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Abstract—To incorporate uncertainties in empty container 

repositioning problem, we formulate a two-stage stochastic 

programming model with random demand, supply, ship weight 

capacity and ship space capacity. The Sample Average 

Approximation (SAA) method is applied to approximate the 

expected value function. Several non-independent and 

identically distributed sampling schemes are considered to 

enhance the performance of the SAA method. Numerical 

experiments show that near-optimal solutions could be 

provided by the SAA method with these sampling schemes.  

Keywords-empty container repositioning; simulation 

optimization; sample average approximation; supersaturated 

design  

I.  INTRODUCTION  

One main issue in the containerized transportation is the 
imbalance of container flow, which is the result of global 
trade imbalance between different regions. Thus, 
maintaining higher operational cost efficiencies in 
repositioning empty containers becomes a crucial issue in 
shipping industry.  

There are increasing studies on empty container flows in 
recent years [1][2]. In the maritime transportation, container 
operators have to deal with some uncertain factors like the 
real transportation time between two ports/deports, future 
demand and supply, the in-transit time of returning empty 
container from customers, and the available capacity in 
vessels for empty containers transportation, etc. The 
uncertain nature of parameters is taken into account in 
several studies [3][4]. A multi-scenario model was proposed 
in [5] to address the Empty Container Repositioning (ECR) 
problem in a scheduled maritime system. In their study, 
opinions of shipping companies were considered to generate 
scenarios when the distributions of uncertain parameters 
cannot be estimated through historical data. Our study 
focuses on developing scenario-based model when the 
distribution of uncertain parameters can be estimated through 
historical data. Random scenarios could be generated based 
on these distributions. However, it is difficult to solve the 
stochastic ECR problem with a large number of scenarios. In 
this case, we apply the Sample Average Approximation 
(SAA) method to solve the stochastic ECR problem with 
multiple scenarios.  

The SAA problem with multiple scenarios is usually 
difficult to solve due to its large scale. In this study, we try to 
enhance the SAA method with well-planned samplings 

which are more representative. The motivation of this idea is 
to get acceptable solutions by solving SAA problems with a 
small number of scenarios. Independent and identically 
distributed (i.i.d) sampling is well studied for construction 
approximations [6][7]. On the other hand, SAA with non-
i.i.d samplings is also studied in recent year [8][9]. 
Empirically, it was shown that Latin Hypercube (LH) and 
Antithetic Variates (AV) methods outperform those under 
i.i.d sampling, with LH outperforming AV [10]. In [11], U 
design was used to further enhance the accuracy of the SAA 
and their theoretical results showed that the SAA with U 
designs can significantly outperform those with LH designs. 
In this study, we try to do as a whole very few experiments 
(even less than the number of degrees of freedom of the 
system when that is possible) and still get a satisfying 
approximation. To our knowledge, no existing study applies 
the SAA method with non-i.i.d samplings to the stochastic 
ECR problem where the distributions of uncertain 
parameters are known. This study is to fill in this gap. 

The paper is structured in the following way. Section I 
concerns introduction; In Section II, we provide the 
description of a basic deterministic model and our two-stage 
stochastic model for ECR. Section III shows the solving 
methodologies to solve our proposed model. The SAA 
method and the sampling schemes to enhance SAA are 
explained. Section IV presents the results of computational 
studies. Finally, we give conclusions and outline directions 
for future research in Section V. 

II. PROBLEM FORMULATION 

The focus of this study is to make operational level 
maritime ECR decisions for shipping companies. As the 
global container transportation network is large and complex, 
the ocean liners usually divide the global network into 
several regions and appoint regional operators to manage the 
container flows for each region. Because of the long lead 
time of the across-region empty containers, ocean liners 
usually make ordering decisions depending on forecasting to 
make decisions on ordering. Due to the booking system used 
in the maritime transportation, demand, supply and the 
available ship capacity in the near future could be forecasted 
accurately. However, it is difficult to obtain accurate 
forecasting for more than one or two weeks. Currently, 
container operators make decisions based on the nominal 
forecast value. Because of the differences between the 
expected value and the realized value, inefficient solutions 
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may be produced. These decisions have to be recovered at 
real-time operations. 

A. The Deterministic Model  

If all parameters in the planning horizon are known, the 
deterministic time space model for ECR could be formulated 
as follows, where the actual service schedule and most port 
requirements are considered. Details of this model could be 
found in [12]. 
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Subject to  

The objective function is to minimize the total operation 

cost in the planning horizon. 
tTC  is the total operational cost 

at time t. The operational costs include the handling cost 
(unloading cost and loading cost), the holding cost, the 
penalty cost and the transportation cost. 

