
Publish/Subscribe Cloud Middleware for Real-Time Disease Surveillance

Silvino Neto, Márcia Valéria, Plínio Manoel, Felipe Ferraz

Recife Center for Advanced Studies and Systems (CESAR)

Recife – PE, Brazil

e-mail: {silvino.neto, marciavr.souza, ti.plinio}@gmail.com, fsf@cesar.org.br

Abstract - This paper presents the design and implementation

of a cloud-based middleware built on top of the Google Cloud

Platform (PaaS), in order to exchange real-time information

about outbreak notifications of global diseases in a system-level

by using an extension of the HL7 Fast Healthcare

Interoperability Resources (FHIR) specification to support

statistical data based on the ICD-10 medical classification list.

The proposed solution aims to allow healthcare organizations

to register their systems to send and receive notifications, so

the alerts are spread to all the subscribed systems using

webhooks in a publish/subscribe fashion.

Keywords - middleware; google cloud pub/sub; google cloud

platform; FHIR

I. INTRODUCTION

There is an increasing demand for real-time monitoring
of a broad variety of complex events. The processing of
these information streams originated from multiple sources
allows the early identification of threats and swift response.
With the advent of modern communication technology, we
are able to report incidences of disease outbreaks worldwide
in a timely manner. Institutions such as the World Health
Organization (WHO) and the Centers for Disease Control
have been involved in the development of surveillance
mechanisms that triggers alerts that support the decision-
making process about how to respond to these incidents.

As results, there has been many successful experiences in
using different forms of communication to exchange data
related to surveillance and control of diseases, such as Short
Message Service (SMS) [1][2], integration of device data
capture [3] and system-level notifications [4].

Healthcare records are increasingly becoming digitized.
In order to support system-level exchange of clinical data, a
set of standards are required. The HL7 specification
comprises a set of international standards to exchange
clinical data between healthcare applications. In an attempt
to improve its simplicity and extensibility, the HL7
introduced a new specification known as Fast Healthcare
Interoperability Resources (FHIR). When compared with its
predecessors, HL7 FHIR offers a whole new set of features,
such as: support for multiple data formats: Extensible
Markup Language (XML) and JavaScript Object Notation
(JSON), extensible data model and a RESTful API.

This paper describes the Platform for Real-Time
Verification of Epidemic Notification (PREVENT), a cloud-
based message-oriented middleware in collaboration with the
use of an extended instance of the FHIR specification to
support statistical reports for disease surveillance in order to
monitor and notify outbreak occurrences in real-time fashion.

In our solution, we have developed our middleware
application on top of the Google Cloud Platform, using the
Google Cloud Pub/Sub, which is a many-to-many,
asynchronous messaging service. Healthcare organizations
may send and receive push notifications through the use of a
registered webhook endpoint that can accept POST requests
over HTTPS.

This paper is further structured as follows: In Section 2,
we discuss the foundations for this paper. In Section 3, we
present the architectural approaches proposed for the
middleware and some of the design choices implemented. In
Section 4, we explain our evaluation approach and present
the results obtained. In Section 5, we discuss related work
and finally, Section 6 presents our conclusions and possible
future work.

II. FOUNDATIONS

In this Section, this paper presents key concepts that

served as basis for the development of this work.

A. WHO

The WHO is a specialized worldwide health agency
subordinated to the United Nations (UN) that, according to
its constitution [5], one of its main objectives is the
development and improvement of the health of people to the
highest possible levels. Still, according to the WHO
constitution, it is responsible for coordinating efforts to
control and prevent outbreaks and diseases. The WHO
supervises the implementation of the International Health
Regulations and publishes a series of medical classifications,
including the International Statistical Classification of
Diseases and Related Health Problems (ICD) [6]. The ICD is
designed to promote international comparability in the
collection, processing, classification, and presentation of
mortality and morbidity statistics.

According to the International Health Regulations (IHR),
an international legal instrument that is compulsory in 196
countries and in all the WHO member states, its goal is to
assist the international community in the prevention and
response to potential cross-border public health risks. The
IHR requires that countries report disease outbreaks and
public health events to WHO [7].

