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Abstract—This paper presents a comparative and experi-
mental study about the performance of the Simple Genetic
Algorithm (SGA) using five classic benchmarking functions.
The performance analysis is accomplished on the combination
of the operators of reproduction and crossover with the control
parameters having been fixed. The overall behavior of the
SGA is evaluated by the fitness of the best individual analyzed
during the evolution and at the ending of the same one. The
results that are presented show that the SGA can be effective
and competitive to optimization on a test suite of benchmark
functions.

Keywords-Genetic Algorithm; Parameterization of GA;
Generational Replacement Model; Single-Point Crossover; Uni-
form Crossover.

I. INTRODUCTION

The Simple Genetic Algorithm (SGA) presented by
Goldberg [1] plays an important role in the use of the
approaches based on the dynamics of natural genetics and
still being a study target [2]. This proposal has been used
in the implementation of many derived approaches, and
many researchers have drawn the performance analysis of
the Genetic Algorithms (GAs) basing its studies in the
control parameters (populations size, crossover and mutation
rates) and their potential adjustment [3]. Normally, this
parameterization depends on the knowledge of the designer
about the problem definition; of the values attributed to the
parameters and of the adequate choice of the used methods
to implement the operators. In this universe of choices,
each designer can create a particular algorithm to a specific
problem [4]–[7], being always a generic SGA as the worse
one of the implementations.

In this paper, the SGA performance is examined into
five benchmarking functions, considering a fixed size of the
population and constant crossover and mutation rates. The
performance test is carried out through for the combina-
tion of three strategies of reproduction and two kinds of
crossover. No additional strategy was established, and the
benchmarking functions were normalized to facilitate the
comparisons.

The present paper is structured as follows: Section II
presents the benchmarking functions and Section III de-
scribes the methodology used. In Section IV, results of
experiments are reported. In Section V, some general con-
clusions are mentioned.

II. BENCHMARKING FUNCTIONS

Many benchmarking functions have been used to perform
a stress test of various GA approaches. Digalakis [3] sum-
marizes this set of benchmarking functions, which comes the
set of characteristics required for benchmarking tests using
GAs. In this set, five functions had been selected to perform
the proposed study, which are listed below:

1) F1 function (Sphere): paraboloid function, smooth,
unimodal, convex, symmetric, and whose convergence to the
global optimum is easily achieved.

f1 (x) =

2∑
i=1

x2i (1)

−5.12 ≤ xi ≤ 5.12

2) F2 function (Rosenbrock): considered of high difficulty
level resembling a saddle function, imposing strong restric-
tions on the algorithms that are not suitable to search for
directions.

f2 (x) = 100
(
x21 − x2

)2
+ (1− x1)2 (2)

−2.048 ≤ xi ≤ 2.048

3) F3 function (Step): function at representative levels
of flat surfaces, which are obstacles for optimization algo-
rithms, whereas the surfaces in the levels do not provide any
information about which direction is favorable to the search.

f3 (x) =

5∑
i=1

integer (xi) (3)

−5.12 ≤ xi ≤ 5.12

4) F4 function (Rastrigin’s function): this function repre-
sents a surface performance of extreme complexity in the

20

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



search for global optimal solution, given the existence of
numerous local solutions.

f4 (x) = 10 · n+

2∑
i=1

(
x2i − 10 · cos (2π · xi)

)
(4)

−5.12 ≤ xi ≤ 5.12

n = dim(xi)

where n represents the numerical value of xi dimension.
5) F5 function (Foxholes): the main feature of this

function is to produce local solutions in an independent
environment with a high level of discontinuity.

f5 (x) =

0.002 +

25∑
j=1

(
j +

2∑
i=1

(xi − aij)6
)−1

−1

(5)
−65.536 ≤ xi ≤ 65.536

(aij)2×25 = A

In this function, the matrix A2×25 is formed by constants
and, in order to simplify the exibition, their values are
grouped as follow:

C0 =
[
−32 16 0 16 32

]
C1 =

[
−32 −32 −32 −32 −32

]
C2 =

[
−16 −16 −16 −16 −16

]
C3 =

[
0 0 0 0 0

]
C4 =

[
32 32 32 32 32

]
C5 =

[
16 16 16 16 16

]
The groups C0-C5 can now be associated to A:

A =

[
C0 C0 C0 C0 C0

C1 C2 C3 C4 C5

]
This subset contains important characteristics of many

objective functions found in optimization problems, such as:
smoothness, unimodality, multimodality, a very narrowness
ridge, a flat surface, and too many local optima [3].

