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Abstract—Recommender systems produce content for users,
by suggesting items that users might like. Predicting the ratings
is a key task in a recommender system. This is especially true
in a system that works with groups, because ratings might be
predicted for each user or for the groups. The approach chosen
to predict the ratings changes the architecture of the system and
what information is used to build the predictions. This paper
studies approaches to predict the ratings in a group recommen-
dation scenario that automatically detects groups. Experimental
results confirm that the approach to predict the ratings strongly
influences the performances of a system and show that building
predictions for each user, with respect to building predictions
for a group, leads to great improvements in the quality of the
recommendations.

Keywords—Group Recommendation; Clustering; Ratings Pre-
diction.

I. INTRODUCTION

A recommender system suggests items that might be inter-
esting for a user. In order to identify “the useful items for the
user, a recommender system must predict that an item is worth
recommending” [1]. As highlighted in [1], [2], the prediction
task is the core recommendation computation.

Group recommendation is designed for contexts in which
more than a person is involved in the recommendation pro-
cess [3]. A scenario in which group recommendation is useful
is when the recommendations that can be built are limited.

A company decides to print recommendation flyers
that present suggested products. Even if the data
to produce a flyer with individual recommendations
for each customer is available, printing a different
flyer for everyone would be technically too hard to
accomplish and costs would be too high. A possible
solution would be to set a number of different flyers
to print, such that the printing process could be
affordable in terms of costs and the recipients of the
same flyer would be interested by its content.

With respect to classic group recommendation, these systems
add the complexity of defining groups, in order to respect
the constraint on the number of recommendations that can be
produced. In literature, no system can automatically adapt to
such constraints imposed by the system.

According to Jameson and Smyth [3], a group recom-
mender system can use three approaches to predict the ratings:
(i) construct group models and predict the ratings for each
group using the model, (ii) predict the ratings for each user
and merge only the individual recommendations into a group
preference, or (iii) aggregate all the predictions built for each
user into a group preference. It can be noticed that the
ratings prediction task takes a central role also in a group
recommender system, since ratings can be predicted for each
user or for a group. According to the approach chosen to
predict the ratings, the architecture of the system changes and
the prediction task takes a different input (i.e., a group model
or the individual preferences of each user) and produces a
different output (i.e., predictions for a group, predictions for
each user or recommendations for each user). This means that
the flow of the computation radically changes, in order to allow
the system to build the predictions.

This paper explores the ratings prediction task in the
previously mentioned scenario, in order to identify the best
approach to predict the ratings for a group that has been
automatically detected. Three recommender systems have been
developed, to produce the predictions according to the pre-
viously mentioned approaches. The scientific contributions
coming from this paper are the following: (i) the prediction
task is explored for the first time in a scenario in which groups
are automatically detected; (ii) the three approaches to build
the predictions in a group recommender systems are directly
compared for the first time in literature and (iii) the trade-off
between the number of detected groups and the accuracy of
each system is explored, in order to evaluate how the number
of groups affects the performances of a system.

The paper is structured as follows: Section II describes the
ratings prediction approaches in group recommender systems;
Section III presents the three group recommender systems
that automatically detect groups, developed to use the three
approaches to build the predictions; Section IV illustrates the
experiments on the systems; Section V contains conclusions.

II. RATINGS PREDICTION APPROACHES IN GROUP
RECOMMENDATION

According to [3], group preferences can be predicted
using three approaches: (i) generation of a group model that
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combines individual preferences, used to build predictions for
the group, (ii) merging of recommendations built for each user,
or (iii) aggregation of the predictions built for each user.

This section describes each approach in detail.

A. Construction of Group Preference Models

This approach builds a group model using the preferences
of the users and predicts a rating for the items not rated by
the group using the model. The two performed tasks are:

1) Construct a model Mg for a group g, that represents
the preferences of the whole group.

2) For each item i not rated by the group, use Mg to
predict a rating pgi.

The architecture of a system that uses this approach is shown
in Fig. 1 (the prediction task is highlighted in the figure). In
order to build the predictions, the system has to produce a
model with the preferences of the group (TASK 1). The task
receives as input the ratings for the items evaluated by each
user (INPUT 1) and the composition of each group (INPUT
2). Each group model is used to predict the ratings for the
group (TASK 2).

