
Oracle NoSQL Database – Scalable, Transactional Key-value Store

Ashok Joshi, Sam Haradhvala, Charles Lamb
Oracle: Database Development

Burlington, MA 01803
ashok.joshi@oracle.com, sam.haradhvala@oracle.com, charles.lamb@oracle.com

Abstract - Oracle NoSQL Database is a highly scalable,
highly available key-value database, designed to address the
low latency data access needs of the "big data" space. Among
its unique features, Oracle NoSQL Database provides major
and minor keys, flexible durability and consistency policies,
and integration with both MapReduce infrastructure and
conventional relational data. Major and minor keys enable
transactional guarantees across multiple data records. Flexible
durability and consistency polices allow applications to trade
off durability, consistency, availability, and performance on a
per-operation basis. Integration with alternate data processing
and management systems provides a cohesive environment for
accommodating today's big data management needs.

Keywords-NoSQL; Big Data; Database systems.

I. INTRODUCTION
Simply put, big data is an informal term that

encompasses all sorts of data such as web logs, sensor data,
tweets, blogs, user reviews, SMS messages etc. It is
characterized by high volume (hundreds of terabytes or
more), high variety (e.g., no inherent structure, one row
“looks” very different from another) and high velocity
(hundreds of thousands of operations per second). It is
possible to derive valuable information (e.g., sentiment
analysis) by aggregating big data in some way, though, quite
often, an individual data row may or may not provide much
value or insight. The conventional wisdom is that it is cost-
prohibitive to manage and process big data using only
traditional relational database technologies.

Companies such as Google [1], [2], Amazon [3],
LinkedIn [4] and Facebook [5] have demonstrated that there
is significant business benefit in harnessing big data. They
have also made major contributions to the database
community in terms of algorithms and frameworks for
massive-scale distributed processing using commodity
processors.

This has resulted in a huge surge of interest in big data in
the information technology industry and commercial
community. The allure of increasing profitability, reducing
costs, being better “connected” with customers and
improving the business is too hard to ignore. However, for a
variety of reasons described below, only a small number of
organizations have been able to successfully leverage the
business value of big data.

The pioneers of big data processing employ armies of
super-smart developers to work on big data problems.
Commercial organizations have neither the budget nor the

ability to invest significantly in “deep” software
development projects. Big data are inherently unstructured
or semi-structured; this makes it difficult to process big data.
Finding the “nuggets of gold” in the vast amounts of
unstructured data requires specialized technologies and
expertise. Finally, in order to obtain the maximum benefit,
big data need to be combined with traditional structured data
(SQL data repositories).

In October 2011, Oracle announced a suite of products
and technologies aimed at providing a complete and
comprehensive solution to address the big data needs of the
market. A key piece of this technology stack is Oracle's
entrant into the NoSQL space, the Oracle NoSQL Database.

We begin with an overview of Oracle NoSQL Database.
This is followed by a description of important features
including major and minor keys, sharding and replication,
and consistency and durability policies that can be selected
on a per-operation basis. The next section discusses the role
and benefits of interactive big data processing. We present
some performance results that clearly demonstrate the
excellent throughput, response time and scalability of Oracle
NoSQL Database. Finally, we conclude the paper with our
view of the big data processing landscape and a short
description of the comprehensive hardware and software
technologies and solutions from Oracle, designed and
optimized to address the big data processing needs of the
market.

II. ORACLE NOSQL DATABASE
Big data processing falls into two major categories –

interactive data management and batch processing. The
Oracle NoSQL Database [6] is a scalable, highly available,
key-value store that can be used to acquire and manage vast
amounts of interactive information.

Oracle NoSQL Database uses Oracle Berkeley DB Java
Edition [7] as the underlying data storage engine, thus
leveraging all the performance and availability benefits that
it has to offer. Berkeley DB Java Edition is a mature product
that also provides many of the features and characteristics
that are necessary for a building a distributed key-value store
such as Oracle NoSQL Database.

Figure 1 illustrates the architecture of an Oracle NoSQL
Database deployment; in this example, there are two client
nodes and multiple server nodes for managing key-value
data. The system is designed to handle large numbers of
client nodes as well as servers.

75Copyright (c) IARIA, 2012. ISBN: 978-1-61208-227-1

IMMM 2012 : The Second International Conference on Advances in Information Mining and Management

Figure 1: Oracle NoSQL Database architecture.