III. METHODOLOGY

The objective of this paper is to present an analysis of the
SGA performance, in its classic form [1], and to evaluate
such performance using a combination of basic methods for
reproduction and crossover. The populations size, crossover
and mutation probability are used with constant values
associated, to avoid the effect of these parameters in the
overall analysis.

The stop condition of the evolution was established as
a finite number of generations. The population replacement
scheme adopted was the Generational Replacement Model
(GRM), which replaces the entire population, in each gener-
ation, by its offspring. To guarantee the maintenance of the

best solution gotten in each previous generation, the Elitist
strategy is applied in each next generation [8].

The performance measure may be taken in two moments
of the evolution: the first one can be since the initial steps,
and is called ongoing analysis, and the other one at the evo-
lution’s end, called stopped analysis. The ongoing analysis
gives an idea of the evolution until the present generation,
and the stopped analysis supplies the best solution found
until then. These criteria have been detailed in [1], [3].
In this work, the ongoing analysis was established having
the measure being obtained at the 10th generation, and the
stopped analysis at the 80th generation.

The selected methods of reproduction are:
• R1 - Stochastic sampling with replacement (Roulette

wheel selection);
• R2 - Remainder stochastic sampling with replacement;
• R3 - Stochastic tournament.
The selected crossover methods are:
• X1 - Single-point crossover;
• X2 - Uniform crossover.
The reproduction and crossover methods, above listed,

were combined to assemble the set of tests. Such set was
assigned as follows:

C11 - Reproduction method R1 with crossover X1;
C12 - Reproduction method R1 with crossover X2;
C21 - Reproduction method R2 with crossover X1;
C22 - Reproduction method R2 with crossover X2;
C31 - Reproduction method R3 with crossover X1;
C32 - Reproduction method R3 with crossover X2.
For each item in the set, 100 independent runs of the SGA

were carried out. For each run, the best individual’s evolution
was obtained. For each combination, the mean values and
variances were calculated. Figure 1, for example, illustrates
the obtained results for F1 function optimization with the
C11 combination.

IV. RESULTS

To evaluate the SGA performance and to compare it with
the results found in literature, the following values were
used:

• population size: 50 individuals;
• number of generations: 80;
• number of runs: 100;
• chromosome or bit string length: 8 bits per solution;
• crossover mechanisms: single-point and uniform;
• crossover probability (pc): 0.6;
• mutation probability (pm): 0.001.
Considering the benchmarking function F1, after the en-

tire tests, the obtained results to the combinations set are
depicted in Figure 2. Table I summarizes the numerical
values. The criteria adopted to measure the performance of
best individuals were made by measuring the mean value
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Figure 1. 100 Independent runs and the mean value to F1 function with
combination C11.
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Figure 2. Comparative of the mean of the normalized fitness, to F1
function, in 100 runs.

Table I
MEAN VALUES AND VARIANCES TO F1 FUNCTION.

10th generation 80th generation

µ σ2 × 10−5 µ σ2 × 10−5

C11 0.9972 1.5339 0.9997 0.1644

C12 0.9957 2.3725 0.9996 0.0454

C21 0.9943 3.9221 0.9998 0.0167

C22 0.9974 1.7816 0.9999 0.0249

C31 0.9983 1.3449 1.0000 0.000119

C32 0.9978 0.8595 0.9999 0.005012

and variance over the runs, becoming a criteria for numerical
comparisons.

The values in Table I show excellent results to any
combination for ongoing and stopped analysis. The low

values of variance demonstrate that any run can be effective
in the search of the optimal solution.

The obtained results to the combinations for functions F2-
F5 that are depicted in Figures 3-6 and Tables II-V show the
summarization of the results respectively by the measure of
mean and variance, respectively.
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Figure 3. Comparative of the mean of the normalized fitness, to F2
function, in 100 runs.