The present work discusses a system platform that allows
national health organizations, members of the United
Nations, hospitals or healthcare agencies, regardless the
location, to subscribe their applications to send and receive
real-time notifications for disease surveillance. Thus, they
contribute with the propagation of the notified information,
so it can achieve the widest possible reach through the use of

131Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

a cloud-based platform. Therefore, countries and healthcare
organizations may act promptly under the emergency and
disaster risk management protocol to prevent, prepare,
respond and recover from incidents due to any danger that
might represent a threat to human health security.

B. HL7 and FHIR

To reach its goal, this work analyzes a set of international
standards that provide a framework for the integration and
share of clinical and administrative data between systems
and electronic devices dedicated to health care. The HL7 [8]
was created in 1987 and has been maintained by Health
Level Seven International, a nonprofit international
organization that supports and promotes the development of
international interoperability standards in healthcare systems.

The second version of HL7, an ad hoc approach to
integrate various fields in health care, hospitals, clinics and
administrative applications, has become a widely used
standard, adopted and supported by most healthcare
application vendors in North America [9]. Despite HL7 v2
wide acceptance, the limitations of the ad hoc approach have
not allowed significant high scale use in larger multiplatform
environments. Another downside observed on HL7 v2 is the
lack of a formal data model that can unify concepts and
interfaces for message transmission. HL7 v3 emerged as a
response to all the problems recognized on the previous
version. However, it was heavily criticized by the industry
for being inconsistent, overly complex and infeasible to
implement in real life systems. For a while, it appeared as if
interoperability initiatives for health care had lost
momentum.

Hence, FHIR was created with the objective of
improving HL7 messaging standards and addressing some of
the issues identified on the previous specifications. There
have been discussions towards a new approach for data
exchange in health care. This approach provides a
Representational State Transfer (REST) interface, which is a
very simple and lightweight interoperable alternative for
system integration. REST-based architectures are known for
its scalability, user-perceived performance and ease of
implementation approach that provides a fast data
transmission pattern mostly using the HTTP protocol [10].
Resource interoperability allows information to be readily
distributed and provides an alternative to document-centric
approaches by directly exposing data elements as services.

FHIR uses syntax based on XML or JSON, simplifying
the system-level communication. It also offers support for an
extensible data model, allowing applications to enhance its
data structures using FHIR extensibility mechanism. The
features mentioned on this paper were decisive factors for
the adoption of FHIR on the development of PREVENT.

C. Cloud Computing and Scalability

According to A. T. Velte et al. “In essence, cloud
computing is a construct that allows you to access
applications that actually reside on a location other than your
computer or other Internet-connected device; most often, this
will be a distant data center” [11]. This is a constant reality
for the majority of the Internet users on a daily basis. Among

the benefits of cloud computing cited by [11], there are
simplicity, knowledgeable vendors, more internal resources,
security, and scalability.

Scalability is seen as a fundamental feature of cloud
computing. It appears as if computational resources are
infinite and end users easily notice the increase of
performance of used resources in a cloud-based platform.
Scalability is not restricted to expanding resource capacity,
being scalable is to increase the capacity of operations in an
efficient and adequate manner, maintaining the quality of
service [12]. In the literature, it is possible to identify two
dimensions of scalability: vertical and horizontal. Vertical
scalability refers to the improvement of hardware capabilities
by incrementing existing nodes individually. Horizontal
scalability refers to the addition of extra hardware nodes to
the current solution in a way that it can be possible to
distribute application requests between these machines [13].
In the context of this work, PREVENT is designed and
implemented with focus on horizontal scalability. In order to
sustain a large volume of time-constrained notifications and
to leverage the platform overall scalability, PREVENT is
deployed in a cloud-based platform.

D. PREVENT and Complex Event Processing (CEP)

CEP is a new technology to extract information from
distributed message-based systems. This technology allows
users of a system to specify the information that is of interest
to them. It can be low-level network processing data or high-
level enterprise management intelligence, depending on the
role and point of view of individual users. It operates not
only on sets of events but also on relationships between
events [14].

