
What Are the Features of This Software?
An Exploratory Study

Barbara Paech, Paul Hübner

University of Heidelberg
Institute of Computer Science

Heidelberg, Germany
{paech,huebner}@informatik.uni-heidelberg.de

Thorsten Merten

Bonn-Rhein-Sieg University of Applied Sciences
Dept. of Computer Science
Sankt Augustin, Germany

thorsten.merten@h-brs.de

Abstract—Application systems are often advertised with fea-
tures, and features are used heavily for requirements man-
agement. However, often software manufacturers only have
incomplete information about the features of their software.
The information is distributed over different sources, such as
requirements documents, issue trackers, user manuals, and code.
In this paper, we research the occurrence of feature information
in open source software engineering data. We report on a
case study with three open source systems. We analyze what
information about features can be found in issue trackers and
user documentation. Furthermore, we study the abstraction levels
on which the features are described, how feature information is
related, and we discuss the possibility to discover such infor-
mation semi-automatically. To mirror the diversity of software
development contexts, we choose open source systems, which are
quite different, e.g., in the rigor of issue tracker usage. The results
differ accordingly. One main result is that the user documentation
did not provide more accurate information than the issue tracker
compared to a provided feature list. The results also give hints
on how the management of feature relevant information can be
supported.

Index Terms—feature; requirements management; mininig
software repositories; issue tracker; user documentation

I. INTRODUCTION

In requirements management, features of application soft-
ware are heavily used to package requirements. At least for
the following three purposes: release planning in software
product management [1], software product line engineering
[2] and requirements feature interaction detection [3]. The
corresponding approaches typically assume a dedicated feature
and requirements representation. However, in industry features
often are managed implicitly. Typically, they are used within
a project to develop a part of a software product, but they
are not collected in a dedicated document and maintained
over time. The paper by Alspaugh and Scacchi shows that
open source software (OSS) development projects typically
do not have an explicit requirements or feature description
and stipulates that this might also be true for many com-
mercial software development projects [4]. In our work, we
reported about feature knowledge being implicit in answers
to requests for proposals [5]. We and others have reported on
a heterogeneous requirements pool being the basis for release
planning in industry [1], [6], [7]. Thus, in order to get a feature

view of a software product it is often necessary to detect
the features from data sources other than requirements or
feature documents. Three feature-related information sources
are typically available in software projects in industry:

• Bugs and feature requests in an issue tracker
• User documentation
• Code in a version control system

For feature location in code, typically the existence of docu-
mentation about features is assumed [8]. As we are interested
in deriving the features, we focus on issue trackers (ITS) and
user documentation (UD). UD has already been recommended
as a substitute for a requirements specification by Dan Berry
et al. in [9]. ITS are a well-known source for features, as
often issues are explicitly tagged as features. However, feature
tagging is not always reliable as has been shown by Herzig et
al. in [10]. For example, they found that only 40% to 72% of
Bugzilla issues are correctly classified as feature requests and
many issues classified as bugs or improvements do actually
contain feature requests.

Thus, it is necessary to analyze in more detail what infor-
mation about features can be found in these sources. Although
the Mining Software Repositories1 community does some
work about categorizing features and bug reports, there is
no work identifying the individual feature descriptions in the
ITS or UD data. The long term-goal of our research is to
develop an approach to semi-automatically derive a feature
representation from these data sources. As a first step, we
present an explorative study analyzing the feature information
of three different open source systems. The goal is to explore
the kind and quality of feature information in ITS and UD.

The rest of the paper is structured as follows. Section II
presents the planning and operation of the case study. Section
III presents the results of the study. Related work is discussed
in Section IV and an overall summary and outlook on future
work is given in Section V.

1http://msrconf.org.

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://msrconf.org

II. CASE STUDY PLANNING AND OPERATION

In this section, we describe the definition and planning of
our study, the operation and the threats to validity.

A. Study Definition and Planning

We applied case study research, as this is an exploratory
study trying to understand a real-world phenomenon [11]. The
main research question is:

What information about software features can be found
in the user documentation and issue tracker of a software
product, and how well is this suited to derive a feature
representation of the software?

This question is detailed into the following research ques-
tions:

• RQ1: What feature information can manually be derived
from the issue tracker and the user documentation?

• RQ2: What are the commonalities and differences of
feature information from UD and ITS and how well does
the information fit to the feature list provided by the
developers themselves?