Fig. 1. System that builds predictions using group models

This approach is used by Let’s Browse [4], In-Vehicle
Multimedia Recommender [5], TV4M [6], INTRIGUE [7], and
Travel Decision Forum [8].

B. Merging of Individual Recommendations

The approach presents to a group a set of items, that is the
merging of the items with the highest predicted rating for each
member of the group. The approach works as follows.

1) For each member of the group u:
• For each item i not rated, predict a rating pui.
• Select the set Ci of items with the highest

predicted ratings pui.
2) Model the group preferences by producing

⋃
i Ci, the

union of the sets of items with the highest predicted
ratings.

The architecture of a system that uses this approach is
shown in Fig. 2. The system uses the ratings for the items
evaluated by each user (INPUT 1) to predict the ratings for
each user (TASK 1). The output produced by the task (the top-
n predictions, used as recommendations for a user), are given
as input to the task that merges the recommendations (TASK
2), along with the composition of the groups (INPUT 2).

This approach is not widely used in literature. The main
relevant work that embraces this approach is PolyLens [9].

Fig. 2. System that merges the recommendations

C. Aggregation of Individual Predictions

This approach predicts individual preferences for the items
not rated by each user, aggregates individual preferences and
derives a group preference. The approach works as follows.

• For each item i:
1) For each member u of the group g that did

not rate i, predict a rating pui.
2) Calculate an aggregate rating rgi from the

ratings of the members of the group, either
expressed (rui) or predicted (pui).

The architecture of a system that uses this approach is shown in
Fig. 3. The ratings for the item evaluated by each user (INPUT
1) are used to predict the ratings for the missing items for each
user (TASK 1). The output produced by the task (i.e., all the
calculated predictions), is given as input along with the ratings
given by the users for the items (INPUT 1) and the composition
of each group (INPUT 2) to the task that models the group
preferences (TASK 2).

Fig. 3. System that aggregates predictions

This approach is used by PolyLens [9] and in [10], [11].

III. PREDICTING RATINGS FOR AUTOMATICALLY
DETECTED GROUPS

As mentioned in the Introduction, no group recommen-
dation approach is able to detect groups in order to adapt
to constraints on the number of recommendations produced.
This section presents three group recommender systems able
to automatically detect groups. Each system will implement
one of the three approaches to predict the ratings previously
described. The tasks that do not predict ratings will be im-
plemented in the same way in all the systems, in order to
evaluate how each approach to predict the ratings affects the
performances of a group recommender system.
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A. System Based on Group Models Construction

ModelBased is a group recommender system that detects
groups of similar users, models each group using the prefer-
ences of its members and predicts group preferences using the
model, according to the approach presented in Section II-A.
The tasks performed by the system are the following.

1) Detection of the groups. Using the preferences of
each user, groups of users with similar preferences are
detected with the k-means clustering algorithm [12].

2) Group modeling. Once groups have been detected,
a group model is built for each group g, using
the Additive Utilitarian modeling strategy. For each
group, a rating is calculated for a subset of items.

3) Prediction of the Ratings Using a Group Model.
Group ratings are predicted for the items not modeled
by the previous task, using the model that contains
its preferences with an Item-based approach [13].

Detection of the groups. The set of users has first to be
partitioned into a number of groups equal to the number of
recommendations. Since in our application scenario groups do
not exist, unsupervised classification (clustering) is necessary.
Users are clustered considering the ratings expressed for the
evaluated items. It was recently highlighted in [14] that the
k-means clustering algorithm [12] is by far the most used
clustering algorithm in recommender systems.

This task detects groups by clustering users with the
k-means clustering algorithm. The output of the task is a
partitioning of the users in groups (clusters), such that users
with similar ratings for the same items are in the same group
and can receive the same recommendations.

Group modeling. To create a model that represents the
preferences of a group, the Additive Utilitarian group modeling
strategy [15] is adopted. The strategy sums individual ratings
for each item and produces a list of the group ratings (the
higher the sum is, the earlier the item appears in the list).
The ranked group list of items is exactly the same that would
be produced when averaging the individual ratings, so this
strategy is also called ‘Average strategy’.