A. Major Keys, Minor keys and values
Oracle NoSQL Database provides a key-value paradigm

to the application developer. Every entity (record) is a set of
key-value pairs. A key has multiple components, specified
as an ordered list. The major key identifies the entity and
consists of the leading components of the key. The
subsequent components are called minor keys. This
organization is similar to a directory path specification in a
file system (e.g., /Major/minor1/minor2/). The “value” part
of the key-value pair is simply an uninterpreted string of
bytes of arbitrary length.

This concept is best explained using an example.
Consider storing information about a person, John Smith,
who works at Oracle Headquarters, start date Jan 1, 2012 and
has a telephone number +1650-555-9999. The user’s Id
might be a logical choice for major key for the person entity
(for example, 123456789). Further, the ‘person’ entity might
contain personal information (such as the person’s telephone
number) and employment information (such as work location
and hire date). The application designer can associate a
minor key (e.g. personal_info) with the personal information
(+1-650-555-9999) and another minor key (e.g.
employment_info) with the employment information (Oracle
Headquarters, start date Jan 1, 2012).

Specifying the major key “123456789” would return
“John Smith”. Specifying “/123456789/personal_info” as the
key would access John Smith’s personal information;
similarly, “/123456789/employment_info” would be the key
to access the employment information. Leading components
of the key are always required. NoSQL Database internally
stores these as three separate key-value pairs; one for the
user_id, a second for user_id/personal_info and the third for
user_id/employment_info.

The API for manipulating key-value pairs is simple. The
user can insert a single key-value pair into the database using
a put operation. Given a key, the user can retrieve the key-
value pair using a get operation or delete it using a delete
operation. The get, put, and delete operations operate on
only a single (multi-component) key. NoSQL Database
provides additional APIs that allow the application to operate
on multiple key-value pairs within an entity (same major
key) in a single transaction.

The major key determines which shard the record will
belong to. All key-value pairs associated with the same entity
(same major key) are always stored on the same shard. This
implementation enables efficient, “single shard” access to
logically related subsets of the record. Figure 2 illustrates
the concept of major and minor keys.

Figure 2: Major and minor keys.

 Oracle NoSQL Database also provides an unordered
scan API that can be used to iterate through all the records in
the database; unordered scans do not have transaction
semantics, though only committed data will be returned to
the application.

B. Shards and Replicas
Oracle NoSQL Database is a client-server, sharded,

shared-nothing system. The data in each shard are replicated
on each of the nodes which comprise the shard. As discussed
earlier, Oracle NoSQL Database provides a simple key-value
paradigm to the application developer. The major key for a
record is hashed to identify the shard that the record belongs
to. Each key-value pair is always stored and managed within
a single shard. Oracle NoSQL Database is designed to
support changing the number of shards dynamically in
response to availability of additional hardware. If the
number of shards changes, key-value pairs are redistributed
across the new set of shards dynamically, without requiring a
system shutdown and restart.

Each shard is highly available. A shard is made up of a
single master node which can serve read and write requests,
and several replicas (usually two or more) which can serve
read requests. Replicas are kept up to date using streaming
replication. Each change on the master node is committed
locally to disk and also propagated to the replicas. If the
master node should fail, one of the surviving replicas is
automatically elected as a master and processing continues
uninterrupted. As soon as the failed node is repaired, it
rejoins the shard, is brought up to date and then becomes
available for processing read requests. Thus, the Oracle
NoSQL Database server can tolerate failures of nodes within
a shard and also multiple failures of nodes in distinct shards.
By proper placement of masters and replicas on server
hardware (racks and interconnect switches), Oracle NoSQL
Database achieves very high levels of availability on
commodity servers.

C. Consistency and Durability
Distributed systems need to address the notion of

consistency, since there is a lag between making a change on
one node and propagating the same change to another
replica. On the other hand, distributed systems can take

76Copyright (c) IARIA, 2012. ISBN: 978-1-61208-227-1

IMMM 2012 : The Second International Conference on Advances in Information Mining and Management

advantage of the multiple copies of data to alleviate the
“commit to disk” bottleneck. In particular, these systems can
consider a transaction as being committed after receiving
acknowledgements for the changed record from the replicas,
without waiting for the disk I/O to complete. NoSQL
Database supports the notions of variable consistency for
read operations and varying degrees of durability for update
operations. Further, NoSQL Database exposes these options
at the API level so that the application designer can make the
appropriate tradeoffs between performance and
consistency/durability on a per operation basis. Many other
systems with a similar architecture provide only a coarse
level of control over consistency and durability (e.g., system-
wide choice configured at system start-up); per-operation
consistency and durability enables a broad class of
applications by giving developers more control over the data.

