
Self-Organizing the Selection of Migratable
Processes on Cluster-of-Clusters Environments

Rodrigo da Rosa Righi, Lucas Graebin, Rafael BohrerÁvila
Programa Interdisciplinar de Ṕos-Graduaç̃ao em Computaç̃ao Aplicada – UNISINOS – São Leopoldo - Brazil

Email: rrrighi@unisinos.br, lgraebin@acm.com, rbavila@unisinos.br

Philippe Olivier Alexandre Navaux, Laércio Lima Pilla
Programa De Ṕos-Graduaç̃ao em Computaç̃ao – UFRGS – Porto Alegre - Brazil

Email: {navaux, llpilla}@inf.ufrgs.br

Abstract—The decision to move processes to new resources
is NP-Hard, and heuristics take place in order to reach good
results inside an acceptable time interval. In this way, this paper
presents AutoMig — a novel heuristic for BSP applications
that self-organizes the selection of candidates for migration on
different clusters. Its differential approach consists ina predic-
tion function (pf ) that considers both processes’ computation
and communication data as well as their migration costs.pf is
applied over a list of schedules and AutoMig’s final step decides
whether one of them outperforms the time of the current
mapping. The results emphasize gains up to 32% when testing
a CPU-bound application in a simulated cluster-of-clusters
environment. Besides AutoMig, this paper also describes the
rescheduling model associated with it.

Keywords-BSP, rescheduling, heuristic, self-organizing.

I. I NTRODUCTION

Generally, process migration is implemented within the
application with explicit calls [11]. A different migration
approach happens at middleware level, where changes in
the application code and previous knowledge about the
system are usually not required. Considering this, we have
developed a process rescheduling model called MigBSP [4].
It was designed to work with round-based applications with a
BSP behavior (Bulk Synchronous Parallel). Concerning the
choosing of the processes, MigBSP creates a priority list
based on the highest Potential of Migration (PM) of each
process [4].PM combines the migration costs with data from
computation and communication phases in order to create an
unified scheduling metric. The process denoted on the top of
the list is selected to be inspected for migration. Although
we achieved good results with this approach, we agree that
a selection of a percentage of processes could determine
better results. However, a question arises: How can one reach
an optimized value for dynamic environments? A solution
involves the testing of several hand-tuned parameters and a
comparison among the results.

After developing the first version of MigBSP, we have
observed the promotion of intelligent scheduling systems
which adjust their parameters on the fly and hide intrinsic
optimization decisions from users [11]. In this context, we
developed a new heuristic namedAutoMig that selects
one or more candidates for migration automatically. We

took advantage of both List Scheduling and Backtracking
concepts to evaluate the migration impact on each element
of the PM list in an autonomous fashion. In addition,
another AutoMig’s strength comprises the needlessness to
provide an additional parameter in MigBSP for getting
more than one migratable process on rescheduling activation.
The scheduling evaluation uses a prediction function (pf)
that considers the migration costs and works following the
concept of a BSP superstep [1]. The lowestpf indicates the
most suitable rescheduling plan.

This paper aims to describe AutoMig in details. We
evaluated it by using an BSP application for image com-
pression [7]. Considering that the programmer does not
need to change his/her application nor add a parameter in
MigBSP, the results with migration were satisfactory and
totaled a mean gain of 7.9%. This index was observed when
comparing migrations with the application execution solely.
The results also showed a serie of situations where AutoMig
outperforms the heuristic that elects only one process.

We organized the paper in eight sections. Section 2
presents MigBSP. The main part of the paper belongs to
Section 3, where Automig is described in details. Sections
4 and 5 show the employed methodology and the results,
respectively. Related work is discussed in Section 6, while
Section 7 presents the conclusion and future work. Finally,
Section 8 shows our acknowledgments to Brazilian agencies.

II. M IGBSP: RESCHEDULINGMODEL

MigBSP is a rescheduling model that works over het-
erogeneous resources, joining the power of clusters, su-
percomputers and local networks. The heterogeneity issue
considers the processors’ clock (all processors have the same
set of instructions), as well as network bandwidth. Such an
architecture is assembled with Sets (sites) and Set Managers.
Set Managers are responsible for scheduling, capturing data
from a Set and exchanging it among other managers.