In order to respond in a suitable manner, it is
fundamental to use technology that supports the construction
and management of event-oriented information systems, and
is also able to perform real-time data analysis. CEP consists
in processing various events in order to identify their
significance within a cloud of information [15]. CEP
involves rules to aggregate, filter and match low-level
events, coupled with actions to generate new, higher-level
events from those events [16].

PREVENT has its own complex event processing unit,
namely, PREVENT CEP Engine (PCEPE). PREVENT
randomly receives data messages derived from healthcare
applications subscribed as data providers or data sources,
once data messages have been received, they are delegated to
PREVENT internal complex data processing unit (PCEPE)
that identifies the source and semantics of the data received,
extracting relevant information.

After the information extraction phase previously
described, the data collected goes through a second-phase
analysis that intends to identify if the events notified at that
time indicate a warning situation. As an example, a
significant volume of reports of a certain disease from a
specific geographically delimited area, points to a relevant
situation of alert.

Finally, PREVENT only delivers relevant notifications to
each subscribed message receiver. Figure 1 presents the

132Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

processing flow for data received from health care
organizations in the PREVENT platform.

Figure 1. CEP diagram in PREVENT.

An event processing approach is ideal for applications

concerned with the constant delivery of responses [15]. For

sensitive information that requires a high level of

consistency, it is extremely important that PREVENT

responses are cohesive. This way, having an internal unit for

the processing of the received events is required for the

proper functioning of the PREVENT platform.

III. MIDDLEWARE

In this Section, this paper explores the proposed
architecture and the workflow of events implemented in our
middleware platform. Every step below is described as part
of the process designed to perform the management of the
subscribed applications, the process of data analysis and the
delivery of notifications in the subscription topic:

• Healthcare applications may subscribe to our
middleware platform in order to send and receive
notifications to/from other systems;

• PREVENT will register the healthcare application in
a subscription topic, and reply with an assigned
application ID;

• Healthcare applications may now send notifications
to PREVENT subscription topic;

• PREVENT will perform a real-time analysis of the
data received, and publish notifications that match
the specified criteria;

• Healthcare applications may now receive
asynchronous notifications sent by other

applications, delivered by PREVENT in a push
request.

A. System Architecture

The system architecture designed for PREVENT is
illustrated in Figure 2. In this diagram, PREVENT is
organized into the Google App Engine [17] which is a
hosting environment for web-based cloud applications. It is
part of the Google Cloud Platform, as well as the Google
Cloud Datastore, which is a schemaless NoSQL scalable
datastore, and the Google Cloud Pub/Sub, an asynchronous
messaging framework. Both framework platforms are used
for data persistence and messaging (publish/subscribe
pattern) services. It is important to mention that this
middleware was developed in the Java programming
language, using the Java Servlet API, a standard to
implement applications hosted on Web servers under the
Java platform. Despite being implemented on top of the Java
platform, PREVENT is a completely agnostic technology, it
uses interoperable standards such as HL7 FHIR, REST and
JSON, and it can be integrated to any healthcare application,
regardless the implementation language.

Figure 2. PREVENT Deployment Diagram.

Persistence is used on PREVENT to store data related to
the subscribed healthcare applications and the statistical
reports extracted from notifications received. The
information stored by PREVENT at the Google Cloud
Datastore is relevant not only for the delivery of real-time
notifications, but it may also be useful for audit and access
control policy and procedures. The data stored is replicated
across multiple datacenters using a highly available platform
based on the Paxos algorithm, which is a family of protocols
for solving consensus in distributed environments [21].

PREVENT is designed to be a Message-oriented
middleware (MOM) platform. It is implemented by using the
publish/subscribe pattern, since it requires many-to-many
communication. The Google Cloud Pub/Sub [18] platform
supports two delivery strategies: push and pull delivery. In
the push delivery, the server sends a request to the subscriber
application at a previously informed endpoint URL for every
message notification. In the pull delivery, the subscribed

133Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 3. Subscription & Notification Scenario Class Diagram.

application has to explicitly invoke the API pull method,
which requests the delivery of any existing message
available in the subscription topic to the invoker. In our
middleware implementation, we have chosen the push
delivery strategy, based on the following criteria:

• Reduced network traffic;

• Reduced latency;

• Restrict/eliminate impacts of adaptation on
healthcare applications (No need for message
handling and flow control).