There are several choices for read consistency. The
application can specify absolute consistency if it needs the
most recent version or can also specify time or LSN-based
(log sequence number) consistency for read operations.
Note that LSNs are not visible to the application directly;
rather, they manifest themselves as point-in-time version
handles. For example, an application might be willing to
tolerate reading data that is no more than one second out-of-
date. LSN-based consistency is useful in scenarios where the
application modifies a record at a certain LSN x and wants to
ensure that a subsequent read operation will read a version of
that same record that is at least as current as the change
identified by LSN x (it is okay to read a more recent
version). Finally, the application can also specify that it
doesn’t care how consistent the data are, for a particular read
request. Oracle NoSQL Database routes the request to the
appropriate node (master or one of the replicas) in the shard
based on the desired consistency.

In a shared everything architecture [8], making a
transaction durable requires that the data management
system commit the changes to disk (log) before
acknowledging the completion of the transaction. In a
distributed, master-replica architecture such as Oracle
NoSQL Database, the transaction must be made durable on
the master and also propagated to the replicas. This presents
some interesting opportunities and tradeoffs. For example,
the master node may choose to issue a lazy log write and
concurrently send commit messages to the replicas. This
strategy makes the transaction durable by “committing to the
network”, which is desirable if network latency is lower than
disk latency. The transaction can be considered as
committed if one or more replicas have received the changes
associated with a transaction. The lowest latency choice is to
issue a lazy log write at the master, concurrently send non-
blocking commit messages to the replicas, and acknowledge
the completion of the transaction. For additional assurance
of durability, the system may choose to wait for
acknowledgement messages from the replicas. Several other
variants of this strategy are possible.

Transaction durability is thus determined by a
combination of log write at the master node, log writes at the
replicas, sending transaction commit messages to the replicas
and receiving commit message acknowledgements from the

replicas. Further, the system can decide whether to wait for
acknowledgements from a majority of the replicas or all
replicas. Of course, each legitimate combination of these
options also influences performance and availability. For
example, “write to local disk, write to replica disk, wait for
acknowledgements from every replica” provides the highest
level of durability but is also expensive in terms of latency
and throughput.

Figure 3 illustrates the durability and consistency options
that are available in Oracle NoSQL Database. NoSQL
Database allows the user to choose the durability policy on a
per operation basis. NoSQL Database uses this information
during commit processing in order to achieve the best
performance while honoring the durability requirements of
the operation.

Figure 3: Durability and Consistency.

D. Interactive Big Data Processing
Oracle NoSQL Database has been designed for

applications that need fast, predictable, low latency access to
vast amounts of data. Let us examine how Oracle NoSQL
Database benefits such applications by considering a typical
E-commerce environment. Such systems manage vast
numbers of user profiles and have stringent response time
requirements. Whenever a user visits the site, the retailer
provides a personalized experience based on the user’s
profile. If no such profile exists, the site must create one.
These user profiles will change over time as the retailer
learns more about the users through interactions. Different
user profiles may contain radically different information and
the retailer may decide to collect new information at any
time. Oracle NoSQL Database addresses this use case by
virtue of its flexible key-value paradigm and scales to meet
increasing customer demand. Figure 4 illustrates some
performance data [9] for Oracle NoSQL Database using
Yahoo Cloud Serving Benchmark [10]. The graph on the
left illustrates scalable write performance while the graph on
the right illustrates scalable performance for a mixed read
and update workload.

77Copyright (c) IARIA, 2012. ISBN: 978-1-61208-227-1

IMMM 2012 : The Second International Conference on Advances in Information Mining and Management

Figure 4: Performance on YCSB.

