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Abstract—When, in cellular networks like Long Term Evolution
(LTE), there is a dense deployment of cells and/or users move at
high velocities, handovers will occur frequently. This will have a
severe impact on the Quality-of-Service (QoS) experienced by the
users as there will be frequent call drops and a low throughput
due to a service interruption time that is relatively long compared
to the cell stay time. In order to mitigate these problems, users
that experience a so called high mobility should be steered appro-
priately (e.g., to a cell on which they can be camped for a longer
time). The first prerequisite for steering users that experience
high mobility is identifying these users and predicting their future
behaviour. In this paper, we present an algorithm that identifies
users that follow similar trajectories through a cell. To perform
this identification, a modified version of the Dynamic Time Warp-
ing (DTW) algorithm is used. Results show that the developed
algorithm is able to detect users which follow similar trajectories
adequately and is also able to distinguish between users that follow
different trajectories through a cell.

Keywords—High Mobility; Dynamic Time Warping; Traffic Steer-
ing; Handover; LTE

I. INTRODUCTION

In this paper, we focus on high mobility users in LTE
networks, i.e., users that tend to make frequent handovers and
for which the average amount of time they stay in a cell (time-
of-stay) is low (order of magnitude of 10 seconds). For such
users there will be a noticeable impact on user and network
performance. This impact may be seen in a reduced QoS experi-
enced by the users with high mobility due to a long data outage
period relative to the cell stay time, an increased number of call
drops and an increased signalling overhead in the core network
due to handover signalling. The velocity of a user and the path it
follows through a cell are the key factors that determine whether
a user is subject to high mobility. Short time-of-stay can occur
in two real-life situations: (1) when cell sizes are so small that
even users with a low velocity perform frequent handovers and
(2) when users move at a high velocity. In both situations,
handovers will occur frequently and the time between entering
a cell and leaving it will be small. Situation 1 might occur
when there is a dense deployment of small cells, for instance
in a shopping street/mall where users move at a low pace (for
instance pedestrians). The cell inter-site distances in this case
will be rather low (10-30 m) as will be the speed at which the
users are travelling (2-3 km/h). Situation 2 might occur in macro
cells along a busy highway or high-speed railroad: although the
cells themselves are relatively large, the high pace of the users
will cause cell stay times to be low. There do not necessarily
have to be many cells involved, the aforementioned situations
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might also occur in isolated cases with only a few cells that
have users with high mobility.

In this paper, a Self-Organising Network (SON) function [1]
that aims at optimising the handover behaviour of high mobility
users is presented, called the High Mobility SON function. The
goal of this SON function is to classify users according to their
mobility behaviour and, based on this classification, steer them
in an appropriate way such that the handover rate is reduced
while the QoS is maintained or possibly improved. The focus
of this paper is on the design and evaluation of a method to
classify users according to the trajectory they follow through a
cell. By assuming that users that follow similar trajectories (i.e.,
similar geographical paths at similar velocities) through a cell
will have similar behaviour regarding mobility and handovers,
the future behaviour of a user can be predicted based on ob-
servations made from past users that had similar trajectories.
These predictions can then at a later stage be used to decide
which handovers are useful and which are not and to decide
what the best destination cell for a handover is such that the
amount of handovers can be reduced by avoiding unnecessary
and suboptimal handovers.

The remainder of this paper is structured as follows: Sec-
tion II gives an overview of work that is related to the topic
of this paper. Section III describes the general architecture of
the SON function that we designed to find users that have high
mobility and to steer them such that the negative effects of the
frequent handovers are mitigated. The specific component of
the SON function that is the focus of this paper, the Trajec-
tory Classifier, will use standardised measurements; these are
explained in Section IV. Section V describes the classical DTW
algorithm and the modifications that were made to it in order
for it to be able to identify users that follow similar trajectory
through a cell. Section VI describes the simulation studies that
were performed in order to assess the ability of the algorithm
to classify users based on their trajectories. Finally, Section VII
concludes this paper and lists the future work.