• RQ3: How easily could this information be derived semi-
automatically?

The study was conducted on open source project data, since it
is most easily available. Based on prior experience, the projects
were selected so that their combination fulfills the following
criteria (see Table I):

• Availability of ITS and UD and of an explicit feature list
compiled by the software developers themselves

• Different domains
• Different size of product and ITS and UD data
• Different user groups. We looked for projects with private

users and/or professional users.
• Different kinds of ITS. Radiant uses a lightweight ITS

(GitHub) with simple tagging possibilities to categorize
issues. OFBiz uses an industry standard ITS (Jira) which
supports multiple categorization options and status. Mixx
uses a heavyweight ITS (LaunchPad) which additionally
provides the option of connecting blueprints and user
questions to the issues.

• Diversity of the quality of the provided information in
the ITS. E.g., Mixxx uses the ITS systematically, whereas
Radiant uses it ad-hoc.

• Different completeness of our analysis. The large projects
could only be analyzed partially, but are more represen-
tative for the situation in industry.

TABLE I. SELECTION OF OSS PROJECTS

Mixxx OFBiz Radiant

Domain DJ software ERP CMS
Size large large small
User group private professional private and professional
ITS LaunchPad Jira GITHub
Use of ITS systematic systematic ad-hoc

B. Study Projects

This section provides characteristics of the three projects
utilized for the study. Mixxx is a disk jockey software which
implements basic features for managing and playing music
and advanced features like a virtual mixer to perform seamless
transitions between songs. Radiant is a content management
system which implements basic features to create websites or
blogs and advanced features like RSS feeds and an extension
system to add 3rd party functionality. OFBiz is an enterprise
automation software, where we studied the manufacturing
resources planning component.

Table II provides further details on the projects. For OFBiz,
only the manufacturing component and one corresponding
provided feature was studied. The LOC of Mixxx comprise
only the C++ code (excl. blanks and comments and XML
configuration files). The LOC of Radiant comprise only Ruby
and (r)html code (excl. blanks and comments). For Mixxx
all blueprints and randomly sampled issues (to identify the
quality of links between issues and blueprints) were analyzed,
for Radiant all issues. In Radiant the status “implemented”
was only identified for the feature-relevant issues.

TABLE II. PROJECT DETAILS

Mixxx OFBiz Radiant

features in list 22 1 10
Size (LOC) 94117 Not det. 33887
Programming
language

C++ (& QT) Java Ruby (&
Rails)

issues 2211 + 113 blueprints
+ 138 user questions

120 348

issues implemented 1239 + 59 blueprints 94 See text
issues analyzed 50 + 113 blueprints all all
analyzed issues
with feature
information

22 + 53 blueprints 19 50

issues implemented
and analyzed with
feature information

22 + 53 blueprints 16 43

subdivisions UD 14 chapters consisting
of 69 sections

343 120
pages

subdivisions UD an-
alyzed

all 36 all

subdivisions with
feature information

62 34 64

provided features
identified in ITS

21 7 12

provided features
identified in UD

24 12 12

C. Study Operation

This section provides a short overview of the indicators we
used for feature relevant information and describes how we
searched the ITS and UD of the projects. We analyzed the data
sources in February 2014. Moreover, we stored all analyzed
data locally for a reliable reproduction of our results.

1) Feature indicators: For the ITS we looked for issues
which describe a new functionality (F) or quality (Q). The
feature has to be already implemented and the issue mentions
F and Q or a component of F and Q. It was not always

98Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

easy to determine the implementation status of an issue. For
Radiant the status was not managed explicitly. Thus, the im-
plementation status was revealed by analyzing the comments
of an issue and associated commits. For Mixxx and OFBiz
we took the issues with the status “Implemented or Patch
Available”. We did not find any indication that the status for
those issues was set wrongly. However, there might be issues
which are implemented but the status is not set accordingly.
For the UD we looked at section and page titles containing
this kind of information and not only describing the operation
of the product. The exact rules and corresponding examples
are shown in Table III. We classified the feature information

TABLE III. INDICATORS OF FEATURE RELEVANT INFORMATION

ITS UD

The issue is implemented AND mentions
functionality or quality AND is not re-
lated to a bug AND is not only related
to refactoring AND the term X or a
component Xi of X is explicitly or
implicitly mentioned.