However, it’s important to note that Google Cloud
Pub/Sub platform is still a Beta release, so few limitations
may be applied. Currently, the only supported endpoint URL
for push delivery is an HTTPS server that can accept
Webhook delivery. For this reason, we designed an internal
HTTPS endpoint message listener that can be used as a
proxy by healthcare applications in order to receive
notifications that are subsequently forwarded to a regular
HTTP endpoint URL.

B. Subscription Request

Healthcare organizations that want their application to
send and receive notifications from our middleware should
send subscription requests to PREVENT informing a single
parameter named callback endpoint. The value of this
parameter should correspond to a regular HTTP or HTTPS
URL that will be invoked for notification delivery. As a
response, PREVENT will reply with a unique application ID
assigned for the request in JSON format as illustrated in
Figure 3. As exhibited in the class diagram (See Figure 3),
our middleware platform receives subscription requests
through a Java servlet. The requests are subsequently
assigned to the SubscriptionManager class, responsible for
interacting with the Google Cloud Pub/Sub and Google
Datastore APIs in order to both create a new subscription and
store application data.

Once successfully registered, healthcare applications are
allowed to send notifications to our middleware by
informing its unique application ID with an extended HL7
FHIR message instance in JSON format.

C. Publishing Notifications

Previously registered systems should be able to publish

notifications to all the subscribed applications. In order to

do so, subscribed applications should always inform their

application ID with an extended version of the HL7 FHIR

message, as shown on Figure 3. As demonstrated in the

class diagram (See Figure 3), there is another servlet class to

receive requests for notification dispatch. This servlet class

is expecting an HL7 FHIR message in JSON format. After

the message is successfully parsed into its Java object

representation, it will be dispatched to the

NotificationManager class, responsible for the delivery of

the message by invoking a method on the Google Cloud

Pub/Sub API to add the new message to the subscription

topic, making it available for delivery.
As mentioned earlier, HL7 FHIR provides a flexible

mechanism for the inclusion of additional information into
the FHIR data model. The class DiagnosticStatiscalReport
shown in the diagram above (See Figure 3) is an example of
an extension implemented on top of the FHIR specification.
According to the FHIR specification, in order to use an
extension, we must follow a three-step process, as defined in
[19].

D. Delivery of Notifications

Notifications added to the subscription topic will be
asynchronously sent to the registered endpoints for every
subscribed application, in a multithread context. Messages
are dispatched in the body of an HTTP push request. The
body is a JSON data structure as depicted on Figure 4.

Figure 4. Google Cloud Pub/Sub JSON message data structure.

134Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

The data attribute contained into the message data type
structure holds the HL7 FHIR message encoded in Base64
format. Once the FHIR message is retrieved, in order to
restore it back to its original form, healthcare applications
must decode it. Furthermore, to indicate the successful
delivery of the message received and avoid duplicate
deliveries, healthcare applications must return one of the
following HTTP status code: 200, 201, 203, 204 or 102.
Otherwise, the Google Cloud Pub/Sub retries sending the
message indefinitely to assure its delivery, using an
exponential backoff algorithm in order to avoid network
congestion [23]. The use of an exponential backoff algorithm
is a feature offered by the messaging platform, in order to
guarantee message delivery in case of message destination is
unreachable or unavailable. Therefore, no message
expiration or timeout is applicable.