II. RELATED WORK

Dynamic Time Warping is a well-known technique for
finding similarities in time-series. It finds the most optimal
alignment between two time series and is able to deal with
slight variations in time and speeds. It is often used in automatic
speech recognition for finding patterns, furthermore it is also
used in speaker recognition and signature recognition [2][3].
DTW is more robust than more simple techniques like the
Euclidean distance as DTW is able to deal with slight variations
in the input like accelerations and decelerations.
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Traffic steering is a technique whereby mobile users are
intelligently steered towards certain base stations. It can be
applied for various reasons like improving QoS, balancing the
load among different base stations, satisfying certain capability
needs, etc. Traffic steering can be performed between similar
cells, between different layers of the same technology [4] or
even between different technologies [5][6][7]. In this paper, we
will consider steering users between cells of the same technol-
ogy, namely LTE. The algorithms that are introduced in this
paper could however be extended to other cellular technologies
as well.

Also in [8][9][10], the problem of high mobility is consid-
ered. Fei and Fan [8] describe two position-assisted handover
schemes: one that aims to reduce the handover delay and
one that aims to reduce the handover frequency and improve
the handover success rate. Both schemes do however rely on
the geographical locations of the users, which are not always
known. The goal of the schemes is also not targeted at users with
high mobility, but instead to high velocity users. Papathanasiou
et al. [9], and Cheng and Fang [10] are concerned with apply-
ing scanning narrow beams to LTE networks that contain fast
moving mobiles.

III. GENERAL ARCHITECTURE

The general architecture of the proposed High Mobility
SON function is shown in Figure 1. It consists of a number
of components, which are described below. The Trajectory
Classifier is the core of the SON function. It is responsible
for classifying users according to the trajectory that they follow
through a cell. Users that follow similar trajectories than other
past users will be identified by it. This information can then be
used to predict the future behaviour of currently active users.
This component plays an important role in the SON function
and will be the focus of this paper.

The set of trajectories that are available to the Trajectory
Classifier to map an active user on is determined by the Trajec-
tory Identifier. This component decides which trajectories are
distinct and useful enough to be considered for matching users
to by the Trajectory Classifier.

The Mobility Classifier is responsible for determining the
mobility type of the users. The mobility type of a user can
for instance be vehicular user, pedestrian, stationary user, etc.
Knowing what the mobility type of the users is, is important
for knowing how they will behave in the future. Pedestrians
might for instance regularly stop or go slower or faster in an
unpredictable way while vehicular users will more likely move
at a predictable pace, only stopping at intersections and traffic
lights.

Finally, the Traffic Steerer is responsible for the actual
decision of when and to which target cell the user should be
handed over. Based on the trajectory on which an active user
has been mapped and its mobility type the Traffic Steerer will
estimate when certain events like call drops, the throughput or
some other QoS Key Performance Indicator (KPI) becoming
too low, etc. will occur; and which action should be taken and at
what time in order to steer the users as appropriate as possible.

The decisions that are taken by the Traffic Steerer are
communicated to the Handover algorithm. This algorithm is
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Figure 1. The general architecture of the proposed High Mobility SON function

responsible for performing the actual handovers. Apart from
executing the commands coming from the Traffic Steerer, the

Handover (HO) algorithm is also is responsible for handing over
users for which the SON function did not provide instructions
as the SON function will only deal with these users for which it
sees an opportunity to optimise the handover behaviour.

Typically, a SON function will be part of a larger SON
management framework like for example the SEMAFOUR
integrated SON management framework [11]. This framework
integrates existing and future SON functions across several
radio access technologies and is in charge of functions like pol-
icy transformation/supervision and conflict detection/resolution
among multiple SON functions.

The High Mobility SON function will be placed at the
eNodeB and will operate on a per-cell level. This allows the
SON function to be gradually deployed in the network and
makes it scalable.