The choice to use this strategy to create the model and
produce ratings using an average was made for two main
reasons: (i) since the considered scenario deals with a limited
number of recommendations, the system works with large
groups. Therefore, an average, that is a single value that is
meant to typify a set of different values, is best way to put
together the ratings in this context; (ii) for groups created
with the k-means clustering algorithm, creating a group model
with an average of the individual values for each item is like
re-creating the centroid of the cluster, i.e., a super-user that
connects every user of the group.

After a group has been modeled, a rating rgi is a part of
the model only if a consistent part of the group has rated
item i. In fact, if an item is rated by a small part of the
group, the aggregate rating cannot be considered representative
of the preferences of the group as a whole. So, a parameter
named coratings, is set. The parameter expresses the minimum
percentage of group members who have to rate an item, in
order to include the rating in the model.

Prediction of the Ratings Using a Group Model. In the
group models previously created, for a subset of items there is
no preference. In order to predict these ratings, an Item-Based
Nearest Neighbor Collaborative Filtering algorithm presented
in [13], that builds the predictions using the model, is adopted.
The choice of using an Item-Based approach is because the
algorithm deals with group models. Since groups might be
very large, a group model might put together a lot preferences
and it would not be significant to make a prediction with a
User-based approach that would look for “similar groups”. In
fact, considering an example with 6000 users and 10 groups,
if groups were homogeneous, there would be around 600 users
per group. If a User-Based approach was used, when looking
for neighbors the algorithm would look for a two similar
models, that each contain a synthesis of the preferences of 600
users. This type of similarity would not be accurate enough to
make predictions.

The algorithm predicts a rating pgi for each item i that
was not evaluated by a group g, considering the rating rgj of
each similar item j rated by the group. Equation (1) gives the
formula used to predict the ratings:

pgi =

∑
j∈ratedItems(g)

itemSim(i, j) · rgj∑
j∈ratedItems(g)

itemSim(i, j)
(1)

According to Schafer et al., [13], some authors do not consider
all the items in the model (i.e., ratedItems(g)), but just
the top n correlations. In order to reduce the computational
complexity of the algorithm and select the most meaningful
correlations, this is the approach used for this task. In or-
der to compute similarity itemSim(i, j) between two items,
adjusted-cosine similarity is used. The metric is believed to
be the most accurate when calculating similarities between
items [13]. It is computed considering all users who rated
both item i and item j. Equation (2) gives the formula for
the similarity (Uij is the set of users that rated both item i and
j and value ru represents the mean of the ratings expressed
by user u).

itemSim(i, j) =

∑
u⊂Uij

(rui − ru)(ruj − ru)√∑
u⊂Uij

(rui − ru)2
√∑

i⊂Uij
(ruj − ru)2

(2)

B. System that Merges Individual Recommendations

MergeRecommendations is a group recommender system
that detects groups of similar users, predicts individual prefer-
ences and selects the items with the highest predicted ratings
for each user, using the approach presented in Section II-B.
Here we describe the tasks performed by the system and how
they have been implemented.

1) Detection of the groups. Considering the individual
preferences, groups of similar users are detected with
the k-means clustering algorithm.

2) Predictions for Individual Users. Individual predic-
tions are calculated for each user with a User-Based
Collaborative Filtering Approach presented in [13].

3) Generation of the Group Predictions (Group mod-
eling). Group predictions are built by modeling the
top-n items with the highest predicted ratings for each
user, by averaging the ratings of the items selected for
each user.
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Detection of the Groups. The first task uses the approach
previously presented, i.e., the k-means algorithm.