It is expected to configure push endpoints with SSL
certificates, so data integrity is guaranteed since all messages
sent to them are encrypted over HTTPS. However,
healthcare applications that do not provide an HTTPS
webhook enabled endpoint, may still receive notifications
using a regular HTTP endpoint URL. As already mentioned,
PREVENT offers an internal message listener component
that acts as a proxy for notification of delivery. During the
subscription request processing, PREVENT will
automatically assign an internal push endpoint for healthcare
applications that informed regular HTTP URLs. Therefore,
for every notification to be delivered, PREVENT hands it
over to its internal message listener component that
subsequently dispatches the notifications to their
corresponding destinations. In order to manage HTTP
connections efficiently, PREVENT uses the Apache
HttpComponents, which is a toolset of low-level Java
components APIs focused on HTTP [20]. Apache
HttpComponents is designed to be a flexible framework,
supporting blocking, non-blocking and event driven I/O
models. In our middleware implementation, we selected the
asynchronous non-blocking I/O model, in order to be able to
handle thousands of simultaneous HTTP connections in an
efficient manner.

Figure 5. Message Listener Component Class Diagram

The class diagram shown on Figure 5 presents a short

representation of the elements discussed on the previous

paragraph.

IV. EVALUATION

We have developed a proof-of-concept implementation

in order to evaluate the middleware. Our goal is to show

how effective and responsive a cloud-based middleware

platform for real-time surveillance can be. In accordance

with the criteria established, we use a few metrics to

measure the efficiency and performance of the middleware

platform. In our experiments, we evaluate the middleware

by using a set of simulation tools. The test environment set

up for the evaluation is composed by a cloud-based instance

of the middleware distributed into the Google Cloud

Platform, a set of 50 callback endpoints, and an Intel i5

2.60GHz 6GB RAM Linux workstation. Each callback

endpoint simulates a subscribed healthcare application,

previously registered on the middleware. In order to act as

an enlisted application, we have implemented a simple Java

servlet class and a PHP file that basically returns an HTTP

status code of 200 (OK) to acknowledge the successful

reception of notifications delivered. The callback endpoints

are deployed into two separate cloud platforms: Digital

Ocean [22] and Google Cloud Platform. The tests are

divided in two different scenarios. The first test scenario is

executed at the execution environment of callback

endpoints. On the second test scenario, we use a local

computer workstation to perform a stress test. Both test

scenarios will be conducted using a set of preconfigured

simulation tools. In this evaluation, the following metrics

are gathered and further analyzed:

• Throughput: measured by the number of delivered
notifications per second;

• Error Ratio: measured by the number of requests
failed or rejected by the middleware;

• Message Loss Ratio: measured by the proportion
between the number of lost messages and the total
number of messages delivered;

• Message Delivery Time: measured by the time taken
to a notification request to be sent to the middleware
and received by the subscribed healthcare
applications.

A. Simulation Description

We perform the dispatch of messages using JMeter, a Java
based testing tool, to send multiple HTTP requests.

On the first test scenario, our test suite is configured to
send one message request per second, limited to 60 messages
to be delivered to 50 subscribed callback endpoints.
Messages used in the test are defined on HL7 FHIR JSON
format. Each message size is approximately 1 KB. This
scenario seeks to evaluate the performance of the
middleware about the delivery ratio and message delivery
time. In order to measure the total message delivery time, we
must consider that the actual delivery of each message sent
to the middleware occurs in an asynchronous manner.
Therefore, time tracking has to be split into two separate
variables:

• T¹ = Amount of time it takes for message requests
sent to the middleware to be responded;

135Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 6. HTTP messages delivered

• T² = The average of the amount of time it takes for
the middleware to send notifications received to
all of the subscribed callback endpoints and get
their message acknowledged;

• This way, Total Message Delivery Time = T¹ + T².
In order to obtain the values required to calculate both

variables T¹ and T², we use both JMeter Test Results
Report and Apache log4j, which is a Java-based logging
utility.

The second test scenario is divided into 4 different test
cases. Each test case has different settings, related to the
number of messages that are expected to be processed. The
number of concurrent threads (publishers) configured for
each test case are limited to 10, 20, 60 and 100,
respectively. Every thread is expected to simultaneously
send one message per second. Every message received
needs to be processed and delivered to 50 subscribed
endpoints. Therefore, we expect a total of 14500 messages
delivered after all test cases are completed. To evaluate
message delivery to all of the subscribed callback
endpoints, we created a shell script using AWK, which is a
data-driven scripting language used in Unix-like operating
systems, to extract and parse NGINX and Apache HTTP
Server access logs in order to quantify the number of
successfully received requests based on a pre-determined
pattern as shown on Figure 6.