IV. MEASUREMENT REPORTS

As mentioned before, the Trajectory Classifier is the compo-
nent of the SON function that is responsible for classifying users
based on the trajectory they follow through a cell. It performs a
key role in the SON function as it provides information that
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serves as input for most of the other components. In order
to distinguish between users that follow similar trajectories
and other users we need some kind of measurements that are
made by the User Equipment (UE) and sent to its Serving
eNodeB (SeNB), which can then use them. It is important that
these measurements are sent sufficiently frequent in order for
the Trajectory Classifier to make actual decisions; furthermore
they must allow distinguishing between users that travel along
different trajectories through a cell. The measurement reports
that will be used by our algorithm are the measurement reports a
UE sends to its SeNB as part of the LTE handover process. Both
these measurement reports as well as the measurement report
triggering have been standardised [12]. Active users monitor
the Reference Signal Received Power (RSRP) and/or Reference
Signal Received Quality (RSRQ) of their SeNB and its sur-
rounding Neighbouring eNodeBs (NeNBs). Whenever a certain
condition involving the RSRP/RSRQ holds and sometimes also
when it no longer holds, the UE sends a measurement report to
its SeNB containing the list of NeNBs for which the condition
(still) holds at that time as well as the RSRP/RSRQ measured
for the SeNB and the NeNBs in the list. The triggering of mea-
surement reports at the UE is configured by the SeNB. There are
a number of possible event types that can be configured, named
event Al through A6. All these events specify an entering and
leaving condition. These conditions are equations that involve
the RSRP/RSRQ of the SeNB and/or the NeNB; and/or event-
specific thresholds. In order to prevent measurement reports
from being triggered too often due to small fluctuations in
the RSRP/RSRQ measurements, the triggering conditions also
specify a hysteresis value that specifies an extra offset that is
added to the equation. Furthermore, the conditions also have to
hold for a certain amount of time called the Time-to-Trigger
(TTT) before the events are fired. The event-specific thresholds,
hysteresis and TTT of an event can all be specified for each
individual event that is configured at the UE. In this paper,
event A4 is exclusively used as it provides information about
the RSRPs of the NeNBs in comparison to a fixed threshold.
The other events provide information about the RSRPs relative
to the SeNB or about the SeNB itself, which is less usable
as the information is more volatile or less exhaustive. An A4
event is triggered when the RSRP/RSRQ of a user becomes
better than a certain threshold. By configuring a number of
these events the SeNB of a UE will at every point in time
know the signal levels of its NeNBs that are observed by the
UE within an upper and a lower bound, because whenever the
observed RSRP/RSRQ of a NeNB changes and crosses one of
the thresholds an update is sent to the SeNB. As multiple events
are often triggered at the same time, because of sudden changes
in the RSRP/RSRQ, events that occur within a short amount of
time (< 0.03 s) are aggregated into a single measurement. This
results in a time series where every element represents an update
of the RSRP/RSRQ level of the NeNBs. Using this information
users will be classified based on their trajectory. The rationale
behind this approach is that users that pass through the same
parts of a cell will measure similar signal strengths from the
same surrounding eNodeBs.

In the following section, the algorithm that matches users
that follow similar trajectories based on the collected measure-
ments is presented.
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V. DyNAMIC TIME WARPING

The key to handing over users to the most suited target cell
is being able to identify users that follow similar trajectories and
to distinguish between users that follow different trajectories.

Measurements that are sent by users can slightly differ due
to slight deviations in the trajectory that is followed, slightly
different user velocities, time variations in fading, etc. Because
of this, it is not just possible to compare the measurements of
both the active and reference users by looking for, for instance,
the longest common sub-string. In order to make this matching
more resilient against slight variations in the measurement data,
a modified version of the DTW algorithm is used.

A. Classical Dynamic Time Warping

The DTW algorithm [2] is used in signal processing to find
an optimal alignment between two time series (like the measure-
ments coming from the users). Dynamic Time Warping deter-

mines the distance between two time series X = (z1,...,2)
and Y = (y1,...,yn) by determining the so called optimal
warping path through the cost matrix C € RM*N whose

elements C,, , express the distance c(z,,y,) between the
elements x,, and y, of the respective series. A warping path
through this cost matrix is a series p = (p1,...,pr) with
m = (my,mn) € {1,...,M} x {1,..., N}, satisfying the
restrictions that p1 = (1,1), pr, = (M, N) and p; = (my, n;)
forl € {2,...,L} can only be reached from p;_; € {(m; —
1,m), (my,ng — 1), (my — 1,n; — 1)}, i.e., a warping path is
a path through the cost matrix that starts at (1,1) and goes
to (M, N) by either increasing the row index, increasing the
column index or increasing both at the same time. The cost
or distance of a warping path is given by the total cost of the
elements along the path:

> c(@my Yn,) (1)