The decision for process remapping is taken at the end
of a superstep. Aiming to generate the least intrusiveness
in application as possible, we applied two adaptations that
control the value ofα (α ∈ N

∗). α is updated at each
rescheduling call and will indicate the interval for the next

131

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



one. The adaptations’ objectives are: (i) to postpone the
rescheduling call if the processes are balanced or to turn it
more frequent, otherwise; (ii) to delay this call if a pattern
without migrations onω past calls is observed. A variable
namedD is used to indicate a percentage of how far the
slowest and the fastest processes may be from the average
to consider the processes as balanced.

The answer for “Which” is solved through our decision
function called Potential of Migration (PM). Each process
i computesn functionsPM (i, j), wheren is the number
of Sets andj means a Set. The key rationale consists in
performing only a subset of the processes-resources tests at
the rescheduling moment.PM (i, j) is found using Compu-
tation, Communication and Memory metrics as we can see
in Equations 1, 2, 3 and 4. A previous paper describes each
equation in details [4]. The greater the value ofPM (i, j),
the more prone the processes will be to migrate.

Comp(i, j) = Pcomp(i) . CTP (i) . ISet(j) (1)

Comm(i, j) = Pcomm(i, j) . BTP (i, j) (2)

Mem(i, j) = M(i) . T (i, j) + Mig(i, j) (3)

PM (i, j) = Comp(i, j) + Comm(i, j) − Mem(i, j) (4)

Computation metric -Comp(i, j) - considers a Com-
putation PatternPcomp(i) that measures the stability of
a processi regarding the amount of instructions at each
superstep. This value is close to 1 if the process is regular
and close to 0 otherwise. This metric also performs a
computation time predictionCTP (i) for processi based
on all computation phases between two rescheduling acti-
vations.Comp(i, j) also presents an indexISet(j) which
informs the average capacity of Setj. In the same way,
Communication metric –Comm(i, j) – computes the Com-
munication PatternPcomm(i, j) between processes and Sets.
Furthermore, this metric uses communication time predic-
tion BTP (i, j) considering data between two rebalancing
activations.Comm(i, j) increases if processi has a regular
communication with processes from Setj and performs
slower communication actions to this Set. Memory metric
– Mem(i, j) – considers process memory, transferring rate
between considered process and the manager of target Set,
as well as migration costs. These costs are dependent of the
operating system, as well as the migration tool.

At each rescheduling call, each process passes its highest
PM (i, j) to its Set Manager. This last entity exchanges the
PM of the processes with other managers. Each manager
creates a decreasing-sorted list and selects the process on
the top for testing the migration viability. This test considers
the following data: (i) the external load on source and desti-
nation processors; (ii) the processes that both processors are
executing; (iii) the simulation of considered process running
on a destination processor; (iv) the time of communication

actions considering local and destination processors; (v)
migration costs. We computed two times:t1 andt2. t1 means
the local execution of processi, while t2 encompasses its
execution on the other processor and includes the migration
costs. A new resource is chosen ift1 > t2.

III. A UTOM IG: A NOVEL HEURISTIC TOSELECT THE

SUITABLE PROCESSES FORM IGRATION

AutoMig’s self-organizes the migratable processes with-
out programmer intervention. It can elect not only one but a
collection of processes at the migration moment. Especially,
AutoMig’s proposal solves the problem described below.

• Problem Statement- Givenn BSP processes and a list
of the highestPM of each one at the migration moment,
the challenge consists in creating and evaluating at
maximumn new scheduling plans and to choose the
most profitable one among those that outperform the
current processes-resources mapping.

AutoMig solves this question by using the concepts from
List Scheduling and Backtracking. Firstly, we sort thePM
list in a decreasing-ordered manner. Thus, the tests begin by
the process on the head since its rescheduling represents bet-
ter chances of migration gains. Secondly, AutoMig proposes
n scheduling attempts (wheren is the number of processes)
by incrementing the movement of only one process at
each new plan. This idea is based on the Backtracking
functioning, where each partial candidate is the parent of
candidates that differ from it by a single extension step.
Figure 1 depicts an example of this approach, where a single
migration on levell causes an impact onl+1. For instance,
the performance forecast for process “A” considers its own
migration and the fact that “E” and “B” were migrated too.
Algorithm 1 presents AutoMig’s approach in details.

