to have almost forgotten about this

intrinsic problem. With this paper we want to remind of the

relevance of NP for supercomputing by exploring its impact on

future computing development and discuss potential

approaches to relieving (not solving) this issue.

Keywords- high performance computing, NP, scalability,

non-determinism, parallel computing

I. INTRODUCTION

The number of computational units that are available to a
user increased constantly over the recent years: super-
computing clusters integrate thousands of processors with
high speed interconnects that allow the user to execute large
scaling applications. Multicore processors bring parallelism
to the common desktop PC and even though scale still ranges
in the area of 4 to 8 cores, manufacturers already plan on
processors integrating 100s of compute units, so that today’s
cluster scale will be available for desktop machines in 10 to
15 years’ time. In addition, the resources available over the
internet and thus principally available for grid, cloud and
P2P computing have reached several millions by now [1].

Even though the effective global computational power is
high, there still remains a large set of problems that cannot
be solved – this includes accurate (long-term) weather
forecasting, simulation of the human being, astrophysics etc.
All approaches so far provide approximations rather than
accurate results – mostly this is due to the size of the
respective system, which in the case of weather forecasting
and astrophysics is “open”, meaning that a potentially
infinite number of parameters impact on the computation -
classically, this is referred to as dealing with “LaPlace’s
demon” [2]. It is obvious that “open world” problems are
unsolvable due to the physical limitations of the resources –
however, most of these problems can be reduced to a
subspace in which parameters have only minimal impact
(e.g. the gravitational forces across large distances) and thus
can be subsumed to a simpler factor or even neglected.

As we will show, the actual main computational problem
however consists in the non-determinism of the respective

systems, i.e. their “chaotic” nature. Non-regarding the
wording, this does not imply that the computation is not
causal, but that there is no functional representation of the
results for any time t - instead g(t+n) can only be generated
by (n) stepwise iterations from g(t). Computation of g
typically involves multiple iterations for approximation,
which means that the complexity for calculation quickly
increases beyond the capacities of existing infrastructures
and, in fact, will always exceed these restrictions (chapter II).

All current development concentrates on increasing the
number of computational resources by exploiting parallelism
– be that on the level of the instructions or on the level of the
full processing unit, or on increasing the execution speed by
employing specialized accelerators. In all cases, the
capabilities effectively increase polynomial whilst the
requirement growth remains exponential. In chapter III we
will elaborate why such development is insufficient.

This restriction is due to the fact that modern computing
still builds on Turing’s model, which is strictly sequential in
nature. In order to cope with the NP class of problems, a new
computing model is required which can deal with the non-
deterministic nature of these tasks. In chapter IV, we will
discuss what such a model could look like.

We conclude the paper with a discussion on the obstacles
towards realizing such a computing model.

II. NP APPLICATIONS / NON-DETERMINISM

Simulating real world behavior is essential for both
academia and industry: not only to understand the mechanics
of the system examined, but in particular to be able to
modify or replicate it. Thus enabling for example the
evaluation of a design prior to its production and to estimate
(and contain) impact on the environment, such as oil leakage,
air poisoning etc. This equally affects all disciplines, ranging
from engineering over natural sciences to social studies.

These disciplines typically investigate different levels of
the system, from subatomic (quantum physics) over living
creatures (biology, sociology etc.) to galaxies and beyond
(astrophysics). And even though the range seems well
defined for most disciplines, such as medicine, ranging from
individual cells to living beings, there is nonetheless an
important reciprocation between most of these levels. This
interdependency sometimes leads to the emergence of new,
merged disciplines, such as biochemistry, and in other cases
one of the major concerns consists in eliminating all
influence from other systems, such as in quantum physics. It
becomes more and more apparent that effectively all levels

94Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

have to be considered for accurate predictions and
simulation. For example the virtual physiological human
(VPH) community aims at simulating the whole human body
on all levels (i.e. from cell systems down to molecules) in
order to predict e.g. the spread of medicine in the body.