=1

The optimal warping path is the warping path that has the lowest
total cost of all possible warping paths. The optimal warping
path can be efficiently determined by constructing an M x N
matrix D in which each element (m,n) contains the minimal
total cost to match the prefix of length m of X with the prefix of
length n of Y. Each element (m, n) of this matrix (except from
the ones on the first row and column) is calculated by adding
the cost ¢(@m,, Yr ) to the minimum of D[m — 1, n], D[m,n—1]
and D[m — 1,n — 1]. The values of the elements of the first
row and column are calculated by adding the cost to the value
of the elements to the left or above respectively. Pseudocode
for the dynamic time warping algorithm is given in Figure 2. In
this code, an additional row and column are added to the matrix
D. The elements in the first row and column of this matrix are
initialised to infinity, except for the element in the upper left
corner which is set to 0. By doing this, the elements in the
remainder of the matrix can all be treated the same.

B. Modified Dynamic Time Warping

The major shortcoming of the classical DTW algorithm for
our purpose is that it matches two time series entirely. This
is however not desirable. First, the more recent past of the
active user is more interesting as its behaviour in the future
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D := array[0..M,0..N]
DI[0,0] :=0
form:=1— M do
D[m,0] := 0o
end for
forn:=1— N do
D0, n] := o0
end for
form:=1— M do
10: forn:=1— N do
11: D[m,n] := ¢(X[m],Y[n]) + min(
12: D[m —1,n],
13: Dim,n — 1],
14: Dm—1,n—-1])
15: end for
16: end for

R AN A e

Figure 2. The classical Dynamic Time Warping algorithm.

will be influenced more by this than by its earlier behaviour.
Furthermore, it should be possible to match an active user with
areference user without having to match the latest measurement
of the active user with the last reference measurement as this
usually is when the reference user left the cell and we want to
be able to proactively make decisions before the active user also
leaves the cell.

In order to do so, the DTW algorithm is adapted as follows:
the matrix that is used to calculate the intermediate distances
is filled backwards, i.e., the DTW algorithm is applied to the
reverse series. By doing this each element of the matrix contains
the minimal total cost, when only matching the suffixes of both
measurement series up to that point. During construction of the
matrix, a current best match is kept and updated each time the
value of an element is calculated. By doing this, by the time the
upper left corner of the matrix (the element that corresponds to
the first elements in both series) is reached the best matching
suffixes of the measurement series of the active and reference
user has been found.

In order to match a suffix of the measurement series of the
active user with any interval of the measurements of the refer-
ence user, the end of the measurement series of the active user
is shifted along the elements of the measurement series of the
reference user. The Modified Dynamic Time Warping (MDTW)
algorithm is applied to the entire active series and the sub-series
of the reference user starting from the first measurement up to
the measurement that is aligned with the end of the measure-
ment series of the active user, as is illustrated in Figure 3. As
the MDTW algorithm is able to find matches of sub-series of
different lengths, it is important that the length of the warping
path is taken into account when determining the optimal warp-
ing paths. In order to do this, costs will be represented using
tuples (v, w). The component v represents the value of the cost
and is a value between 0 and 1. When v has value O this means
that there is an exact match between two measurements. When
v has value 1 this means that two measurements are completely
different. The component w represents the importance or weight
of the value. The exact meaning of the importance depends on
how the cost between measurements is defined, but as a general
rule the weight should be higher when the cost is based on more
information, for instance a longer warping path. Two operations
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Figure 3. A suffix of the active trace is matched with an interval of the reference
trace

are needed by the dynamic time warping algorithm: the addition
of costs and the comparison of costs. The addition of two costs
is defined as follows:

V1W1 + Vaw2

,wy +w 2
—— 1 2) @)

(v1,w1) + (v2,w2) = (
As can be seen from (2), the value of the sum is equal to the
weighed average of both addends while the weight of the sum
is equal to the sum of the weights. Two costs are compared by
ignoring the weights and just comparing their values:

(vl,wl) < (’Ug,’wg) < U1 < Vg 3)

Due to the way that addition is implemented, tuples will be
compared based on the average cost of the elements along the
warping path.

Considering every possible suffix of both series has a disad-
vantage: shorter suffixes will be favoured over longer suffixes
as it is more likely to find a short perfect match than it is to find
a longer one. In order to mitigate this problem, the initial cost
is set to (1,x) with x > 0. Since after a series of additions,
the resulting value of the tuple is the weighted mean of all
added values, the importance of this initial cost will become
less important as more values are added to it. By using a tuple
with non-zero weight as the initial cost, longer matches will be
favoured over shorter matches. Note that adding (v, w) to (1,0),
i.e., x = 0, will result in (v, w) removing the influence of the
initial cost altogether.