The results obtained will be summarized and compared
to the total amount of messages sent. As a result, we
expect to evaluate the middleware performance under
heavy load, collecting and analyzing metrics like the
throughput and message loss ratio.

B. Results

The evaluation shows that a cloud-based middleware
for real-time surveillance works reliably and efficiently to
report critical events in a timely manner. As illustrated on
Figure 7, from a total of 14500 messages sent to the
middleware platform, we reported 356 failed or rejected
requests and 135 messages that have not been
acknowledged as delivered. It corresponds respectively to
2.45% and 0.93% of the total amount of messages
processed. The results obtained could be even better, since
we reported a large concentration of failed requests at the
end of the last test case, due to quota limits exceeded.

Figure 7. Message Delivery 3D Grouped Column Chart

In the same stress test scenario, we collected a set of
performance related metrics, as shown in Table 1. The
middleware comfortably supported the intense load of
requests, maintaining good performance levels. Based on
the results obtained, a few observations can be made about
this platform. Throughput and performance are positively
impacted under heavier load of concurrent requests. We
believe that it happens due to reconfiguration algorithms
implemented by the cloud platform, scaling to uphold the
increasing volume of requests. However, we have also
observed that the reliability of message delivery is
negatively impacted under these circumstances.

TABLE I. PERFORMANCE RELATED METRICS

Number

of

Samples

Median

(ms)

Throughput kB/sec Lost

Messages

Failed

Requests

500 691 48,4/sec 474,75 0 0

1000 394 55,2/sec 949,5 0 0

3000 293 103,4/sec 2848,5 3 0

10000 204 177,7/sec 9495,0 132 356

In the test scenario executed at a registered callback

endpoint environment, we collected and measured the total
amount of time for every notification to be delivered to all
of the subscribed endpoints, as described on the previous
subsection. Figure 8 presents the total message delivery
time measured at specific intervals during the test
execution. The x-Axis represents time (HH:MM:SS)
intervals at which messages were delivered, while the y-
Axis represents the total message delivery time in
milliseconds for each notification sent during the test.

136Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 8. Total Message Delivery Time

Based on a string of experiments, we conclude that the
differences observed in the results, exhibited on Figure 8,
occur as a consequence of the following events: Network
jittering, resource availability, and concurrency. The
simulation results show that the performance provided by
the platform, in terms of delivery ratio, throughput and
timeliness is suitable to the middleware purpose. This is a
consequence of the use of an asynchronous messaging
approach and a cloud-based platform, capable of scaling
and performing according to the restrictions imposed.
Therefore, it is possible to offer a high degree of
scalability using a publish/subscribe middleware for real-
time disease surveillance. Even for larger applications
scenarios, where the number of subscribed healthcare
applications is considerably higher, or where the messages
exchanged are in a higher number, we believe that it is
possible to scale in order to support the increase of load.
Further experiments have shown that when the number of
concurrent messages is increased, the middleware’s
throughput is higher, while the performance is stable.
However, with a higher amount of messages exchanged,
we have observed an increase in the number of lost or
unacknowledged messages.

V. RELATED WORK

Much of the related work has been covered in the
previous Sections of this paper. In this Section, we revisit
some of the topics discussed and present them in a
summarized view.

Healthcare Interoperability. As mentioned on
Section 2, subsection B, multiple approaches have been
attempted in order to promote interoperability initiatives
for healthcare systems, as demonstrated on both [3] and
[24]. Recent work has been developed in order to offer a
powerful and extensible standard specification for
healthcare system-level integration, namely FHIR [9]. In
our work, we have slightly extended the FHIR data model
in order to include statistical information to be further
processed by a CEP unit.

Disease Surveillance. This is an emerging field of
research that has been achieving significant success in the
early detection and report of disease outbreaks at regional
scale. The DHIS 2 project as described in [1] uses Java
enabled phones to send health related data using SMS.