Prediction of the Missing Ratings. Ratings for the mem-
bers of a group are predicted with a classic User-Based Nearest
Neighbor Collaborative Filtering algorithm, presented in [13].
The algorithm predicts a rating pui for each item i that was
not evaluated by a user u, considering the rating rni of each
similar user n for the item i. A user n similar to u is called a
neighbor of u. Equation (3) gives the formula used to predict
the ratings:

pui = ru+

∑
n⊂neighbors(u) userSim(u, n) · (rni − rn)∑

n⊂neighbors(u) userSim(u, n)
(3)

Values ru and rn represent, respectively, the mean of the
ratings expressed by user u and user n. Similarity userSim()
between two users is calculated using the Pearson’s correlation,
a coefficient that compares the ratings of all the items rated
by both the target user and the neighbor. Pearson’ correlation
between a user u and a neighbor n is given in Equation (4)
(Iun is the set of items rated by both u and n).

userSim(u, n) =

∑
i⊂Iun

(rui − ru)(rni − rn)√∑
i⊂Iun

(rui − ru)2
√∑

i⊂Iun
(rni − rn)2

(4)

The metric ranges between 1.0 (complete similarity) and
-1.0 (complete dissimilarity). Negative values do not increase
the prediction accuracy [16], so they are discarded by the task.

Generation of the Group Predictions (Group modeling).
For each user, the items for which a rating is predicted are
ranked in descending order based on the ratings, then the top-
n items are selected. Group ratings are predicted by merging
the top-n items of each users with a union of the ratings. If an
item appears in the list of more members of the same group,
the average of the predicted ratings for that item is calculated
(Additive Utilitarian strategy), in order to derive the preference
of that group for the item.

C. System Based on the Aggregation of Individual Predictions

PredictionAggregation is a group recommender system that
detects groups of similar users, predicts individual preferences
and aggregates the preferences expressed for each item into
a group preference, according to the approach presented in
Section II-C. Here we describe the tasks performed by the
system.

1) Detection of the groups. Using individual preferences,
groups are detected through the k-means algorithm.

2) Predictions for Individual Users. Predictions are built
with the previously described User-Based approach.

3) Aggregation of the Predictions (Group modeling).
Once groups have been detected, a group model is
built by aggregating all the predictions of a group.

All the tasks use the same algorithms previously presented,
i.e., the k-means clustering algorithm, the User-Based Collabo-
rative Filtering algorithm and the Additive Utilitarian modeling
strategy. The difference with the MergeRecommendation sys-
tem is on the modeling task, that considers all the predictions
and not just the top-n predicted items.

IV. EXPERIMENTAL FRAMEWORK

This section presents the framework built for the experi-
ments.

A. Experimental Setup

To conduct the experiments, we adopted MovieLens-1M,
a dataset widely used in literature.

The clusterings with k-means were created using a testbed
program called KMlocal [17], that contained a variant of the
k-means algorithm, called EZ Hybrid. The k-means algorithm
minimizes the average distortion, i.e., the mean squared dis-
tance from each point to its nearest center. With the dataset
used, EZ Hybrid is the algorithm that returned the lowest
distortion and is the one used to cluster the users.

An analysis has been performed, by comparing the RMSE
values obtained by each system considering different numbers
of groups to detect. The choice of measuring the performances
for different numbers of groups has been made to show how
the quality of the systems change as the constraint changes. In
each experiment, four different clusterings in 20, 50, 200 and
500 groups were created. Moreover, we compared the results
obtained with the four clusterings with the results obtained
considering a single group with all the users (i.e., predictions
are calculated considering the preferences of all the users), and
the results obtained by the system that calculates predictions
for each user.

RMSE was chosen as a metric to compare the algorithms
because, as the organizers of the Netflix prize highlight [19],
it is widely used, allows to evaluate a system through a single
number and emphasizes the presence of large errors.

In order to evaluate if two RMSE values returned by two
experiments are significantly different, independent-samples
two-tailed Student’s t-tests have been conducted. In order to
make the tests, a 5-fold cross-validation was preformed.

The details of the experiments are described below.

1) Parameters setting. For each system, a parametric
analysis has been conducted, in order to find the
setting that allows to achieve the best performances.

2) Selection of the best system. The performances of the
systems have been compared, in order to identify the
one that allows to predict the most accurate ratings.