Another problem that arises when allowing the algorithm to
match every combination of suffixes is that the cost matrix can
be traversed mainly horizontally or vertically, as this produces
warping paths of the same length as going diagonally. Going
mainly vertically or horizontally is however less favourable as
this will match shorter portions of either one of the compared
traces for the same length of warping path. This is not a problem
with the classical DTW algorithm as it matches the entire series.
In order to mitigate this problem an additional cost can be added
when traversing the cost matrix in the vertical or horizontal
directions, but not when going diagonally. This will ‘encourage’
the algorithm to match longer portions of both series. Like the
initial cost, this additional cost will have the form (1, z) with
x > 0. Pseudocode for this is given in (4).

Dl[i, j] := ¢+ min (D[i — 1, j] + extraCost,
Dli, j — 1] + extraCost,
Dli—1,j-1]) @)
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1: bestMatch := None

2: bestDistance := oo

3: for start :== 1 — mdo

4: distances := array[l..start + 1, 1..n + 1]

5: for ¢ := 1 — start do

6 distances[i,n + 1] := oo

7 end for

8 for j:=1—>ndo

9: distances[start + 1, j] := oo

10: end for

11: distances[start + 1,n + 1] := initialCost
12: for ¢ := start — 1 do

13: for j :=n — 1do

14: cost := calculateDistance(

15: referenceMeasurements|i],

16: activeMeasurements|j])

17: distances[i, j] := cost + min(

18: distances[i + 1, j] + extraCost,
19: distances[i, j + 1] + extraCost,
20: distances[i + 1,5 + 1])

21: if distances[i, j] < bestDistance then
22: bestMatch := (start, 4, j)

23: bestDistance := distances][i, j]
24: end if
25: end for

26: end for

27: end for

Figure 4. The modified Dynamic Time Warping algorithm

The pseudocode for the MDTW algorithm is given in Fig-
ure 4. Note from this code that the MDTW algorithm will
always return a match, together with the distance of that match.

VI. EVALUATION

In order to assess the ability of the MDTW algorithm
to identify users that follow similar trajectories and to dis-
tinguish between users that follow different trajectories, sim-
ulations were performed using a simulator that is based on
the OMNeT++ simulation library [13]. In these simulations, a
user moves around producing reference traces. Afterwards, the
user starts to produce active traces, which are then matched
to the reference traces. Each active trace is compared to all
reference traces and the reference trace for which the MDTW
algorithm finds the match with the lowest ‘bestDistance’ is
considered as the reference trace to which the active trace is
matched. The accuracy of this match will be assessed using a
performance metric (explained in Section VI-B), which is based
on the geographical locations that are visited by the user. These
geographical locations are collected during the simulations
specifically for the purpose of being able to assess the accuracy
of the matches made. In reality these geographical locations
will not necessarily be available; therefore it is important that it
is possible to specify criteria based on known information that
determine whether a match made by the MDTW algorithm can
be trusted or not.

A. Simulation Setup

The simulation area is a rectangle measuring 1732 by 2000
metres featuring wrap-around. It contains 16 three-sectored
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cells with directed antennas, placed at regular distances, as is
depicted in Figure 5. Pathloss calculations are performed using
the Okumura-Hata model for large urban areas. Furthermore,
shadow fading that is both auto-correlated in time and cross
correlated with the shadow fading of other antennas is consid-
ered [14]. Two different scenarios are considered. The goal of
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Figure 5. Overview of the simulation area

the first scenario is to assess whether the MDTW algorithm
is actually able to find good matches in case it is a certainty
that good matches exist. In this scenario a single user follows a
rectangular path through the simulation area, passing through
the same locations multiple times. The path that is followed
by the user is the path between the points A, B, C' and D in
Figure 5. The simulations consist of two phases: in the first
phase reference traces are collected and stored by the different
SeNBs the user is connected to. After a certain amount of time
(10000 s), the second phase starts. In this phase, the SeNBs start
to match the measurements that are generated by the active user
with reference traces from the past. These simulations are car-
ried out a number of times. Each time with a different interval
from which the user chooses its velocity. The user chooses a
different velocity at each corner of its rectangular path. These
intervals are [5 — § m/s;5 4 § m/s] withi € {0,1,2,3,4,5}.
By doing this, also the ability of the MDTW algorithm to deal
with slight variations in the velocity of the users can be assessed.