1st PM ( Process E, Set 2 )  = 3.21

2nd PM ( Process B, Set 1 )  = 3.14

3rd PM ( Process A, Set 2 )  = 3.13

4th PM ( Process C, Set 2 )  = 2.57

5th PM ( Process G, Set 2 )  = 2.45

6th PM ( Process D, Set 1 )  = 2.33

7th PM ( Process F, Set 1 )  = 2.02

1st Scheduling = 2.34

E

2nd Scheduling = 2.14

3rd Scheduling = 1.34

4th Scheduling = 1.87

5th Scheduling = 1.21

6th Scheduling = 2.18

7st Scheduling = 4.15 B A C G D F

E B A C G D

E B A C G

E B A C

E B A

E B

E

Decreasing-sorted list based on the 
highest PM of each process

Value of the Scheduling 
prediction pf 

Emulated migrations at 
each evaluation level

Figure 1. Example of the AutoMig’s approach

The main part of AutoMig concerns its prediction function
pf. pf emulates the time of a superstep by analyzing the
computation and communication parts of the processes. Both
parts are computed through Equations 5 and 6, respectively.
They work with data collected at the superstep before
calling the rescheduling facility. In addition,pf considers
information about the migration costs of the processes to the

132

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



Sets. The final selection of migratable processes is obtained
through verifying the lowestpf. The processes in the level
belonging to this prediction are elected for migration if their
rescheduling outperforms thepf for the current mapping.

At the rescheduling call, each process passes the following
data to its manager: (i) its highestPM; (ii) a vector with its
migration costs (Mem metric) for each Set; (iii) the number
of instructions; (iv) a vector which contains the number of
bytes involved on communication actions to each Set. Each
manager exchangesPM values and uses them to create a
decreasing-sorted list. Task 5 of Algorithm 1 is responsible
for getting data to evaluate the current scheduling.

At each level of thePM list, the data of the target
process is transferred to the destination Set. For instance,
data from process ’E’ is transferred to Set 2 according to
the example illustrated in Figure 1. Thus, the manager on
the destination Set will choose a suitable processor for the
process and will calculate Equations 5 and 6 for it. Aiming to
minimize multicast communication among the managers at
eachpf computation, each Set Manager computesTimep

and Commp for the processes under its jurisdiction and
save the results together with the specific level of the list.
After performing the tasks for each element onPM list, the
managers exchange vectors and computepf for each level as
well as for the present scheduling (task 12 in Algorithm 1).

Equation 5 computesTimep(i), wherei means a specific
process.Timep(i) uses data related to the computing power
and the load of the processor in which processi executes
currently or is being tested for rescheduling.cpu load(i)
represents the CPU load average on the last 15 minutes. This
time interval was adopted based on work of Vozmediano and
Conde [9]. Equation 6 presents how we get the maximum
communication time when considering processi and Setj.
In this context, Setj may be the current Set of processi or
a Set in which this process is being evaluated for migration.
T (k , j ) refers to the transferring rate of1 byte from the Set
Manager of Setj to other Set Manager.Bytes(i , k) works
with the number of bytes transferred through the network
among processi and all process belonging to Setk. Lastly,
Mig Costs(i , j ) denotes the migration costs related to the
sending of processi to Set j. It receives the value of the
Mem metric, which also considers a processi and a Setj.

Timep(i) =
Instruction(i)

(1 − cpu load(i)).cpu(i)
(5)

Commp(i, j) = Max k ( ∀ k ∈ Sets

(Bytes(i, k) . T (k, j)) ) (6)

pf = Max i (Timep(i)) + Max i,j (Commp(i, j))

+ Max i,j (Mig Costs(i, j)) (7)

Considering Equation 7, we can emphasize that each part
may consider a different processi and Setj. For instance,

a specific process may obtain the largest computation time,
while other one expends more time in communication ac-
tions. AutoMig uses a global strategy, where data from all
processes are considered in the calculus. We take profit from
the barriers of the BSP model for exchanging scheduling
data, not paying additional costs for that.

Algorithm 1 AutoMig’s approach for selecting the processes
1: Each process computesPM locally (see Equation 4).
2: Each process passes its highestPM, together with the

number of instructions and a vector that describes its
communication actions, to the Set Manager.

3: Set Managers exchangePM data of their processes.
4: Set Managers create a sorted list based on thePM values

with n elements (n is the number of processes).
5: Set Managers compute Eq. 5 and 6 for their processes.

The results will be used later for measuring the current
mapping. Migrations costs are not considered.