Table II
MEAN VALUES AND VARIANCES TO F2 FUNCTION.

10th generation 80th generation

µ σ2 × 10−8 µ σ2 × 10−8

C11 0.9999 1.7021 1.0000 0.2462

C12 0.9999 3.5903 1.0000 0.5344

C21 0.9998 6.5557 0.9999 2.3654

C22 0.9999 2.5488 1.0000 0.9630

C31 0.9999 1.6755 1.0000 0.5718

C32 0.9999 1.2254 0,9999 0.7725

Table III
MEAN VALUES AND VARIANCE TO F3 FUNCTION.

10th generation 80th generation

µ σ2 × 10−4 µ σ2 × 10−4

C11 0.9978 2.3391 1.0000 0.0000

C12 0.9989 1.1815 1.0000 0.0000

C21 0.9967 3.4728 1.0000 0.0000

C22 1.0000 0.0000 1.0000 0.0000

C31 1.0000 0.0000 1.0000 0.0000

C32 1.0000 0.0000 1.0000 0.0000

In tables IV and V,the average decrease between rounds
over the previous tables due to the nature of performance
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Figure 4. Comparative of the mean of the normalized fitness, to F3
function, in 100 runs.
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Figure 5. Comparative of the mean of the normalized fitness, to F4
function, in 100 runs.

Table IV
MEAN VALUES AND VARIANCES TO F4 FUNCTION.

10th generation 80th generation

µ σ2 × 10−4 µ σ2 × 10−4

C11 0.9604 7.1088 0.9853 2.2892

C12 0.9512 9.1016 0.9784 2.9781

C21 0.9431 13.123 0.9733 6.0680

C22 0.9594 6.5950 0.9809 2.5381

C31 0.9759 2.3428 0.9833 1.4531

C32 0.9576 5.6891 0.9743 4.5210

among the results is verified. To elect a winning combination
we decided to analyze the one variance with the lowest
since the average of the same order of magnitude. For the
two moments of evolution, the combination C31 is the one
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Figure 6. Comparative of the mean of the normalized fitness, to F5
function, in 100 runs.

Table V
MEAN VALUES AND VARIANCES TO F5 FUNCTION.

10th generation 80th generation

µ σ2 × 10−3 µ σ2 × 10−4

C11 0.9771 1.63 0.9923 0.8348

C12 0.9593 5.14 0.9882 1.4573

C21 0.9384 16.53 0.9863 1.6812

C22 0.9736 2.87 0.9884 1.3815

C31 0.9827 1,77 0.9941 0.5224

C32 0.9745 1,13 0.9866 1.2796

with the best performance among the results. The lower
values obtained for the variance show that any round can be
effective in finding the optimal solution. After analysis of
these data, it appears that the solutions for all combinations
of the set of operations can be considered as optimal
solutions.

After examining these results, the good results gotten
in all the considered set’s combinations are verified. To
compose a generic sketch with all benchmarking functions
and the entire combinations set, these results were combined.
The Figures 7 and 8 show the similarity in performance to
the test functions and the combinations.

These results show that the benchmarking functions F1,
F2 and F3 impose the same behavior to all operators combi-
nations and, consequently, reliable results are obtained. The
functions F4 and F5, due to their nature, impose a different
behavior to the operators combinations. In this context, the
C31 combination preserves its good performance relatively
to others combinations, and the differences in the values,
verified according the variances values, are not significant.
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Figure 7. Performance analysis at 10th generation.
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Figure 8. Performance analysis at 80th generation.

V. CONCLUSION

This paper has accomplished a performance analysis for
the SGA approach - a simple genetic algorithm. This ana-
lysis, using a subset of benchmarking functions and doing
combinations of operators, show the effectiveness of the
SGA algorithm. In other words, given a search space, a
convergence region is provided; local optima, which are
widespread in some objective functions, are overcomed;
and a useful set of feasible solutions is reached. These
experiments show that the combination of stochastic tour-
nament with single-point crossover is the combination that
provides better results. The results described in this paper
are significant because they show that the basic formulation
of SGA is competitive in the different contexts found in the
objective functions.
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