The interest in such research is due to the cross-impact of
other domains unto calculations of the respective system. It
is a specific aspect of natural systems that they are essen-
tially chaotic, meaning that miniscule changes in parameters
lead to completely different results. In other words, minor
errors in the data can lead to completely wrong results. Since
natural systems are also mostly “open”, there is an infinite
number of impact factors. For example, in order to measure
an exact kilogram, already the gravity shift due the planetary
constellation plays a crucial role. The impact of the
combined two factors – openness and chaotic – is also well
known as the so-called “butterfly effect” [3].

There is no direct determinism in the underlying
functionality, that allows calculation of f(t) for any t directly.
This is simply due to this large degree of interactions
between all parameters, leaving a potentially infinite number
of equations to be solved in each iteration step. Whilst the
scope can be reduced according to the number of particles
considered in the subspace and according to the strength of
coupling, it still leaves the system essentially unsolvable
without approximation and optimization.

A. The Impact Of NP: An Example Application

Let us examine this in a simple example of particle
collision in an isolated subspace, where each particle can be
simulated as (ideal) snooker balls: even though each
trajectory can be represented as a vector, collisions need to
be checked with all other particles (leaving mechanisms for
reducing the search space aside). In the most straight forward
approach, we would therefore advance the position of each
particle per time step by a safe distance thereby checking
with all other particles whether a collision would occur in the
respective time step, and reflect it accordingly.

Since at any time a collision may occur (or even several
at once), the outcome at any time t depends on the
constellation at t-1. In other words fn(t+1) = g(fn(t)), whereas
fn(0) is the initial constellation and g(x) is the combined
collision test and movement over n particles. This means that
there are n! equations to be solved in g(x) for one time step.

If each test could be performed by an individual
computer in order to achieve maximum performance, adding
only one particle more would require n*n! more resources.
This can be simply shown: if the complexity for calculating
fn(t) is n!, then the complexity of fn+1(t) is (n+1)!. Therefore:

 (n+1)! = n!*(n+1). (1)

To be more concrete: for 1.000.000 (10
6
) particles,

8,26*10
5.565.708

 resources would be required. Just adding one
particle to this would lead to additional(!) 8,26*10

5.565.708+6

resources. In one cubic meter of air alone there are more than
10

25
 molecules and hence particles to be calculated. There

are multiple methods to reduce the number of calculations,
such as neighborhood restrictions etc. The main point of this

example is not so much to show the complexity of the
calculation itself, but the enormous growth of requirements
with only slight increments in the problem or data space.

The usual approach to dealing with this amount of
equations consists in approximation and result estimation.
Chaotic non-deterministic systems can however lead to
enormous result deviation if just a single value is changed
minimally. In the example of the particle system, we can see
how errors can sum up over time, assuming that just a single
particle shows a vector deviation (speed or angle) of ε
between simulation and real world. We can calculate the
average time tcol for a collision between two particles to be

 tcol = V / (ND
2
v) (2)

with V being the volume of the subspace, N the amount of
particles within V, D the diameter of the particles and v the
velocity. For the sake of simplicity, we assume that all par-
ticles have a diameter of 1 angstrom (nitrogen has 1.5 ang-
strom, oxygen 3.6). With a density of 10

25
 molecules/m

3
 and

the average velocity per particle of 500 m/s (air has roughly
463 m/s at 20° C), this leads to roughly 157*10

6
 collisions

per particle and second (for air, this is roughly 5*10
9
).

Ideal elastic collisions preserve the energy of both
particles – i.e. given initial vectors v 1o and v 2o of two
particles, the new vectors v 1n and v 2n sum up to the same
combined vector. Without going into full detail, one can
show that an initial error ε of ust one particle, i.e. v 1real
 ε v 1simulated is maintained across all collisions and even
transplanted onto all colliding particles [4]. Due to the
exponential nature of the collisions, the total (maximum)
error after one second is ε*2

157*10*6
 ≈ ε*5*10

2835 - for reasons
of simplification, we ignore the cancellation of two errors, so
that the total error will be slightly lower.