6: for each element from 0 up ton− 1 in the PM list do
7: Considered element is analyzed. Set Manager of

processi sends data about it to the Set Manager of Set
j. The algorithm proceeds its calculus by considering
that processi is passed to Setj.

8: The manager on the destination Set chooses a suitable
processor to receive the candidate processi.

9: Set Managers compute Eq. 5 and 6 for their processes.
10: Set Managers save the results in a vector with the

specific level of thePM list.
11: end for
12: Set Managers exchange data and computepf for the

current scheduling as well as for each level onPM list.
13: if Min(pf) in the PM list < currentpf then
14: Considering thePM list, the processes in the level

wherepf was reached are selected for migration.
15: Managers notify their elected processes to migrate.
16: else
17: Migrations do not take place.
18: end if

IV. EVALUATION METHODOLOGY

We are simulating the functioning of a BSP-based Fractal
Image Compression (FIC) application [7]. FIC applications
apply transformations which approximate smaller parts of
the image by larger ones. The smaller parts are called ranges
and the larger ones domains. All ranges together form the
image. The domains can be selected freely within the image.
A complete domain-poll of an image of sizet×t with square
domains of sized × d consists of(t − d + 1)2 domains.
Furthermore, each domain has 8 isometries. So each range
is compared with8(t−d+1)2 domains. The application time
increases as the number of domains increases as well. Our
BSP modeling considers the variation of both the range and
domain sizes as well as the number of processes. Algorithm

133

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



2 presents the organization of a single superstep. Firstly,we
are computingt

r
supersteps, wheret × t is the image size

and r is the size of square ranges. The goal is to compute
a set of ranges at each superstep. For that, each superstep
works over t

r
ranges since the image comprises a square.

At each superstep, a range is computed against8(( t
d
)
2
. 1

n
)

domains, whered represents the size of a domain andn

the number of processes. Thus, each process sendst
r

ranges
before calling the barrier, which must be multiplied by 8 to
find the number of bytes (each range occupies 8 bytes).

Algorithm 2 Single superstep for FIC problem

1: Taking a range-poolrp (0 ≤ rp ≤ t
r
−1): t andr mean

the sides of thet× t image andr×r range, respectively
2: for each range inrp do
3: for each domain belonging to specific processdo
4: for each isometry of a domaindo
5: calculate-rms(range, domain)
6: end for
7: end for
8: end for
9: Each processi (0 ≤ i ≤ n − 1) sends data to its right-

neighbori + 1. Processn − 1 sends data to process0
10: Call for synchronization barrier

R3

Cluster I
I1...I112
1.6 GHz

Cluster F
F1...F6
1 GHz

Cluster C
"C1...C16"
1 GHz

Cluster A
A1...A20
2 GHz

R1 R2

Cluster L
"L1 ... L20"
1.2 GHz

"L1...L20" <-> "R1" = 1 Gbps
"C1...C16" <-> "R1" = 100 Mbps

"F1...F6" <-> "R2" = 100 Mbps

"I1...I112" <-> "R2" = 1 Gbps

"A1...A20" <-> "R3" = 1 Gbps

"R1" <-> "R2" = 1 Gbps

"R2" <-> "R3" = 1 Gbps

Network ConnectionsSet 1

Set 2

Set 3

Set 4

Set 5

10  L {1-10}

200  L {1-20}, C {1-16}, F {1-6}, I {1-112}, 

A {1-20}, L {1-20}, C {1-6}

25  L {1-20}, C {1-5}

50  L {1-20}, C {1-16}, F {1-6}, I {1-8}

100  L {1-20}, C {1-16}, F {1-6}, I {1-58}

P
ro
c
e
s
s
e
s

Resources Mapping

Figure 2. Multiple Clusters-based topology, processing and network
resources description and the initial processes-resources scheduling

The BSP application was evaluated with simulation in
three scenarios: (i) Application execution simply; (ii) Appli-
cation execution with MigBSP scheduler without applying
migrations; (iii) Application execution with MigBSP sched-
uler allowing migrations. Both the application and AutoMig
were developed using the SimGrid Simulator (MSG Mod-
ule) [3]. It is deterministic, where a specific input always
results in the same output. The scenarios were evaluated
in an infrastructure with five Sets (see Figure 2). A Set
represents a cluster where each node has a single processor.

The infrastructure permits us to analyze the impact of the
heterogeneity issue on AutoMig’s algorithms.