This is an example of how a low-cost disease surveillance
mechanism can be helpful in the prevention or mitigation
of occurrences, especially in developing countries [2].
Another successful example can be found in India and Sri
Lanka, as described in the work of Waidyanatha et al [4].
The T-Cube project has been developed in order to detect
emerging patterns of potentially epidemic events based on
the analysis of digitized clinical health records. On our
work, we use a similar approach, as previously described.

The ESS project developed in Sweden is an Event-
based Surveillance System that uses records of telephone
calls to the Swedish National Health Service, in order to
monitor unusual patterns [25]. Statistical analysis is
performed over collected data to calculate deviation limits.
In an attempt to process larger datasets, Santos and
Bernardino presented a system architecture for near real-
time detection of epidemic outbreak at global scale using
on-line analytical processing (OLAP) techniques [26].

VI. CONCLUSIONS

This paper has presented a middleware platform

responsible for receiving and interpreting data informed

by healthcare organizations, and based on the results

obtained through data analysis, the middleware publishes

real-time notifications to all healthcare applications

subscribed to this platform.

There is an increasing need for timely delivery of

messages and notifications, in very large user base

platforms. In this context, it is extremely important to

develop a platform capable of scaling to sustain the

expected levels of performance and throughput under

growing demand. PREVENT uses the FHIR specification

in order to exchange system-level messages, presenting a

market-friendly environment for real-time integration of

applications. FHIR is currently published as a Draft

Standard for Trial Use (DSTU), hence we hope that this

work may serve as a contribution on the promotion of

interoperability initiatives, and a step towards the

development of an international disease surveillance

platform.

We believe that several factors combined make

PREVENT a scalable and efficient platform:

• An asynchronous event-based approach for

message processing, reducing network contention

and the number of threads needed to process the

same workload;

• A network-efficient non-blocking I/O

communication model for HTTP connections;

• And a cloud hosting infrastructure.

The results obtained from our experiments demonstrate

that a cloud-based platform using the publish/subscribe

pattern for real-time notifications represents an

appropriate choice, in order to assure time-constrained

delivery of mission-critical data.

The contribution of this paper is a first step to enabling

the use of the FHIR specification for healthcare system

integration in order to support a global system-level

137Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

outbreak warning platform. Our ongoing research aims to

perform experiments using heterogeneous environments

and datasets, in order to present richer interoperable

scenarios.

As future works, we plan to implement several

extensions on our middleware platform in order to support

functionalities like: security using OAuth; big data

analytics for prediction using information extracted from

notifications received; support for legacy and multi-

format messages (HL7 v2, short message services, etc.)

using a message adapter layer for data transformation, and

multiprotocol integration using TCP, HTTP and HTTPS.

REFERENCES

[1] L. Pascoe, J. Lungo, J. Kaasbøll, and I. Koleleni,
“Collecting Integrated Disease Surveillance and Response
Data through Mobile Phones,” IST-Africa Conference
Proceedings, 2012, pp. 1-6.

[2] C. Déglise, L.S. Suggs, and P. Odermatt, “SMS for disease
control in developing countries: a systematic review of
mobile health applications,” Journal of Telemedicine and
Telecare, 2012, v. 18, n.5, pp. 273-281.

[3] T. Tran, H-S. Kim, and H. Cho, “A Development of HL7
Middleware for Medical Device Communication,” Proc.
5th ACIS Int. Conf. Softw. Eng. Res., Manage. Appl.,
2007, pp. 485-492.

[4] N. Waidyanatha et al., "T-Cube Web Interface as a tool for
detecting disease outbreaks in real-time: A pilot in India
and Sri Lanka," IEEE RIVF International Conference on
Computing and Communication Technologies, Research,
Innovation, and Vision for the Future (RIVF), 2010, pp. 1-
4, doi: 10.1109/RIVF.2010.5633019.

[5] “Constitution of the World Health Organization”, 2005.
[Online]. Available: http://goo.gl/2vvJBS. [Accessed: 30-
May-2015].

[6] “International Statistical Classification of Diseases and
Related Problems”, 2010. [Online]. Available:
http://goo.gl/FCp5Js. [Accessed: 30-May-2015].