The item describes function-
ality or quality X and not
operation (such as installing
or getting help) AND the term
X or a component of X is
explicitly or implicitly men-
tioned.

Radiant (Quality Performance,
Component “Radius Parser” of
“Radius Template Language”):
“Speed up Radius parser”
Radiant (Functionality Asset
Management): “Integrate an
asset management solution”
Radiant Implementation Status by
comment: “Seeing as there’s a setting
for this now, this issue can be closed?”
Mixxx (Quality User Experience,
Functionality Vinyl Control):
“Improvements to the overall
vinyl control user experience”
Mixxx (Functionality, Component
Crates and Playlist): “Currently
Mixxx does not support
hierarchies for crates and playlists.
This, however, is possible”
OFBiz: (Functionality Production
Machines) “cover the case in which
many machines are used to complete
a production task”

Radiant Page Titles
(Quality Performance and
Caching) “Disable caching
in a radiant system”
Radiant Page Title
(Functionality Admin
UI) “Altering Tabs
in the Admin UI”
Mixxx (Quality
was not mentioned)
Mixxx Section (Functionality
Broadcast): “Live
Broadcasting Preferences”
OFBiz (Functionality
Routing Task): “Find
Routing Task”

according to their abstraction levels. It is well-known that
requirements and features are typically described on different
abstraction levels. Based on the work of Gorschek et al. [7],
we distinguish 3 levels of features:

• Requirements level (called feature level in [7]): the men-
tioned F comprises several functions or the Q affects
several functions

• Function level: F or Q only refer to one function which
a user can perform. Implementation details are not men-
tioned.

• Code level (similar to the component level used in [7], it
focuses on the HOW): F or Q only refer to one function
which a user can perform. Implementation details are
mentioned. For UD the levels were easy to identify. Page

or section titles referred generally to requirements, while
subpages and subsections referred to functions. Code
details were only mentioned in the UD of Radiant, as
here the user is required to change classes to setup a
certain functionality. Table IV shows examples for issue
texts on different abstraction levels.

TABLE IV. EXAMPLES FOR ISSUE ABSTRACTION LEVELS

Function Quality

Requi-
rements

Radiant: “Break Radiant into
several different extensions”

OFBiz: cf. Table III example
bottom left.

Radiant: Internationalization

Func-
tion

Radiant: “Errors when changing
your password should be shown”

Mixxx: “Implementation of
a traktor library feature
to allow professional DJs
the smooth migration [...].”

OFBiz: “Improve mrp to support
to products which have no orders
against them”

Radiant: “Make it so
that pages are only
cached for GETs”

Mixxx: “Smooth Wave-
forms” (relates to a
less stuttering display
for track visualization).

OFBiz: “There is a need
to be able to block viewing
info except that info that may
pertain to that login”

Code Radiant: “Javascript to stop
you from navigating away
from a page with changes”

Mixxx: “It would be nice to
be able to specify multiple
<option>s for MIDI controls
in XML mapping files.”

OFBiz: [...] accepts the partyId
as a parameter, but has been
commented [...] [however,
the] functionality is vital for
determining which employees are
responsible for rejects

Radiant: “[Add] Ruby
1.9.x compatibility”

Mixxx: “Distribute Launch-
pad translations with Mixxx
Releases”

In [9], Berry et al. distinguish typical section types of an UD:
the abstractions (objects) of the domain (O) and the use cases
(U). We use this distinction to classify the focus of a text.
O is used when the feature is directly part of the UI or the
software, while U is used when the feature requires some kind
of dialogue to be used. U is not applicable to quality features.
We also identified relationships between features. They are

Fig. 1. Legend for the Feature Graphs.

used particularly in visualizations, such as Figure 2 and 4.
Based on the information available to us, we determined the
following relationships between the identified features (see
Figure 1 for a legend of the relationships).

• Identical (features of different sources)

99Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

• Part of (features of different and same sources)
• Overlapping (features of different sources)

2) Procedure: The second and the third author conducted
the actual search, while the first author acted as a reviewer.
RQ1 was answered using thematic coding [12]. The second
author coded the UD pages and sections and derived a set of
codes characterizing the features described. Similarly, the third
author coded issues in the ITS. The identified two feature sets
were compared with the provided feature list on the project
website and with each other. RQ2 was answered by comparing
the different feature sets. The answer of RQ3 is based on the
experience of the two authors during the manual derivation of
the feature information.