E. Big Data: The Big Picture
Oracle recognized early on that in order to derive

maximum benefit from big data, it is necessary to combine
and process unstructured and semi-structured content
together with structured data. Business-critical information is
primarily stored in relational database repositories. This
information can be augmented with information from
unstructured content in order to obtain business insights that
can be gained only by combining structured and unstructured
data. For example, sales forecast information is typically
stored in relational repositories. By combining sales forecast
information with big data content such as political trends,
weather predictions, etc., it is possible to improve the
accuracy of the sales forecasts.

Relational database systems have sophisticated
algorithms for data warehousing, analysis and reporting.
These algorithms typically work well with structured (row
and column) data. There is also a wide array of products,
tools and services available to analyze relational data,
generate business intelligence and drive decisions. These
tools and processes form the cornerstone of business data
processing and analysis today.

In comparison, the tools available for processing big data
(unstructured data) are relatively scarce and immature.
However, it is possible to transform unstructured content into
structured (row and column) format so that it becomes
available for processing with data warehousing and business
intelligence technologies. During this transformation
process, one can also aggregate and cleanse the data to
reduce the volume and increase information density of the
content.

Oracle recently introduced a suite of complementary
technologies to manage and process big data and also
combine big data with traditional data warehousing and data
analysis technologies for maximum business benefit [11].
Oracle NoSQL Database provides the interactive big data
management component of this integrated solution. Oracle
has adopted Cloudera’s distribution of Apache Hadoop [12]
in order to provide MapReduce capabilities and the open
source distribution of R [13] for advanced analytics. Oracle
Big Data Connectors, a separately licensed product, provides
a high-performance Hadoop to Oracle Database integration
solution. Oracle database and Oracle Business Intelligence

tools provide the data warehousing, mining and analysis
capabilities.

Oracle’s approach to big data is unique for three reasons:
it leverages the existing investments in data management and
processing, seamlessly brings the benefits of big data to the
enterprise, and finally, provides a commercial-grade,
comprehensive solution to process and leverage all the data
in the enterprise.

Oracle has gone a step further and also delivered the Big
Data Appliance [14] that delivers software and hardware
packaged together into an optimized platform that simplifies
the management, analysis and mining of all the data in an
enterprise.

ACKNOWLEDGMENT
Margo Seltzer, Alan Bram, Dave Segleau and Marie-

Anne Neimat provided valuable feedback on earlier drafts of
this paper.

We are very grateful to the Oracle Labs team and Jeffrey
Alexander, in particular, for their help and advice on the
architecture and design of Oracle NoSQL Database.

We are very grateful to Cisco and Raghu Nambiar in
particular, for partnering with us to run the benchmarks on
Cisco UCS.

REFERENCES
[1] http://research.google.com/archive/bigtable.html [retrieved:

Oct, 2012]
[2] http://research.google.com/archive/mapreduce.html [retrieved:

Oct, 2012]
[3] http://www.allthingsdistributed.com/files/amazon-dynamo-

sosp2007.pdf [retrieved: Oct, 2012]
[4] http://project-voldemort.com/ [retrieved: Oct, 2012]
[5] http://en.wikipedia.org/wiki/Apache_Cassandra [retrieved: Oct,

2012]
[6]Oracle NoSQL Database Documentation:

http://www.oracle.com/technetwork/products/nosqldb/overview/i
ndex.html [retrieved: Oct, 2012]

[7] Oracle Berkeley DB Java Edition documentation:
http://www.oracle.com/technetwork/products/berkeleydb/docum
entation/index.html [retrieved: Oct, 2012]

[8] Anupam Bhide: An Analysis of Three Transaction Processing
Architectures. VLDB 1988: 339-350

[9] Ashok Joshi, Raghunath Nambiar: Cisco UCS Ecosystem for
Oracle: Extend Support to Big Data and Oracle NoSQL
Database:
http://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns
224/ns944/le_34301_wp.PDF [retrieved: Oct, 2012]

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan and Russell Sears.
http://research.yahoo.com/node/3202 [retrieved: Oct, 2012]

[11] http://www.oracle.com/us/technologies/big-data/index.html
[retrieved: Oct, 2012]

[12] http://www.cloudera.com/ [retrieved: Oct, 2012]
[13] http://www.r-project.org/ [retrieved: Oct, 2012]
[14] http://www.oracle.com/us/products/database/big-data-

appliance/overview/index.htm [retrieved: Oct, 2012

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-227-1

IMMM 2012 : The Second International Conference on Advances in Information Mining and Management