B. Dataset and Data Preprocessing

The dataset used, i.e., MovieLens-1M, is composed of 1
million ratings, expressed by 6040 users for 3900 movies. This
framework uses only the file ratings.dat, that contains
the ratings given by users. The file contains four features:
UserID, that contains user IDs in a range between 1 and 6040,
MovieID, that contains movie IDs in a range between 0 and
3952, Rating, that contains values in a scale between 1 and 5
and Timestamp, that contains a timestamp of when a user rated
an item. The file was preprocessed for the experimentation, by
mapping the feature UserID in a new set of IDs between 0
and 6039, to facilitate the computation using data structures. In
order to conduct the cross-validation, the dataset was split into
five subsets with a random sampling technique (each subset
contains 20% of the ratings).
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C. Metrics

The quality of the predicted ratings was measured through
the Root Mean Squared Error (RMSE). The metric compares
each rating rui, expressed by a user u for an item i in the test
set, with the rating pgi, predicted for the item i for the group
g in which user u is. The formula is shown below:

RMSE =

√∑n
i=0(rui − pgi)2

n

where n is the number of ratings available in the test set.
In order to compare if two RMSE values returned by two ex-
periments are significantly different, independent-samples two-
tailed Student’s t-tests have been conducted. These tests allow
to reject the null hypothesis that two values are statistically
the same. So, a two-tailed test will test if an RMSE value
is significantly greater or significantly smaller than another
RMSE value. Since each experiment was conducted five times,
the means Mi and Mj of the RMSE values obtained by two
systems i and j are used to compare the systems and calculate
a value t:

t =
Mi −Mj

sMi−Mj

where

sMi−Mj =

√
s21
n1

+
s22
n2

s2 indicates the variance of the two samples, n1 and n2

indicate the number of values considered to build M1 and
M2 (in our case both are equal to 5, since experiments were
repeated five times). In order to determine the t− value that
indicates the result of the test, the degrees of freedom for the
test have to be determined:

d.f. =
(s21/n1 + s22/n2)

2

(s21/n1)2/(n1 − 1) + (s22/n2)2/(n2 − 1)

Given t and d.f., the t − value (i.e., the results of the test),
can be obtained in a standard table of significance as

t(d.f.) = t− value

The t − value derives the probability p that there is no
difference between the two means. Along with the result of
a t-test, the standard deviation SD of the mean is presented.

D. Experiments

For each system, experiments to set the parameters and find
the best configuration are conducted. Then, the performances
of the different systems are compared.

1) Setting the Parameters of ModelBased: Here we de-
scribe the experiments conducted to set the two parameters
of the system (i.e., coratings and n).

coratings parameter setting. The coratings parameter
allows to consider in the model only the items rated by a
certain part of the group. An experiment to evaluate a suitable
value for the parameter is conducted. In this experiment,
parameter n is set to 10. Fig. 4 and the underlying table, show
that the initial value of coratings, i.e., 10%, is the one that
allows to achieve better results. This means that the higher is
the value of coratings, the more ratings are eliminated for the
model. So, it is harder to predict the ratings.