D. Threats to Validity

We discuss the threats to validity according to Runeson
et al. [13]: Construct validity: The authors have not been
involved in the development of the sources. Thus, our view
of what constitutes a feature of the software is clearly an
external one, which might be different from what developers
consider a feature of their software. To mitigate this threat,
we used the feature list provided by the developers for com-
parison. External validity: The results are not representative
for application software in general, as we only looked at
three projects. For this exploratory study, we choose very
different projects to enlarge the possible insights. Reliability:
As only one researcher coded the ITS and the UD information,
we cannot claim that other researchers would reproduce the
coding. However, we used very explicit coding indicators and
discussed them explicitly to minimize the bias of the individual
coder. Moreover, the performed approach can be adapted to
any software development project which provides the required
data (ITS, UD and feature List).

III. RESULTS

In the following, we answer the research questions for
each project individually. The last subsection summarizes the
insights for all projects.

A. Results of Project Radiant CMS

1) Provided feature list: The Radiant website contains a
feature overview2 which depicts 10 features using a name and
a short one- or two-sentence description. As these features
are listed prominently, we stipulate that they are the most
marketing relevant for the developers. Table V shows these
features and our classification as F or Q and O or U. The
table also shows whether the feature was identified in the ITS
or UD. Brackets indicate that the corresponding ITS or UD
features are slightly different (see below).

2http://radiantcms.org/overview, accessed on August 8, 2014

TABLE V. RADIANAT FEATURES

Provided feature list Identified in

Built with Ruby on Rails (Q,O) ITS
Custom Text Filters (F,U) -
Flexible Site Structure (Q,O) -
Intelligent Page Caching (Q,O) ITS, UD
Layouts (F,O) (UD)
Licensed under the MIT License (Q,O) -
Pages (F,O) ITS
Radius Template Language∗ (F,O) ITS, UD
Simple Admin Interface (F,U) ITS, UD
Snippets (F,O) (ITS, UD)

∗ a special macro language (similar to HTML and Ruby).

2) Identification of feature information from UD and ITS
(RQ1): The UD is organized in a wiki. The starting page
of this wiki is a global table of contents. This table of
contents is divided into 11 chapters, 8 of which only deal
with administrative issues.

Thus, we identified the three chapters “The Basics”, “How
Tos” and “Extensions” as primarily relevant for further analy-
sis. “The Basics” contains seven links to top level UD pages.
Except for the links to “FAQs” and “Getting Started”, the
links point to pages describing Radiant features as mentioned
in the feature list (Pages, Layouts, Snippets, Radius Tags,
Customizing the Admin UI). In addition, there are six links
to details of the Radius Tag feature and two links to details
of the admin UI feature. Each top level UD page contains the
intent and summary of the feature, screenshot of the features
UI, and detailed descriptions of the feature use.

The “How Tos” chapter contains 29 links to top level
UD pages. As visible by the titles, those links point to
tutorials describing advanced features. The tutorials include
usage examples and reference the basic feature pages. The
Radius Template Language is referenced from almost all
pages. The “Extensions” chapter starts with 6 pages describing
the concept and usage of radiant extensions, followed by a list
of 27 common extensions, and 11 pages which describe how to
develop an extension for Radiant. According to the indicators
of Table III, we identified 64 relevant pages.

The boxes marked with UD on the right side in Figure 2
shows the 13 features identified from the UD. Content delivery
refers to different channels like RSS, content location to search
in a web page. Most pages are on the function level and many
describe layout. The number of pages related to a feature do
not signify the importance of that feature. The features listed
under “The Basics” can be seen as most essential, however,
they are described on 15 pages, only.

The Radiant project uses GitHub as ITS. It is used for
different aspects, such as Feature Requests, Bug Reports,
Discussions of the development process, Discussions about
refactorings and sometimes User Problems and Discussions
about Documentation.

GitHub provides optional labels to classify an issue. Since
the labels are optional, they are rarely used in the Radiant
project. This implies that issues related to features, bugs, or

100Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://radiantcms.org/overview

other aspects of Software Engineering (SWE) are not labeled
accordingly by any means.

Therefore, we analyzed each of the 348 issues manually and
derived their category (feature, bug, refactoring, other SWE
aspects) by analyzing the descriptions and comments.