Initial tests were executed usingα equal to 4 andD equal
to 0.5. We observed the behavior of 10, 25, 50, 100 and
200 BSP processes. Their initial mapping to the resources

may be viewed in Figure 2. Since the application proceeds
in communications from processi to i + 1, we are using
the contiguous approach in which a cluster is filled before
passing to another one [10]. The values of 40, 20 and 10
were used for the side (d) of a square domain and the figure
is a square 1000x1000. The lower thed value, the greater the
number of domains for computation. Finally, the migration
costs are based on tests with AMPI in our clusters.

V. A NALYZING AUTOM IG’ S OVERHEAD AND DECISIONS

Table I presents the tests with 40 and 20 for both domain
and range sizes, respectively. This setup enables a small
computation grain and processes migrations are not viable.
PM values in all situations are negative, owing to the lower
weight of the computation and communication actions if
compared to the migration costs. AutoMig figures out the
lowest pf for the current scheduling. Thus, both times for
scenarioii andiii are higher than scenarioi. In this context,
a large overhead is imposed by MigBSP since the normal
application execution is close to 1 second in average.

Table I
RESULTS WITH 40 FOR DOMAIN (TIME IN SECONDS)

Processes Scenarioi Scenarioii Scenarioiii

10 1.20 2.17 2.17
25 0.66 1.96 1.96
50 0.57 2.06 2.06

100 0.93 2.44 2.44
200 1.74 3.41 3.41

We increase the number of domains when dealing with
20 for the domain’s side. The execution with 20 for domain
is depicted in Figure 3. The execution with 10 processes
did not present replacement because they are balanced.pf
of 0.21 was obtained for the current processes-resources
mapping by using 20 for domain and 10 processes. All
predictions in thePM list are higher than 0.21 and their
average achieves 0.38. However, this configuration of do-
main triggers migration when using 25 and 50 processes. In
the former case, 5 processes from cluster C are moved to
the fastest cluster named A. AutoMig’s decisions led a gain
of 17.15% with process rescheduling in this context. The
last mentioned cluster receives all processes from clusterF
when dealing with 50 processes. This situation shows up
gains of 12.05% with migrations. All processes from cluster
C remain on their initial location because the computation
grain decreases with 50 processes. Although 14 nodes in the
fastest cluster A stay free, AutoMig does not select some
processes for execution on them because the BSP model
presents a barrier. Despite 14 migrations from cluster C to
A occur, a group of process in the slower cluster will remain
inside it and still limit the superstep’s time. Lastly, since
the work grain decreases when adding more processes, the
executions with 100 and 200 did not present migrations.

134

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



We achieved better results when using 10 for domain
(see Figure 4). The computation grain increases exponen-
tially with this configuration. This sentence may be viewed
through the execution of 10 processes, in which are all
migrated to cluster A. Considering that8(( t

d
)
2
. 1

10
) express

the number of domains assigned to each one of 10 processes,
this expression is equal to 500, 2000 and 8000 when
testing 40, 20 and 10 values for domain. Using 10 for both
domain and the number of processes, the current scheduling
produced apf of 1.62.pf for the PM list is shown below:

• pf [1..10] = {1.79, 1.75, 1.78, 1.79, 1.81, 1.76, 1.74,
1.82, 1.78, 1.47}.

0

5

10

15

20 Scenario i

Scenario ii

Scenario iii

10 25 50 100 200

T
im
e
 i
n
 S
e
c
o
n
d
s

Number of Processes

Figure 3. AutoMig’s evaluation when using 20 for domain

0

50

100

150

200

250

300
Scenario i

Scenario ii

Scenario iii

25 50 100 200

T
im
e
 i
n
 S
e
c
o
n
d
s

10

Number of Processes

Figure 4. AutoMig’s results when enlarging the work per process at each
superstep. This graph illustrates experiments with domain10 and range 5

0

5

10

15

20

25

30
Gain with process migration

Number of Processes

P
I 
- 
P
e
rf
o
rm
a
n
c
e
 I
n
d
e
x
 

10 25 50 100

Figure 5. Migration gains with domain 10. PI =( scen. i−scen. iii

scen. i
∗100)

Considering the first up to the ninthpf in the last item-
ization, we observed that although some processes can run
faster in a more appropriate cluster, there are others that
remain in a slower cluster. This last group does not allow
performance gains due to the BSP modeling. However, the
migration of 10 processes to the fastest cluster generates
a pf of 1.47 and a gain around 31.13% when comparing
scenariosiii and i. This analysis is illustrated in Figure