[7] “International Health Regulations”, 2005 Second Edition.
[Online]. Available: http://goo.gl/m8Rajk. [Accessed: 30-
May-2015].

[8] “Health Level Seven International – Homepage”, 2015.
[Online]. Available: http://www.hl7.org/. [Accessed: 31-
May-2015].

[9] D. Bender and K. Sartipi, "HL7 FHIR: An Agile and
RESTful approach to healthcare information Exchange,”
Computer-Based Medical Systems (CBMS), IEEE 26th
International Symposium, 2013, pp. 326-331.

[10] R. T. Fielding, “Architectural Styles and the Design of
Network-based Software Architectures,” Doctoral
dissertation, University of California, Irvine, 2000.

[11] T. Velte, A. Velte, and R. Elsenpeter, “Cloud computing, a
practical approach.” McGraw-Hill, Inc., 2009.

[12] P. Jogakekar and M. Woodside, “Evaluating the scalability
of distributed systems,” IEEE Transactions on Parallel and
Distributed Systems, 2000, v. 11, n. 6, pp. 589-603.

[13] D.F. Garcia, R. Garcia, J. Entrialgo, J. Garcia, and M.
Garcia, “Experimental evaluation of horizontal and vertical
scalability of cluster-based application servers for
transactional workloads,” 8th International Conference on
Applied Informatics and Communications, 2008, pp. 29-34.

[14] D. C. Luckham and B. Frasca, “Complex event processing
in distributed systems,” Computer Systems Laboratory

Technical Report CSL-TR-98-754, Stanford University,
Stanford, v. 28, 1998.

[15] V. Vaidehi, R. Bhargavi, K. Ganapathy, and C.S.
Hemalatha, "Multi-sensor based in-home health monitoring
using Complex Event Processing," International
Conference on Recent Trends In Information Technology
(ICRTIT), 2012, pp. 570-575.

[16] D. Robins, "Complex event processing," Second
International Workshop on Education Technology and
Computer Science, Wuhan, 2010. [Online]. Available:
http://goo.gl/jLROpc . [Accessed: 30-May-2015].

[17] “Google App Engine”. [Online]. Available:

https://cloud.google.com/appengine/docs/. [Accessed: 13-
June-2015].

[18] “Google Cloud Pub/Sub”. [Online]. Available:

https://cloud.google.com/pubsub/docs/. [Accessed: 13-
June-2015].

[19] “FHIR Specification Home Page- FHIR v. 0.0.82”, 2015.
[Online]. Available: http://goo.gl/RDwuPm. [Accessed: 31-
May-2015].

[20] “Apache HttpComponents.” [Online]. Available:

https://hc.apache.org/. [Accessed: 13-June-2015].

[21] L. Lamport, “The part-time parliament,” ACM
Transactions on Computer Systems (TOCS) Journal, 1998,
v. 16, n. 2, pp. 133-169.

[22] “Digital Ocean” [Online]. Available:
https://www.digitalocean.com/. [Accessed: 13-September-
2015].

[23] Byung-Jae Kwak, Nah-Oak Song, and Miller, M.E.,
“Analysis of the stability and performance of exponential
backoff,” IEEE Wireless Communications and Networking,
2003, v.3, pp. 1754-1759, doi:
10.1109/WCNC.2003.1200652.

[24] Fabio Vitali, Alessandro Amoroso, Marco Rocetti, and
Gustavo Marfia, “RESTful Services for an Innovative E-
Health Infrastructure: A Real Case Study,” IEEE 16th
International Conference on e-Health Networking,
Applications and Services, 2014, pp. 188-193.

[25] Deleer Barazanji and Pär Bjelkmar, “System for
Surveillance and Investigation of Disease Outbreaks," 23rd
International Conference on World Wide Web Pages, 2014,
pp. 667-668.

[26] Ricardo Jorge Santos and Jorge Bernardino, “Global
Epidemiological Outbreak Surveillance System
Architecture,” 10th International Database Engineering and
Applications Symposium, 2006, pp. 281-284.

138Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