, , ,t s v ku , 
, , ,t s v kw , 

, , ,t s v kx , , ,t i ky , and , ,t i kz  are decision variables, where 
, , ,t s v ku  is 

the number of empty containers of size k unloaded at stop s 
from service v at time t, 

, , ,t s v kw   is the number of empty 

containers of size k loaded from stop s onto service v at time 

t, , , ,t s v kx  is the number of empty containers of size k 

transported from stop s to next stop on service v leaving stop 

s at time t, , ,t i ky  is the number of empty containers of size k 

stored at port i at time t, and 
, ,t i kz  is the number of empty 

containers of size k that cannot be satisfied by the empty 

containers stored at port i at time t. 
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and 
, ,

z

t i kc  are the corresponding cost parameters of 

unloading, loading, transportation, storing and penalty 
respectively. V is the set of services. P is the set of ports. Q is 

the set of regions. K is the set of container sizes. And 
vS  is 

the set of stops on service v. 
,v sD  is the set of periods in 

which service v departs from its stop s. 
,v sA  is the set of 

periods in which service v arrives at its stop s. 
Constraint (1) and constraint (2) are ship capacity 

constraints. 
, ,t s v  is residual space capacity on service v 

when it leaves stop s at time t, and , ,t s v is residual weight 

capacity on service v when it leaves stop s at time t. 
kg  and 

kh  are volume and weight of one container of size k. These 

two constraints should be considered when there is a service 
leaving the port. Constraint (3) guarantees the balance of the 

container flows at each service. ,v sb is the transportation time 

from stop s to next stop on the service v. 
,v sd  is the number 

of days that the service v stays at stop s. Constraint (4) 
ensures that the number of empty containers unloaded from a 
vessel should not exceed the total number of empty 
containers in the vessel. These two constraints should be 
considered when there is a service arriving at a port. 
Constraint (5) considers the balance of the container flows at 

each port at each time. , ,t i k  is the supply of empty 

containers of size k in port i at time t, and 
, ,t i k  is the 

demand of empty containers of size k in port i at time t. 

,v sp is the port corresponding to the stop s on service v. 

Constraint (6) ensures that all variables are non-negative. 

B. The Stochastic Model 

In this study, we develop a stochastic programming 
model which takes account into four uncertain parameters, 
i.e. the demand (the empty containers that picked up by the 
customers to load cargos), the supply (the empty containers 
that returned by the customers), the available ship space 
capacity and available ship weight capacity for empty 
containers. Other uncertain factors like the transportation 
time between two ports are not considered. We also do not 
consider container substitution in this study. We assume that 
service schedule is given and fixed in the planning horizon. 
This assumption is valid as the planning horizon of our 
operation model is short (several weeks), and the service 
schedule is not changed frequently. In order to incorporate 
the deterministic information and the uncertain information, 
a two-stage stochastic programming is developed. This 
model is run in a rolling horizon manner. ECR decisions are 
made at the beginning of stage 1 and will be made again 
when new information is collected. 

Let   denotes a scenario that is unknown when 

decisions at stage 1 are made, but that is known when the 
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decisions at stage 2 are made, where Ω is the set of all 
scenarios. A two-stage stochastic model for ECR is 
formulated as follows. 

Stage 1 

x1: Decisions at stage 1 
x2 (ω): Decisions for scenario ω at stage 2 given x1 

c1, 2c : The cost vector at stage 1 and stage 2 respectively 

A1, B1, A2, B2: The coefficient matrices of x1 or x2  

a1, a2(ω): The RHS of constraint (8) and constraint (12) 
respectively 

v: The vector of end container states of stage 1. It is the 
empty container inventory at each port and at each vessel at 

the end of stage 1. 1 2, ,...,{ }Kv v vv   

v(x1): The vector of initial container states of stage 2 
given x1 

The objective function of stage 1 is to minimize the total 

operational cost in the planning horizon. 1 1c x  is the 

operation cost at stage 1. 1[ ( , ( ))]pE Q x    is the expected 

cost at stage 2, where p is the probability distribution of 
uncertain parameters. We assume that the probability 

distribution p on Ω is known in the stage 1. 1( , ( ))Q x    is 

the objective function of stage 2, which is the operational 
cost at stage 2 given x1 and scenario ω. Constraint (8) and 
constraint (12) includes the typical constraints of ECR 
problem in the deterministic model, i.e. ship capacity 
constraint, service flow constraint, and port flow constraint. 
Constraint (9) is to set the end container states of stage 1, 
which are also the initial container states of stage 2. 
Constraint (13) is to set the initial container states of stage 2. 

III. SOLVING METHODOLOGY 

Our stochastic problem is hard to solve as it is difficult to 
evaluate the expected cost of stage 2 for a given x1, i.e. 