Fig. 4. RMSE for the different values of coratings

TABLE I. RMSE FOR THE DIFFERENT VALUES OF coratings

1 group 20 groups 50 groups 200 groups 500 groups 6040 groups

coratings=10% 1.0706 1.0402 1.0335 1.0265 1.0262 0.9120

coratings=15% 1.1086 1.0696 1.0611 1.0471 1.0428 0.9120

coratings=20% 1.1608 1.0948 1.0804 1.0672 1.0597 0.9120

coratings=25% 1.1612 1.1178 1.1011 1.0849 1.0775 0.9120

coratings=30% 1.1617 1.1417 1.1233 1.1039 1.0930 0.9120

Independent-samples t-tests have been conducted, to com-
pare the results for different values of coratings in each
clustering. All the tests returned that there is a significant
difference in the values obtained with different values of the
coratings parameter. The results obtained to compare the re-
sults obtained considering 10% and 15% of the group are now
presented. Considering 1 group, there is a significant difference
in the RMSE values for coratings = 10% (M = 1.070556,
SD = 0.00) and coratings = 15% (M = 1.108634,
SD = 0.00); t(7.85) = 20.26, p = 0.0. For 20 groups,
the difference is also significant when comparing the RMSE
values for coratings = 10% (M = 1.04019, SD = 0.00)
and coratings = 15% (M = 1.069618, SD = 0.00);
t(9.96) = 9.24, p = 0.0. The test conducted for 50 groups
returned a significant difference between coratings = 10%
(M = 1.033476, SD = 0.00) and coratings = 15%
(M = 1.06113, SD = 0.00); t(7.11) = 15.24, p = 0.0.
With 200 groups, the obtained results are coratings = 10%
(M = 1.026542, SD = 0.00) and coratings = 15%
(M = 1.047102, SD = 0.00); t(7.88) = 14.60, p = 0.0.
For 500 groups, there is a significant difference in the RMSE
values for coratings = 10% (M = 1.026246, SD = 0.00)
and coratings = 15% (M = 1.042848, SD = 0.00);
t(7.68) = 13.80, p = 0.0. The results suggest that lowering the
coratings value allows to substantially improve the results.
Specifically, these results suggest that the less ratings are
removed from the model, the better the algorithm predicts the
ratings for a group.

Setting parameter n. To predict a rating for the group, the
items most similar to the one currently predicted are selected.
In order to choose the number of neighbors, a parameter n
has to be set. Parameter coratings is set to 10%. Fig. 5 and
the underlying table, show the performances of the system for
different values of n, i.e., considering a different number of
similar items. In the results reported in the figure it is hard to
see the value that allows to obtain the best results, so Fig. 6
(that focuses on the part between 20 and 500 groups) shows
an improvement up to n = 20, then results worsen again.
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Fig. 5. RMSE for the different values of n

TABLE II. RMSE FOR THE DIFFERENT VALUES OF n

1 group 20 groups 50 groups 200 groups 500 groups 6040 groups

n=1 1.1171 1.0752 1.0648 1.0610 1.0694 0.9120

n=10 1.0706 1.0402 1.0335 1.0265 1.0262 0.9120

n=20 1.0705 1.0398 1.0327 1.0257 1.0249 0.9120

n=50 1.0722 1.0410 1.0334 1.0267 1.0256 0.9120

n=100 1.0732 1.0412 1.0341 1.0274 1.0265 0.9120

n=6040 1.0731 1.0413 1.0342 1.0275 1.0266 0.9120

RMSE values are very close; so, it is important to conduct
independent-samples t-tests to evaluate the difference between
the results. In particular, the tests conducted to compare 20
and 30 groups are reported. For 1 group, there is a difference
in the RMSE values for n = 20 (M = 1.070534, SD = 0.00)
and n = 30 (M = 1.07217, SD = 0.00); t(9.92) = 0.87, p =
0.41. Considering 20 groups, there is a difference in the results
obtained with n = 20 (M = 1.039798, SD = 0.00) and
n = 30 (M = 1.040968, SD = 0.00); t(7.17) = 0.40, p =
0.70. The test conducted for 50 groups returned a difference
between n = 20 (M = 1.03344, SD = 0.00) and n = 30
(M = 1.033898, SD = 0.00); t(7.36) = 0.49, p = 0.63. With
200 groups, there is a difference between the RMSE values
obtained with n = 20 (M = 1.026698, SD = 0.00) and n =
30 (M = 1.026764, SD = 0.00); t(7.31) = 0.74, p = 0.48.
For 500 groups, the test returned a difference between n = 20
(M = 1.02493, SD = 0.00) and n = 30 (M = 1.025626,
SD = 0.00); t(7.94) = 0.67, p = 0.52. The results of the
t-tests show that there is not enough confidence to reject the
null hipotesys that the values obtained for n = 20 and n = 30
are different. However, the results obtained with n = 20 are
always better in terms of RMSE and the t-tests returned that
the probability that there is a difference for n = 20 ranges
between 30% and 59%. So the value of n used is 20.

Fig. 6. Detail to study parameter n

2) Setting the Parameters of MergeRecommendations:
Here, the experiments conducted to set the two parameters
used by the system (i.e., neighbors and n) are presented.