5. The processes from cluster C are moved to A with 25
processes and domain equal to 10. In this case, the 20 other
processes stay on cluster L because there are not enough
free nodes in the fastest cluster. A possibility is to explore
two process in a node of cluster A (each node has 2 GHz)
but AutoMig does not apply it because each node in Cluster
L has 1.2 GHz. Considering the growth in the number of
domains, the migrations with 100 processes becomes viable
and get 14.95% of profit. Nevertheless, the initial mapping
of 200 processes stands the same and an overhead of 7.64%
was observed when comparing both scenariosi and ii.

We can conclude that the higher the computation weight
per process, the better will be the gains with process
rescheduling. In this way, we tested AutoMig with a shorter
domain as expressed in Table II. This table shows the
behavior for 10 and 25 processes. Gains about 31.62%
and 19.81% were obtained when dealing with AutoMig. In
addition, its overhead is shorter than 1%. We verified that
the benefits with migrations remain practically constant ifwe
compare the executions with 10 and 4 for the domain values.
It is possible to observe that when doubling the number of
processes, the application time is not halved as well.

Table II
EXECUTION TIME (IN SECONDS) WITH DOMAIN 4

Proc- Scen.i Old Heuristic AutoMig
esses Scen.ii Scen.iii Scen.ii Scen.iii

10 12500.51 12511.87 9191.72 12523.22 8555.29
25 6250.49 6257.18 5311.54 6265.38 5011.77

Table II also shows a comparative analysis of the two
selection heuristics implemented in MigBSP. We named the
one that selects one process at each rescheduling call as Old
Heuristic. Despite both obtained good levels of performance,
AutoMig achieves better migration results than Old Heuristic
(approximately 8%). For instance, 5 processes are migrated
already in the first attempt for migration when testing 25
processes. In this case, all processes that were running
on Cluster C are passed to Cluster A. This reorganization
suggested by AutoMig at the beginning of the application
provides a shorter time for application conclusion. In the
other hand, 5 rescheduling calls are needed to reach the
same configuration expressed previously with Old Heuristic.
Lastly, AutoMig imposes larger overheads if compared to
Old Heuristic (close to 1%). This situation was expected
since two multicast communications among the Set Man-
agers are performed by AutoMig in its algorithms.

VI. RELATED WORK

Vadhiyar and Dongarra presented a migration framework
and self-adaptivity in GrADS system [12]. The gain with
rescheduling is based on the remaining execution time pre-
diction over a new specified resource. This framework must
work with applications in which their parts and durations
are known in advance. Sanjay and Vadhiyar [11] present

135

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



a scheduling algorithm called Box Elimination. It consid-
ers a 3-D box of CPU, bandwidth and processors tuples
for selecting the resources with minimum available CPU
and bandwidth. This work treats applications in which the
problem size is known in advance. Liu et al. [8] introduced
a novel algorithm for resource selection. The application
reports the Execution Satisfaction Degree (ESD) to the
scheduling middleware. The main weakness of this idea
is the fact that users/developers need to define the ESD
function by themselves for each new application.

Concerning the migration context, PUBWCL [2] and
PUB [1] libraries enable this facility on BSP applications.
PUBWCL aims to take profit of idle cycles from nodes
around the Internet [2]. All proposed algorithms just use
data about the computation times of each process as well as
data regarding the nodes’s load. The PUB’s author proposed
both centralized and distributed strategies for load balancing.
Both strategies consider neither the communication among
the processes, nor the migration costs.

VII. C ONCLUSION AND FUTURE WORK

Considering that the bulk synchronous style is a common
organization for MPI programs [1], [6], AutoMig emerges
as an alternative for selecting their processes for running
on more suitable resources without interferences from the
developers. AutoMig’s main contribution appears on its pre-
diction functionpf. pf is applied for the current scheduling as
well as for each level of a Potential of Migration-based list.
Each element of this list informs a new scheduling through
the increment of one process replacement.pf considers the
load on both the Sets and the network, estimates the slowest
processes regarding their computation and communication
actions and adds the migration costs. The key problem
to solve may be summarized in maintaining the current
processes’ location or to choose a level of the list.