The boxes marked with ITS on the left side in Figure 2 refer
to the 11 features identified from the ITS. Asset management
refers to content different from the pages such as image files.
Development comprises support for developers, such as a
framework, Frontend refers to usability features. The issues
mostly deal with individual functions, half of them deal with
code (cf. Figure 3a). Many issues deal with the Simple Admin
UI. Here again, the number of issues does not signify the
importance of the feature. Furthermore, there are issues with
many comments, but, e.g., a very short implementation.

3) Commonalities and differences of UD and ITS and
provided features (RQ2): Figure 2 shows the relationships
between the identified features. As could be expected, the
description of the features in the ITS is quite often on the code
level, while the UD features are described on all three levels.
Almost a third is on the code level which is unusual for an UD.
This is due to the fact that code needs to be changed for some
functionalities. However, only 2 features are solely described
on the code level. Figure 3 shows that the feature sets have

Fig. 2. Radiant Feature Graph (transitive relationships are not shown)

some commonalities, but also differences. Almost half of the
ITS features (45%) are identical to the provided features, while
only a third of the UD features (31%) is identical (cf. Figure
3b). This might be due to coder differences, but also due to
the fact that the UD already provides a structure indicating
low-level features which are not mentioned on the marketing
level. Issues mention the features without any structure. Thus,
the developer and the coder are missing a structure when

referring to low-level features. Provided features not identified

34,4
46,0

54,7
44,0

10,9 10,0
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UD ITS

Radiant

Code

Funct.

Requ.

(a) Abstraction Level

50 30
45 45

23

38

20
30

18 18

46

31

30
40 36 36 31 31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ITS UD List UD List ITS

Feature from List Feature from ITS Feature from UD

PO

I

N

(b) Feature Relationships (N = Not Related, I
= Identical, PO = Partial Or Overlapping)

Fig. 3. Radiant Commonalities and Differences of UD, ITS and Feature List

from the ITS (18%) may be due to the fact that the ITS
was not used from the beginning of the development. The
basic functionality of the software was implemented before
the ITS was used. For ITS features not in the provided list
(31%), the content could be a reason. While Internalization and
Extensibility seem relevant as prominent features, Fronted and
Development issues might be too low-level. It is interesting to
note that all ITS features which do not have a relation to either
the list or the UD are quality-related. All features identified
from the UD seem relevant, although 31% of them are not in
the provided list. There is no pattern wrt F/Q or O/U in the
differences between UD and the other feature sets. The PO-
relationships between Pages, Layouts and more fine-grained
features, such as Blog or Comments, show that granularity
is a challenge. Only UD features have Part-of-relationships.
Again, this can be due to the more fine-grained structure of
the UD. UD features are more closely related to ITS feature
(45% identical) than the provided list, but there are almost as
many (36%) non-related features.

4) Automatic identification of feature information (RQ3):
Most feature-related information was identified in older issues.
34 feature-related information items could be found in issues
#1 to #68. 16 feature information items in #71 to #202 and
no feature-related information was found in #203-#384. This
suggests that a) older issues should be available for automatic
feature extraction and b) it might be best if the ITS is used
from the beginning of the development (e.g., design and
prototyping phases). In Radiant however, the ITS was only
used after a prototype of the software had already been built.

For the ITS we searched for text containing ‘*should*be*’,
‘*add*, ‘*would*be*’ and ‘*allow*user*’ in the issue title and
description. This revealed 27 of the 43 issues with feature
related information. However, the search added about the same
amount of noise and included refactoring- and bug-related
issues. Therefore, the precision of this approach is relatively
low. However, depending on the usage of an ITS, it might
be possible to extract more precise search terms. A pitfall in
automatic analysis are the tags of the Radiant ITS. As in [10],
manual categorizations are often wrong. Although tags like
bug, design, or javascript are introduced in Radiant, they are
not used consistently. Since tags are optional, we found that
most issues are not tagged at all. The bug tag is only used for

101Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

one issue, which is not reliable for any automatic extraction.
Further analysis, for example topic analysis [14], is necessary
to identify feature labels.

For the automatic identification of features from the UD,
the relevant pages need to be identified in a first step. For
Radiant the relevant pages were mainly contained in three
chapters, which can be identified more efficiently manually
than automatically. Additionally, some pages are only related
to system operation and do not contain feature information. To
some extent, these pages could be identified by searching for
operation-related terms such as installation in order to discard
these pages. Another input for the identification of relevant
pages is the linkage structure. Based on this, it is possible
to identify frequently referenced pages which most likely are
feature-relevant pages.