1[ ( , ( ))]pE Q x   . It requires the solutions of a large number 

of stage 2 optimization problems. In this study, we consider 
applying the SAA method to solve the stochastic ECR 
problem. The basic idea of SAA method is that the expected 
objective function of the stochastic problem is approximated 
by a sample average estimate derived from a random sample 

and the resulting SAA problem could then be solved by 
deterministic optimization techniques [6]. 

A. The SAA Method 

A sample with N scenarios { 1 , 2 ,…, N  } is 

generated according to the probability distribution p. The 
SAA problem is formulated as follows. 

1 1 2 2

1

1
ˆ min [ ( )]

N
n

N

n

g c x c x
N




    (15) 

Subject to (8), (9); and (12), (13) for n=1,2,…,N 

0v , 01x , 0)(2 nx    for n=1,2,…,N (16) 

 
The SAA problem can then be solved by deterministic 

optimization methods. The optimal solution x̂  and the 

optimal value ˆ
Ng  of the SAA problem could be obtained. x̂  

is a candidate solution of the true problem. Note that when 
this sample is an i.i.d random sample of the random vector, 

ˆ ( )Ng x is called a (standard) Monte Carlo estimator of ( )g x . 

To evaluate the objective value given the candidate solution 

x̂ , we consider generating an independent sample with N’ 

scenarios, where N’ is much larger than N. Let 

'
ˆ ˆ( )

N
g x is defined to estimate the objective value ˆ( )g x  of an 

feasible solution x̂ .   

In order to get a better solution, we can generate M 
independent samples equally with N scenarios. By solving 
the corresponding M independent SAA problems, we can get 

M candidate solutions 1ˆ
Nx , 2ˆ

Nx , …, ˆM
Nx  and the objective 

values 1ˆ
Ng , 2ˆ

Ng , …, ˆ M
Ng . It is natural to take *x̂  as one of 

the optimal solutions of these SAA problems which provides 
the smallest estimated objective value,  

To estimate the performance of SAA method, we need to 
calculate the optimality gap, i.e. the difference between the 
lower bound and the upper bound. This gap can be used to 

evaluate the quality of the solution. As *x̂  is a feasible 

solution of the stochastic ECR problem, 
'

*ˆ ˆ( )
N

g x  gives an 

estimate of the upper bound of the true optimal objective 
value of the true problem. On the other hand, as N realized 
scenarios are considered in the SAA problems, the objective 

value of the SAA problem ˆ
Ng  has a negative bias. Let M

Ng  

denotes the average objective value of the M SAA problems,  

M
Ng  provides a statistical estimate for a lower bound of the 

true optimal value of the true problem. The optimality gap 
could be estimated as 

1 1 1 1min ( ) [ ( , ( ))]pg x c x E Q x     (7) 

subject to  1 1 1A x a  (8) 

1 1B x v  (9) 

1 0x   (10) 

Stage 2:  For a realized scenario , we have  

1 2 2[ , ( )] min ( )Q x c x    (11) 

subject to 2 2 2( ) ( )A x a   (12) 

2 2 1( ) ( )B x v x   (13) 

2 ( ) 0x    (14) 

'

'

1

1

1
ˆ ˆ ˆ ˆ( ) min [ , ( )]

'N

N
n

n

g x c x Q x
N
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* 1 2
'
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N N N N N Nx g x x x x x   (18) 
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B. Non-i.i.d Samplings  

Due to its large scale, the SAA problem (15)-(16) for the 
real scale ECR is difficult to solve. In this case, the sampling 
should be well-planned. We try to generate samplings with a 
small number of scenarios (the number of scenarios is even 
less than the random variables of the stochastic ECR 
problem) and still get acceptable solutions. In this study, 
three sampling schemes are considered to enhance the 
performance of the SAA method for the stochastic ECR 
problem.  

1) Latin Hypercube (LH) Sampling: In computer 

experiments, it is well know that LH design achieves 

maximum stratification in one-dimensional projections. The 

idea is to partition the sample space, and the number of 

sample points on each region should be proportional to the 

probability of that region. This way we ensure that the 

number of sampled points on each region will be 

approximately equal to the expected number of points to fall 

in that region. 
2) AG Design: AG deign is a supersaturated design 

which is introduced in [13]. One good property of the AG 
design is that the saturation increase rather fast with the 
number of scenarios. Besides, for a two-level design with m 
scenarios and n factors ( m n ), each column has the same 

number of -1’s and 1’s in an even case. This property is 
necessary for a stable regression analysis as each variable 
has to be evaluated fairly from its smallest values to its 
highest values. 