In the second scenario, the user no longer moves along a
fixed path. Instead, it moves from point to point (the black
points in Figure 5) in a rectangular grid of points that are equally
distributed across the simulation area, i.e., so-called Manhattan
mobility [15]. Each time a user reaches a point, it randomly
chooses to go either left, right or forward with the probability of
going forward being twice as large as the probability of going
either left or right. It then travels along the chosen direction
with a velocity that is chosen from a certain velocity interval.
Similar as in the first scenario this interval is different between
simulations. Furthermore, the user not just travels between the
the grid points, but instead the points it travels between are
chosen uniformly within a circle centred around the grid points.
The radius r of this circle is either O m, 1 m, 5 m or 10 m.
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When the radius is O m the user travels directly between the
grid points.

Nineteen different A4 events were configured. Their thresh-
olds range from -100 dBm to -10 dBm in steps of 5 dB. The
hysteresis of all these events is set to 2 dB and the TTT to
480 ms. The ‘initialCost’ and ‘extraCost’ parameters of the
MDTW algorithm are set to 0.1 and 0.01 respectively.

An overview of the simulation parameters is given in Table I.

Table 1. OVERVIEW OF THE SIMULATION PARAMETERS

Parameter Value
Simulation area 1732 x 2000 m
Pathloss model Okumura-Hata (large urban)

User height 1.8 m
Base station height 30 m
Site-to-site distance 500 m
Carrier frequency 2.6 GHz
Antenna model NGMN [16]
Number of sectors 48
Mean user velocity 5m/s
Event A4 hysteresis 2dB
Event A4 time-to-trigger 480 ms
Simulation duration 20000 s
Initial cost (initialCost) 0.1
Extra cost (extraCost) 0.01

B. Performance Metric

In order to assess whether the matches that are made by
the MDTW algorithm are accurate, a metric is needed that
assigns an accuracy to the matches. The accuracy metric should
reflect how well the algorithm is able to identify the part of the
trajectory where the reference and active user followed a similar
geographical path at a similar velocity through the cell. It is
important that this metric takes into account both the part of the
trajectory that was matched by the algorithm, but that does not
overlap in reality and the part that does overlap in reality but was
not matched by the algorithm, as it is important that the MDTW
algorithm is able to identify the exact part of the trajectory that
overlaps.

As described in Section VI-A, the users move through the
simulation area along certain paths. For each match that is
made, the portion of the paths of the active and reference users
that overlap geographically is determined. In case there is no
geographical overlap, the accuracy metric will be set equal to 0.
From this overlapping part, the start and end times at which the
active user visited the overlapping part are determined. Suppose
0, is the time on which the active user enters the overlapping
part and o, the time on which it leaves it. Similarly, m  and m,
are the respective begin and end times of the match made by the
MDTW algorithm. The accuracy metric is then given by (5).

max (0, min(oe, me) — max(os, ms))

Accuracy = - (5)
max(0e, me) — min(os, ms)

This formula will yield O when the interval of which the MDTW
decided that the users followed the same trajectory and the
interval corresponding to the geographical overlapping parts
are completely disjoint and 1 when they are exactly the same,
i.e., there is a perfect match. An illustration of this is given in
Figure 6. In this figure, the accuracy metric is the ratio of the
common part of both intervals (the part between mg and o)
and the width between the leftmost and rightmost ends of the
intervals (the part between o, and m.).

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-347-6

Mg Me

Os Oe

Figure 6. The accuracy metric is calculated as the ratio between the length of
the interval [m; oe] and the length of the interval [os; me]

C. Results

Figure 7 shows the results obtained with the first scenario.
The x-axis contains the number of active measurements on
which the match is based. The y-axis contains the average
accuracy of all matches with the corresponding number of
measurements on the x-axis. The different curves are for the
different velocity intervals. As it can be seen in this figure, in
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Figure 7. The accuracy metric approaches 1 (perfect match) as the number of
measurements on which the match is based increases

case it should be possible to find accurate matches (i = 0,
velocity interval [5 m/s;5 m/s]) the accuracy of the matches
becomes high (> 0.9) when the matches are based on 5 or
more measurements. These matches are not necessarily perfect,
which is due to small deviations on when measurements are
generated.