AutoMig’s load balancing scheme uses the global ap-
proach, where data from all processes are considered in the
calculus [13]. Instead to pay a synchronization cost to get
the scheduling information, AutoMig takes profit from the
BSP superstep concept in which a barrier always occurs
after communication actions. AutoMig and an application
were developed using the SimGrid Simulator. Since the
application is CPU-bound, the shorter the domain’s size
the higher the application’s time and migration profitability.
The results proved this, indicating gains up to 17.15%
and 31.13% for domains equal 20 and 10. Particularly, the
results revealed the main AutoMig’s strength on selecting
the migratable processes. It can elect the whole set of
processes belonging to a slower cluster to run faster in a
more appropriate one. But, sometimes a faster cluster has
fewer free nodes than the number of candidates. Migrations
do not take place in this situation owing to the execution
rules of a BSP superstep.

Finally, future work comprises the use of AutoMig in a
HPC service for Cloud computing. Concerning that each
application specifies its own SLA previously, AutoMig
appears as the first initiative to reorganize the processes-
resources shaping when SLA fails. If the rescheduling does
not solve the problem, more resources are allocated in a
second instance.

VIII. A CKNOWLEDGMENTS

This work is partially supported by CTIC RNP and CNPq.

REFERENCES

[1] O. Bonorden. Load balancing in the bulk-synchronous-
parallel setting using process migrations. In21th Inter-
national Parallel and Distributed Processing Symposium
(IPDPS 2007), pages 1–9. IEEE, 2007.

[2] O. Bonorden, J. Gehweiler, and F. M. auf der Heide. Load
balancing strategies in a web computing environment. InPro-
ceeedings of International Conference on Parallel Processing
and Applied Mathematics (PPAM), pages 839–846, Poznan,
Poland, September 2005.

[3] H. Casanova, A. Legrand, and M. Quinson. Simgrid: A
generic framework for large-scale distributed experiments. In
Int. Conf. on Computer Modeling and Simulation (uksim),
pages 126–131, 2008. IEEE.

[4] R. da Rosa Righi, L. L. Pilla, A. Carissimi, P. A. Navaux,
and H.-U. Heiss. Observing the impact of multiple metrics
and runtime adaptations on bsp process rescheduling.Parallel
Processing Letters, 20(2):123–144, June 2010.

[5] F. J. da Silva, F. Kon, A. Goldman, M. Finger, R. Y. de Ca-
margo, F. C. Filho, and F. M. Costa. Application execution
management on the integrade opportunistic grid middleware.
J. Parallel Distrib. Comput., 70(5):573–583, 2010.

[6] R. E. De Grande and A. Boukerche. Dynamic balancing of
communication and computation load for hla-based simula-
tions on large-scale distributed systems.J. Parallel Distrib.
Comput., 71:40–52, 2011.

[7] Y. Guo, X. Chen, M. Deng, Z. Wang, W. Lv, C. Xu,
and T. Wang. The fractal compression coding in mobile
video monitoring system. InCMC ’09: Proceedings of the
2009 WRI International Conference on Communications and
Mobile Computing, pages 492–495, Washington, DC, USA,
2009. IEEE Computer Society.

[8] H. Liu, S.-A. Sørensen, and A. Nazir. On-line automatic
resource selection in distributed computing. InInt. Conf. on
Cluster Computing, pages 1–9. IEEE, 2009.

[9] R. Moreno-Vozmediano and A. B. Alonso-Conde. Influence
of grid economic factors on scheduling and migration. In
High Perf. Comp. for Computational Science - VECPAR,
pages 274–287. Springer, 2005.

[10] J. A. Pascual, J. Navaridas, and J. Miguel-Alonso. Job
scheduling strategies for parallel processing. chapter Effects
of Topology-Aware Allocation Policies on Scheduling Perfor-
mance, pages 138–156. Springer, 2009.

[11] H. A. Sanjay and S. S. Vadhiyar. A strategy for scheduling
tightly coupled parallel applications on clusters.Concurr.
Comput. : Pract. Exper., 21(18):2491–2517, 2009.

[12] S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in grid
computing: Research articles.Concurr. Comp. : Pract.Exper.,
17(2-4):235–257, 2005.

[13] M. J. Zaki, W. Li, and S. Parthasarathy. Customized dynamic
load balancing for a network of workstations.J. Parallel
Distrib. Comput., 43(2):156–162, 1997.

136

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8