Notably, this does not hold equally true for all problem
fields (see section V). Since the calculations themselves are
just approximations the effective error is essentially higher.
Accordingly, one of the major efforts consists in keeping ε
as small as possible. However, limitation of resources and
exponential growth of complexity is compensated on cost of
precision, thus leading to higher, rather than lower ε and thus
to less precise results.

B. Dealing With NP Applications

There are multiple ways to address problems with
exponential complexity – typically these consist in restricting
the problem space, subsuming multiple equations under one,
reducing the precision, using approximation calculations etc.
Given the potential error introduced through these methods,
the major interest is obviously to employ means that are
more precise, thus reducing the risk of an increasing error.

Much effort is vested into finding a representation of the
according task in the polynomial problem space, in other
words to reduce the specific element of NP to a respective
representation in P which would reduce the resource need
and complexity by an exponential factor. HPC programmers
spend much effort into finding such a reduction, yet that
effort is exponential in itself. Even though there is a set of
problems which can clearly not be reduced to P, how much

95Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

of the NP space is identical to P is unsolved as yet [5].
Ideally, the set of NP problems equals the set of P, in which
case all major mathematical problems could be calculated in
polynomial time.

In addition to “ordinary” NP problems, there is a set of
problems which cannot be reduced to P, generally referred to
as “NP-hard”. Any problem belonging to this space will
exponentially grow in complexity with the degree of desired
granularity, respectively data size. In these cases, desired
accuracy must be weighed against computational effort.
Higher accuracy and larger data set are nonetheless urgent
demands from industrial and academic research.

III. THE DEFICIENCIES OF CURRENT DEVELOPMENT

The classical approach to increasing the performance of a
processing unit consists in increasing its execution clock
rate, e.g. by higher settling rates or extended instruction level
parallelism allowing for execution of more operations at
once [6]. However, these approaches face multiple problems
and effectively do not really improve performance any more
[7]. Much optimization is nowadays handled by the
compiler, rather than the hardware, even though specialized
processing units that offer application specific optimization
capabilities are growing in interest (see below).

Current manufacturers extend parallelism on a higher
level by exploiting principles that have long been employed
in high performance computing: parallel processing units. As
opposed to ILP, parallelization on this level implies
effectively complete replication of the whole processor,
including the logical unit, cache and I/O. Modern multicore
processors are thus exactly that: multiple full units within a
confined space, though the architecture of interconnects etc.
has slightly changed in order to maximize performance.

A. The Limitations of Scale (or Why Multicores Are Not

The New Messiah)

Multicores thereby face the same issues as cluster
computing: applications simply do not scale to the amount of
available resources. In other words, we already have access
to more compute units than most programs can effectively
use. This is due to two major constraining factors: Amdahl’s
law and messaging overhead.

Amdahl’s law generally states that the speedup of parallel
program execution is limited by its sequential aspects, or in
other words: there are functions and code segments in any
program that simply cannot be parallelized. This statement
was later turned into a general formula for speedup:

 speedup = 1 / (rs + rp/n) (3)

whereas rs denotes the sequential and rp the parallel
portion of a program and n the number of parallel processes,
i.e. compute units. Plotting this function clearly reveals how
the speedup gained by parallelization saturates with a
specific number of compute units (cf. Figure 1.)

It is notable that only applications with a very high
degree of scalability (> 90%) can actually make use of the
number of processing units offered in large scale clusters and
even there, the actual gain is comparatively low. This

calculation however does not even consider the impact of
messaging overhead or the sequential properties of the
individual processes themselves, let alone the ratio between
messaging and workload of the processes.