Selection of the number of neighbors. In order to predict
a rating for a user, the users most similar to the one considered
are selected. In order to do so, the right number of neighbors
has to be selected when computing a prediction. This is
done with a parameter called neighbors, tested in this set
of experiments. Since we have to evaluate the number of
neighbors for an algorithm that predicts individual ratings, this
evaluation is done out of the group recommendation context.
Fig. 7 and the underlying table, show the RMSE values for
increasing values of neighbors. As highlighted in [18], this is
the common way to choose the value. Moreover, our results
reflect the trend described by the authors, i.e., for low values
of the parameter, great improvements can be noticed. As
expected, RMSE takes the form of a convex function (Fig. 8
shows a particular of Fig. 7), that indicates that after a certain
value improvement stops. In these experiments, that value is
100.

Fig. 7. RMSE for increasing number of neighbors

TABLE III. RMSE FOR INCREASING NUMBER OF neighbors

6040 groups

neighbors=1 1.3046

neighbors=10 0.9611

neighbors=50 0.9167

neighbors=100 0.9118

neighbors=200 0.9120

neighbors=300 0.9128

neighbors=6040 0.9160

Fig. 8. RMSE takes the form of a convex function.

Independent-samples t-tests, conducted to evaluate the dif-
ference between the results obtained between 100 and the
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other numbers of neighbors, are now presented. There is a
significant difference in the RMSE values for 1 neighbor
(M = 1.304622, SD = 0.00) and 100 neighbors (M =
0.911785, SD = 0.00); t(7.59) = 450.02, p = 0.00. There
is a also a significant difference in the RMSE values for 10
neighbors (M = 0.961122, SD = 0.00) and 100 neighbors
(M = 0.911785, SD = 0.00); t(7.41) = 54.44, p = 0.00.
A significant difference is also present in the RMSE values
for 50 neighbors (M = 0.916725, SD = 0.00) and 100
neighbors (M = 0.911785, SD = 0.00); t(7.97) = 6.02,
p = 0.00. The RMSE values present a difference for 100
neighbors (M = 0.911785, SD = 0.00) and 200 neighbors
(M = 0.911968, SD = 0.00); t(7.99) = 0.24, p = 0.82.
There is a also a difference in the RMSE values for 100
neighbors (M = 0.911785, SD = 0.00) and 300 neighbors
(M = 0.912803, SD = 0.00); t(7.97) = 1.06, p = 0.33.
There is a significant difference in the RMSE values for 100
neighbors (M = 0.911785, SD = 0.00) and 6040 neighbors
(M = 0.916022, SD = 0.03); t(7.99) = 1.27, p = 0.24.
For values of neighbors higher than 100, the probability that
there is a difference between the values obtained for 100
and 200 neighbors and 100 and 300 neighbors is between
18% and 67%. In particular, there seems to be no difference
between choosing 100 and 200 neighbors. Since it is faster to
compute predictions considering 100 neighbors instead of 200,
neighbors = 100 is the value chosen for the algorithm.

Choice of the top-n items. This set of experiments
evaluates how big the list of recommendations made for each
user (i.e., the top-n) has to be, by testing parameter n. Fig. 9
and the underlying table, show that the choice of the top-5
ratings brings to the best results.

Fig. 9. RMSE values for increasing values of top n ratings

TABLE IV. RMSE FOR THE DIFFERENT VALUES OF THE TOP n
RATINGS

1 group 20 groups 50 groups 200 groups 500 groups 6040 groups

Top 5 1.2667 1.2207 1.2075 1.1653 1.1461 0.9120

Top 10 1.2947 1.2437 1.2235 1.1762 1.1592 0.9120

Top 15 1.3092 1.2473 1.2262 1.1788 1.1562 0.9120

Independent-samples t-tests have been conducted, in order
to evaluate if there is a significant difference between the
values obtained for the different values of n and different
numbers of groups. Such a difference exists and the results of
the tests that compare n = 5 and n = 10 (i.e., the values that
obtained the most similar results) are now presented. Consid-
ering 1 group, there is a significant difference between n = 5
(M = 1.266718, SD = 0.00) and n = 10 (M = 1.294696,