When the velocity interval becomes larger, the accuracy
of the MDTW algorithm becomes slightly worse. This is to
be expected as different velocities will cause measurements to
be triggered on different locations, which will make it more
difficult for the MDTW algorithm to make accurate matches.
The obtained results are, however, still very good and accurate
enough to make predictions. Note that when the differences in
velocity would become even more pronounced it is no longer
desired that good matches are made as users with pronounced
different velocities should be treated differently anyway.

The results of scenario 1 show that, in case it is certain that
good matches exist (because of how the scenario is constructed),
these are found by the algorithm, except if they are based on too
few measurements.

Figure 8 and Figure 9 show the results obtained with the
second scenario. Note that in this scenario good matches will
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not necessarily exist, because it is possible that the active
user follows a path that is different from all earlier collected
reference paths. On the y-axis of Figure 8 and Figure 9, again,
the accuracy of the matches is shown. The x-axis now contains
the score that is associated with the matches by the MDTW
algorithm (i.e., the value of the lowest ‘bestDistance’). In these
figures, results for matches based on less than 10 measurements
have been left out. Figure 8 shows the results obtained with

T T T
1=0 |
i=1 e
=2 e 7
5 =2 1
8 =4 i
5
3) =5 - i
o
< _
/\/\ R b\\_ . \
0.05 0.1 0.15 0.2
Match Score
Figure 8. The MDTW algorithm is able to assign low scores to accurate

matches and higher scores to inaccurate matches for different velocity intervals

r = 0 (i.e., the user travels directly between the grid points of
the scenario), for different velocity intervals. This figure shows
that there is a strong correspondence between the score that is
assigned to a match by the MDTW algorithm and the actual
accuracy. Furthermore, there is a clear drop of the match score
around 0.03. This drop occurs around the same value for all
curves, which means that it is independent from the velocity of
the users.

Figure 9 shows the results obtained with ¢ = 0 (i.e., the
user always travels at a fixed velocity of 5 m/s) but for different
radiuses r around the grid points of the Manhattan mobility
model. The result is similar as for Figure 8; when the score
that is assigned by the MDTW algorithm is low, the accuracy
of the match is high and it decreases steeply around a match
score of about 0.03. From the results obtained with scenario 2
it is clear that the match score of the MDTW algorithm reflects
the accuracy of the matches made: if the accuracy of the match
is high (i.e., a match we want to trust) then the match score is
low (below 0.03). The match score together with the number
of measurements on which the match is based can thus be used
as criteria that determine whether a match made by the MDTW
algorithm can be trusted or not.

VII. CONCLUSIONS AND WAY FORWARD

In this paper, an algorithm that identifies users that follow
similar trajectories through a cell and distinguishes between
users that follow different trajectories was discussed. This al-
gorithm is based on the DTW algorithm that is used in signal
processing. The DTW algorithm was adapted such that it is
able to find the best match of any suffix of one time series
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Figure 9. The MDTW algorithm is able to assign low scores to accurate

matches and high scores to inaccurate matches for different deviations

(measurements from an active user) with any interval of another
series (measurements from a reference user).

The ability of the algorithm to match users that follow
similar trajectories was assessed by simulations. First a scenario
was considered in which it is certain that good matches should
exist and then a scenario was examined in which good matches
do not necessarily exist. The results show that the algorithm
is actually able to identify users that follow similar trajectories
through a cell except if there are too few measurements. The
algorithm is also able to deal with small variations in the
input. This is important as users will never behave exactly the
same: there will always be small differences in velocity and the
trajectory that the users follows. From the results, it became also
clear that the match score the MDTW algorithm assigns to a
match reflects the real accuracy of the match: when the accuracy
of the match is high the match score is very low. So, the match
score together with the number of measurements on which the
match is based can be used as criteria for determining whether
a match made by the MDTW algorithm can be trusted or not.

In the future, this algorithm will be used as part of a larger
SON function that aims at steering users that have a certain
mobility behaviour more appropriately in order to reduce the
number of call drops and improve the QoS of the users while
reducing the signalling overhead in the core network. The
applicability of the SON function in other cellular technologies
could also be tested as this paper only focused on LTE.
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