Figure 1. Speedup of an application according to Amdahl’s law

Messaging Overhead thereby is the major problem for all
parallel programs – this includes data exchange between
processes as much as access to (remote) resources, such as
memory or hard drive. Whilst access to memory is
specifically defined by the limitations of cache per
processing unit, the impact of data exchange between
processes is particularly dependent on the distribution of
tasks and / or data across processing units:

Let us assume that a given task consists of n iterations
(per value) on a dataset with m values. In a straightforward
algorithm this means that n*m iterations have to be
processed. Assuming that a single processor would take texec
seconds to execute this task, ptotal processors would take
texec/ptotal seconds without overhead for distribution and
synchronization. In the ideal case, we have n*m resources
available, each thus only processing one iteration for one
datum. Leaving aside the fact that data needs to be passed
between iterations, this distribution is only sensible if the
time for gathering the results tmsg is higher than the time for
execution of one iteration texec/(n*m). Otherwise,
pideal=[(n*m)*tmsg]/texec defines the number of iterations per
processing unit that should at least be executed in order to
not reduce performance through messaging – just for result
gathering, i.e. for embarrassingly parallel tasks.

Figure 2. Speedup of program parallelization in relationship to the

overhead produced by messaging for synchronization purposes

In real cases, the degree of messaging is obviously
defined by the dependency between and across iterations, i.e.
which data is required for a single iteration and which is

96Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

carried across. Typically, a kind of synchronization step is
required at least once per iteration. Therefore if the execution
of a single iteration becomes too small, messaging produces
more load than process execution itself.

Without specifying a concrete unit, as this depends on the
respective use case, we can therefore say that performance
increases with parallelization up to the point where the
messaging overhead exceeds the optimal ratio of workload to
messaging of an individual processor. This leads to a
effective speedup figure as depicted in Figure 2.

In fact few applications scale well over a few dozen
processing units and the best scaling applications are denoted
by very little communication. This is particularly true for
embarrassingly parallel jobs, such as rendering.

B. Not Enough Resources?

Performance of parallel applications and hence
usefulness of large scale supercomputer is naturally limited,
basing on the type of calculation to be performed. But it is
exactly this type of highly dependent calculations that need
to be executed with higher accuracy and over larger datasets
in order to satisfy industrial and academic needs. By
increasing the workload per processor, by improving the
interconnect and by reducing the sequential portion of the
program, this saturation point can be pushed to higher
scalability numbers - however, an even more common
approach consists in combining different levels of process
interdependency by linking simulations of different scale [8].
This is in principle identical to segmenting the problem
space into sub spaces, thus improving data correctness on a
large scale, i.e. across the individual simulations’ boundaries,
but not within the given segment.

Even if manufacturers could reduce the interconnect
problem and the sequential workload, problems with
exponential complexity growth would still exceed the
number of available resources. As noted, current manufac-
turers all aim at increasing the number of resources rather
than increasing the performance of the individual processing
unit – however, the effective gain of this approach decreases
with the number of resources, as the amount of data that can
be processed in a given timeframe is in direct relationship to
the performance of the system. One can interpret Figure 2.
also as the process-able size of the dataset over the amount
of cores: it can be clearly seen that an increase in the amount
of cores in small scale processing systems leads to a stronger
increase than in larger scaled ones (gray boxes in the figure).

As opposed to this, increase in clock rate leads to a
uniform increment in data-size that can be processed by
factor n. More concretely, an increment of the clock rate by
factor c also increases the amount of process-able data by c.
However, due to the power wall issue, manufacturers must
decrease the clock rate when integrating more compute units
into a single processor [9] – the main problem for
manufacturers is therefore to find the best relationship
between amount of cores and clock rate of the individual
units. As this relationship is strongly application dependent,
there is no clear solution as yet.

Leaving aside the effect of messaging overhead, jitter,
limitations of scale etc. and assuming an ideal scalability

performance, i.e. where the combined performance is
defined over the sum of all processing units’ clock-rates:

 pcomb = npn (4)

(with n being the number of processing units and pn the
respective performance / clockrate), we can easily show that
the effective (combined) performance in current systems
does not grow according to Moore’s law anymore. Instead
the growth has effectively decreased from exponential to
linear. Mapping this to the complexity to size ratio (Figure 3.
), it is obvious that as we advance the performance of
computing systems basically linear (following classical
mechanisms), the complexity these systems can handle
grows linear too. Implicitly, the size of the according
problem space grows only logarithmically.