SD = 0.00); t(7.74) = 3.39, p = 0.01. For 20 groups, there
is a difference between n = 5 (M = 1.220748, SD = 0.00)
and n = 10 (M = 1.243682, SD = 0.00); t(7.99) = 1.46,
p = 0.18. When 50 groups are considered, there is a difference
between n = 5 (M = 1.207548, SD = 0.00) and n = 10
(M = 1.223508, SD = 0.00); t(7.98) = 0.65, p = 0.53.
For 200 groups, there is also a difference between n = 5
(M = 1.16532, SD = 0.00) and n = 10 (M = 1.176224,
SD = 0.00); t(7.99) = 0.54, p = 0.60. With 500 groups, there
is a difference between n = 5 (M = 1.146128, SD = 0.00)
and n = 10 (M = 1.159176, SD = 0.00); t(7.45) = 0.65,
p = 0.54. Results show that when the number of groups
increases, the significance of the difference between the values
decreases. Since for n = 5 the results are always lower and
the highest probability that the values are not different is 40%,
the value was chosen for the system.

3) Setting the Parameters of PredictionsAggregation: Since
the algorithm used by PredictionsAggregation to predict
individual ratings is the same used by MergeRecommen-
dations and it was already tested, no experiments to set the
parameters have to be conducted. The system was run with
the previously tested value of the neighbors parameter, i.e.,
neighbors = 100 and results are shown in Fig. 10 and the
underlying table.

Fig. 10. RMSE values of PredictionsAggregation

TABLE V. RMSE VALUES OF PredictionsAggregation

1 group 20 groups 50 groups 200 groups 500 groups 6040 groups

RMSE 0.9895 0.9872 0.9857 0.9837 0.9832 0.9120

4) Selection of the best system: Fig. 11 and the underlying
table, report the results obtained by each system with its
best configuration. An aspect not previously deepened in the
previous experiments, is that for all the systems, as the number
of groups grows, the quality of the results improves. So as the
number of groups increases, the RMSE values get lower. This
means that the systems can have better performances when
more recommendations can be produced.
The results obtained by three approaches show how the pre-
diction tasks affects the quality of group recommendation.
MergeRecommendations, the system that merges individual
recommendations achieves the worst results. This is the sign
that with automatically detected groups, if the preferences
of a user are expressed just with a small subset of items
(in this case five), a group recommendation algorithm is
not able to properly satisfy users. The approach based on
a group model (i.e., ModelBased) lays in the middle of
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the figure. So, building predictions using a group model that
uses an average to calculate predictions does not allow to
capture the individual preferences and predict significant group
ratings. At the bottom of the figure, with the best results,
there is the system that merges individual preferences (i.e.,
PredictionsAggregation). This means that predicting the
ratings for each user and considering all the predictions in
the group models leads to great improvements in the qual-
ity of the results. Independent-samples t-tests confirm that
there is a significant difference between the RMSE values of
PredictionsAggregation and the ones obtained by the other
systems. Results of the tests are not presented to facilitate the
reading of the paper.

Fig. 11. RMSE obtained by the each system

TABLE VI. RMSE OBTAINED BY THE EACH SYSTEM

1 group 20 groups 50 groups 200 groups 500 groups 6040 groups

MB 1.0705 1.0398 1.0327 1.0257 1.0249 0.9120

MR 1.2667 1.2207 1.2075 1.1653 1.1461 0.9120

PA 0.9895 0.9872 0.9857 0.9837 0.9832 0.9120

V. CONCLUSIONS AND FUTURE WORK

This paper explored the ratings prediction task in group
recommendation scenario in which groups are automatically
detected. The experiments conducted allowed to achieve im-
portant contributions, now recapped.

• Exploring the ratings prediction task in this scenario
allowed to understand that the use of all the pre-
dictions built for each user allows to achieve better
results, with respect to the approaches that build
predictions for a group or use the individual recom-
mendations.

• Results improve as the number of groups grows.
Analyzing the performances for different numbers of
groups allowed to explore the trade-off between the
number of recommendations built and the accuracy of
the system.

Future work will focus on improving the cohesion of the
groups. This will be done by adding more information to the
input of the clustering algorithm, in order to detect groups with
more homogeneous preferences and to produce more accurate
group recommendations.
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