3) AGLH Design: We also propose a superstaturated 

design which combines the AG deisn and LH sampling, e.g., 

a  two-level case, we can generate the AGLH design as 

follows,  

a) Generate a AG design, B 

b) Randomly permute the rows, columns and symbols 

of B ( m n ) 

c) In each columns of B, replace the m/2 0s by a 

uniform random permutation of 1,…,m/2. The  m/2 1s  by a 

uniform random permutation of m/2+1,…,m. 

d) Coupling B with U[0,1] random variables and we 

can get our desire design, C. 

IV. NUMERICAL STUDY 

To evaluate the performance of the SAA method, we first 
generate an ECR transportation network as shown in Fig. 1. 
Five ports, three services, and one type of container (twenty-
foot standard container) are considered. The planning 
horizon is three weeks, and we define the first week as stage 
1 and the second and the third weeks are stage 2. All 
information in the first week is known when decisions in 
stage 1 are made, while some parameters in stage 2 are 
unknown when decisions in stage 1 are made. These 
parameters are known when decisions in stage 2 are made. 
The lead time of across-region empty containers is one week. 
The service schedules are given in Fig. 1. 

 
We apply the SAA method to solve the two-stage 

stochastic problem (with i.i.d sampling). We can solve the 
SAA problem directly by using CPLEX11.2 when the 
sample size N is not too large (N < 1000). We set the sample 
size N as 100. The number of scenarios to evaluate the 
solution N’ is set to be 1000. Replication number is set to be 
20. The performance of the SAA method (N = 100) for the 
small scale case is examined with the key results shown in 
Table I. As shown in Table I, the estimated objective value 

of the true problem  
'

*ˆ ˆ( )
N

g x  is 3359.97, and a statistic lower 

bound for the objective value M
Ng  is 3335.45. The 

optimality gap 
'

*ˆ ˆ( )
N

M
Ng x g  is 24.52 (0.73% of 

'

*ˆ ˆ( )
N

g x ) 

which is quite small. The small optimality gap implies that 
the SAA method can provide solutions with good quality.  

In the case study above, samples are independently and 
identically distributed. We also consider applying the 
supersaturated design to generate samples. The results of the 
SAA method with AG design are shown in Table II. The 
optimal estimated objective value we can obtain with N=10 
(note that the number of sample scenarios is smaller that the 
number of random variables of the ECR problem, i.e. 56) is 
3361.81, which is quite close to the optimal estimated 
objective value in Table I, i.e. 3359.97, with N=100. It 
indicates that SAA method based on supersaturated design 

'

*ˆ ˆ( )
N

M
Ng x g  (20) 

TABLE I.  RESULTS OF THE SAA METHOD (N=100) 

Estimate Value 

M
Ng  3335.45 

'

*ˆ ˆ( )
N

g x  3359.97 

'

*ˆ ˆ( )
N

M
Ng x g  24.52(0.73%) 

 

 

Figure 1.  A network with three services and five ports 
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can provide good solutions with a small number of sample 
scenarios.   

The performances of the SAA method with i.i.d sampling, 
LH sampling, AG design, and AGLH design are compared 
in Fig. 2 and Fig. 3 (all with N=10). The replication number 
is 1000 and we can obtain 1000 feasible solutions for each 
sampling method. In Fig. 2, the mean and confidence 

interval of the estimated objective value  
'

ˆ ˆ( )
N

g x  of each 

sampling method are analyzed. We find that all the three 
non-i.i.d samplings can reduce the average estimated 
objective value and the variance of the estimated objective 
value. Fig. 3 is the probability plot. Based on Fig. 3, we find 
that the non-i.i.d samplings are less likely to provide bad 
solutions compared with the i.i.d sampling. We also find that 

the SAA method with AGLH design has the smallest 
probability to provide bad solutions. 

 

V. CONCLUSION AND FUTURE STUDY 

In this study, we developed an operational model to solve 
the ECR problem. In order to incorporate uncertainties, we 
built a two-stage stochastic model with uncertain demand, 
supply, residual ship space capacity, and residual ship weight 
capacity. The distributions of these parameters can be 
estimated based on historical data. We applied the SAA 
method to solve this stochastic problem. In the future, we 
will consider applying the SAA method to real-scale 
problems.  Based on the results in numerical study section, 
we found that using LH design, AG design, and the 
combination of AG design and LH design to enhance the 
performance of SAA is promising. A direct extension of this 
work is to explore other sampling schemes to control 
scenario generation and thus improve the quality of 
solutions. Another possible direction for future research is to 
study the convergence rate of these samplings for stochastic 
programming. 
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Figure 2. Expect cost estimates (α=0.05) 
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Figure 3. Probability plot of the objective estimates 
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