To summarize:

 the number of necessary resources grows
exponentially to the complexity in NP problems

 the performance increase through current large scale
systems is naturally limited

 most applications do not meet the scaling
capabilities of the underlying hardware

IV. NP PROCESSING

As the interest in more accurate processing of larger data
sets increases, so does the pressure on computer
manufacturers and application developers to deal with large
scale. However, as can be clearly seen from the discussion
above, the growth of resources needed exceeds the
capabilities exponentially over time – in other words, whilst
manufacturers and developers try to push the degree of
scalability further up the scale, the need for scale and
efficient usage thereof grows faster than manufacturers and
developers can achieve. As all the major improvement steps
have been taken, the impact of all the minor adjustments that
can still be taken in order to increase scalability constantly
decreases and becomes more and more use case dependent.

One reason for this deficiency is caused by the
limitations of current processors in terms of dealing with
non-deterministic problems. More specifically, the strict
“sequentiality” and determinism of the Turing machine
prevents current computer models to deal with NP problems
and the implicit communication. Given the effort to replace a
current, well-established computing model with a potentially
non-interoperable alternative model, the major question to
pose is: what would be the benefit of having machine that
can deal (better) with NP?

A. The Impact of Reducing NP to P

As noted above, the hard task for HPC developers
consists in finding a representation of the NP problem in the
polynomial time space, or at least an approximation. One
principle thereby consists in subsuming multiple equations
into more global, general equations that, even though they
disrespect e.g. interactions between particles in the subspace,
still deliver results accurate enough for the purposes of the
task. The actual error may be quite substantial in such an

97Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

environment, where not only the individual deviations sum
up, but also the additional error for aggregation and
approximation of multiple equations contribute to the overall
deviation. In other words the result becomes inaccurate by
the factor of potential deviation as calculated above.

If, however, an accurate representation of the respective
problem in P space can be found, the error (and hence
accuracy) of the result is maintained, i.e. not increased
further by the according subsumation and approximation.
Since many problems in NP actually belong to the P space,
this is frequently possible, though very difficult to achieve.
There is furthermore no proof whether all NP problems can
thus be represented as P tasks.

Nonetheless, the gain achieved by this complexity
reduction is obvious. Figure 3. depicts the complexity
reduction and hence the decrease in time to complete the
task. It can be noted that for small n (and small c), the
complexity of NP problems is actually lower than that of
polynomial tasks – this however is quickly surpassed (note
the logarithmic scale) with growing n.

Figure 3. The complexity of nc versus cn. The striped area denotes the

overhead of NP over P. In the left area, P exceeds NP in complexity

In our particle collision example, the complexity of the
original function is n!. Reducing this to a set of equations of
complexity n

c
 would reduce the complexity by factor

 n! / n
c
 = (n-1)! / n

c-1
 (5)

Whereby we must assume that c is comparatively high,
so that an improvement is notable only for large datasets (cf.
Figure 3.). However, as noted, it is not always possible, let
alone easy to find a P representation for an NP problem, so
that ideally, the task is approached the other way round:

B. Classical Approaches to NP Computing

Essentially, if the processing unit itself can process non-
deterministic tasks, an NP task on top of it will essentially be
executed in order of complexity P. Obviously, this is easier
said than done, as otherwise NP processors would have long
since emerged on the market. Nonetheless it needs to be
stressed again, that the according industrial interest has
simply not arisen so far – instead primary focus rested on
advancing existing computing types, i.e. Turing machines.

Back in the seventies and eighties, some attempts have
been made to instigate “unconventional” processors and in
particular to examine the capabilities for NP processing via

other means, such as biochemical computing etc. The
lacking success is thereby less due to the lack of quality of
the results, but rather again for the lacking interest from
industrial side: switching from the successful Turing model
to an architecture that has neither proven successful nor can
be easily applied to common problems would imply too
many manufacturing costs and risks.

Many of the according approaches based on the increased
scalability of the system rather than the respective
capabilities to deal with non-determinism. Reduction in size
in comparison to electronic PCs often provokes the mis-
conception that the according capability to deal with NP
problems is higher. This builds on the same mis-
understanding as the assumption that multicore processors
and large scale systems can solve the resource need of the
NP space – as has been shown, this is not the case though.

On a similar basis, it is often assumed that quantum
computing (QC) would essentially enable non-deterministic
computing, and thus solve the NP issue. However, QCs like
normal desktop PCs are purely deterministic and sequential
in their processing. Even though quantum processes are non-
deterministic in nature, the according effects are not
exploited in QCs. Miniaturisation and interconnectivity
reaches a peak in QC, thus allowing for enormous scale and
in theory, quantum processers could perform calculations
over full real time numbers as opposed to pure bitwise
operations on PCs – however, this faces the same obstacles
as analog computing did during the 60ies and 70ies, and is
unlikely to be successful due to the same issues [10]. It must
be expected though that quantum computers (if ever
realized) represents one of the upmost boundaries of
scalability or rather of miniaturization.

C. Alternative Paths to Computing

The main reason for this failure to cope with NP consists
in our restricted way of thinking in terms of computation,
which is still essentially Turing in nature. Processes in nature
are therefore examined for how they can be converted into
Turing machines, not how they functionally behave. In other
words, the processes are interpreted deterministically,
without actually exploiting their non-deterministic nature.

Alternative paths to computing must therefore focus on
exactly this rather than forcing determinism onto these
processes. Instead of exploiting particle collision for message
transaction, it can instead be considered as a segment in a
chain of non-deterministic events that can be expressed as
particle collisions. In the simplest case, a well-defined sub
space of particles can simulate the overall behavior of
aerodynamics in a larger space etc. Only few approaches try
to address the computational nature, in the sense of the
underlying processing logic:

A spin-off of MIT for example investigates into pro-
cessors that replace the underlying binary logic with a
probabilistic logic [11]. This does not address non-
determinism in the actual processing, yet it allows for more
efficient computation of all probabilistic problems, as
involved in most NP tasks.

Some natural systems are not only non-deterministic, but
are capable of dealing with it. These involve swarms, neural

98Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

networks and other self-organising systems which are
capable of solving problems, such as finding shortest routes
towards a food source etc., which belong to NP and lead to
high complexity when simulated. Such systems effectively
employ mechanisms of dealing with imprecision and fast
adaptation in order to approximate a locally optimal solution.
A certain degree of scale allows improving optimality further
through redundancy, where by it must be noted that the scale
is essentially polynomial to the complexity.

Also, the principles of molecular computing are capable
of dealing with bounded NP problems in a polynomial
number of steps and a limited size of scale [12].

In such systems the problem (and hence the goal) is
either implicitly encoded, such as finding the food source for
a swarm system, or needs to be painstakingly trained, such as
for neural networks. In both cases it generally limits the
system to the specific problem domain. The effort of
“coding” the problem is hence in most cases NP itself which
considerably restricts its applicability.

V. CONCLUSIONS: NEXT COMPUTING MODELS?

Complexity is a growing problem for computing, that is
often ignored or considered to be a pure problem of scale, i.e.
that can be overcome by future large scale computing
systems. However, this is building on the – generally wrong
– assumption that problem complexity scales linear (or
polynomial) with the problem space and that performance
grows linear and unbounded with the amount of compu-
tational resources. Whilst the NP problem space and its
implications are actually well known, the actual
consequences of it are often ignored or simply forgotten.

The seeming unboundedness of performance through
scale however only arises from the fact that many
supercomputing problems still move within the area of a
positive scale to performance ratio (left gray area in Figure 2.
) in the last years, but reaching its peak (right gray area).
Personal computers on the other hand just only have reached
the beginning of the scale to performance curve, so that still
considerable improvements can be achieved through
increasing the amount of computational resources [13].

Investing in scale rather than in complete new computing
systems is also economically more viable and less disruptive
in the short run. As we reach the peak of performance, such a
disruptive paradigm switch will become imminent. Current
approaches to improving the performance over scale, in
particular by reducing the impact of messaging or exploiting
more concurrency / asynchronicity, and even quantum
computing will only help delaying this problem, i.e.
stretching the scale to performance ratio. The main problem
can however not be overcome this way, as messaging will
always create delay in execution with a certain point of scale
(“speed of light is not fast enough” [14]) and the resource
need of NP problems grows exponentially and unbounded.
Nonetheless, first attempts in that direction need to be
seriously undertaken within the near future in order to

compensate for the delay in research and development, until
more long-term results have been achieved.

That some systems principally can deal better with the
NP problem space has already been shown through attempts
already initiated back in the 1970ies and 1980ies which base
in particular on self-adaptation under uncertain conditions.
But also stochastic mechanisms, combinatorial optimization,
elastic scale, bounded non-determinism, dynamic
segmentation etc. all have introduced principles that
significantly contribute to the capability of dealing better
with the complexity of such problems and reducing the
impact of NP. This however is far from maturity as yet.

ACKNOWLEDGMENT

This work was partially supported by the S(o)OS project
under FP7-ICT-2009.8.1, grant agreement no. 248465. See
www.soos-project.eu for more information

REFERENCES

[1] Netcraft: May 2010 Web Server Survey. (2010).
http://news.netcraft.com/archives/category/web-server-
survey/ [accessed: 2012-06-06]

[2] Laplace, M.D.P.S.: A Philosophical Essay on Probabilities.
Forgotten Books (2009)

[3] Lorenz, E.: Atmospheric predictability as revealed by
naturally occurring analogues. In: Journal of the Atmospheric
Sciences 26: 636–646 (1969).

[4] Leckie, W., Greenspan, M.A.: Pool Physics Simulation by
Event Prediction 2: Collisions. In: ICGA Journal 29(1): 24-31
(2006)

[5] Richard, L.: On the Structure of Polynomial Time
Reducibility. In: Journal of the ACM (JACM) 22 (1): 155–
171. (1975)

[6] Hennessy, J.L., Patterson, D.A.: Computer Architecture: A
Quantitative Approach. Morgan Kaufmann (2006).

[7] Manferdelli, J.: The Many-Core Inflection Point for Mass
Market Computer Systems. In: CTWatch Quarterly 3(1)
(2007). http://www.ctwatch.org/quarterly/articles/2007/02/
the-many-core-inflection-point-for-mass-market-computer-
systems/ [accessed: 2012-06-28]

[8] Hox, J.J.: Multilevel analysis: techniques and applications.
Routledge (2002)

[9] Jones, B.L.: Do Newer Processors Equate to Slower
Applications? DevX online publication (2010). Available at:
http://www.devx.com/enterprise/Article/34588/1954
[accessed: 2012-06-12]

[10] Aaronson, S.: The Limits of Quantum Computers. In:
Scientific American 3 (2008)

[11] Feldman, M.: Startup Aims to Transform Computing with
Probability Processing. HPC Wire (2010). Available at
http://www.hpcwire.com/hpcwire/2010-08-16/startup_aims_
to_transform_computing_with_probability_processing.html
[accessed: 2012-04-18]

[12] Beigel, R., Fu, B.: Molecular Computing, Bounded
Nondeterminism and Efficient Recursion

[13] Wesner, S., Schubert, L. Kuper, J., Baaij, C.: Convergence of
HPC and PC: Really? In: Proceedings of the UK e-Science
All Hands Meeting 2010 (2010).

[14] Alessandrini, V.: DEISA Perspectives - Towards cooperative
extreme computing in Europe. Fourth EGEE Conference
(2005).

99Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

http://news.netcraft.com/archives/category/web-server-survey/
http://news.netcraft.com/archives/category/web-server-survey/