The identification of the feature labels could start from the
page titles. The nouns contained in the titles can be used as a
starting point to create a feature list.

B. Results of Project Mixxx

TABLE VI. RADIANT FEATURES

Provided features Identified in

Advanced Controls (F,U), Dual Decks (F,O) IST,UD
Decks: Beat Looping. Broad Format Support, Hotcues,
Intuitive Pitchbends, EQ and Crossfader Control, Time
Stretch and Vinyl Emulation (F,O)

(ITS, UD)

Designer Skins (F,O) ITS
Free Timecode Vinyl Control (F,U) ITS,UD
Microphone Input (F,U) ITS,UD
MIDI Controller Support (F,U) (ITS,UD)
Powerful Library: Auto DJ, BPM Detection and Sync,
Crates and Playlists, Disk Browsing, iTunes Integra-
tion (F,U)

ITS,UD

Quad Sampler Decks (F,O) UD
Recording (F,U) ITS,UD
ReplayGain Normalization (F,U) -
Shoutcast Broadcasting (F,U) (ITS,UD)

1) Provided feature list: Similarly to Radiant, the list of
provided features was taken from a website 3 with short mar-
keting descriptions. The feature list contained 20 functional
features (see Table VI). Features which are part of a more
general feature (e.g. library or deck) are listed in one row.

2) Identification of feature information from UD and ITS
(RQ1): The UD is part of a general documentation WIKI
which also contains developer documentation and documenta-
tion for special users, like artists. We focused on the user
manual. The manual contains 14 chapters, 9 of which are
feature relevant. These 9 chapters contain 69 sections. Since
the chapters contain an introductive text, we assigned fea-
ture labels (abstraction level requirement) to 8 of them (one
chapter title was “advanced features”) and to the 54 sections
which satisfied our indicators of TABLE III (abstraction level
function). None were on the code level. The boxes marked
with UD on the right side in Figure 4 show 20 of the

3http://mixxx.org, accessed on August 8, 2014

Fig. 4. Mixxx Feature Graph (identical, not related features, and transitive
relationships are not shown)

24 identified features and their classification (the features
DJing(F,U), Microphone (F,U), Recording (F,U) and Vinyl
Control (F,U) are not linked to the provided features and thus
have been omitted in the Figure). The feature Analysis refers to
the preparation of harmonic mixing, Controlling Mixxx allows
setting device specific options, and Vinyl control allows to
use records to control digital playback. All of the identified
features describe a functionality. The number of sections or
chapters corresponds to the complexity of the features. Music
Management is the only feature described in detail (7 pages)
which is not related directly to a chapter.

The Mixxx Project uses Launchpad as ITS. It contains 2211
issues (including bugs and feature requests), 113 so-called
blueprints and 138 questions. The issue classification in bugs
and features as made by the developers is very reliable for the
issues we analyzed. The blueprints describe refactorings and
higher level requirements for features. Blueprints and issues

102Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://mixxx.org

are often linked, and issues are often linked with the code,
but not always. Since blueprints contain more feature-relevant
information than issues in the way Launchpad is used in the
project, we analyzed all 113 blueprints for feature information.
In our analysis, we included 59 blueprints with the status
implemented.

The boxes marked with ITS on the left side in Figure
4 refer to 15 of the 21 features identified from the ITS
(Development (Q,O), Internationalization (F,O), Microphone
Usage (F,U), Playback (F,U), Recording (F,U) and emphVinyl
Control (F,U) are not linked to the provided features and
thus have been omitted in the Figure). All of the identified
features describe functionality. Beat Detection analyzes the
speed of a track. Beat looping repeats a short part of the
track. Codecs are different digital formats. As for Radiant,
Development describes support for the developers. Skinning
refers to different UI looks. Syncing matches the speed of
different songs for the mix. Only few blueprints are on the
code level.

87,1

87,5

10,7

12,9 1,7
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UD ITS

Mixxx

Code

Funct.

Requ.

(a) Abstraction Level

60 60

38
48

63 58

40
30

38

38

25 33

10
24

14 13 8
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ITS UD List UD List ITS

Feature from List Feature from ITS Feature from UD

PO

I

N

(b) Feature Relationships (N = Not Related, I
= Identical, PO = Partial or Overlapping)

Fig. 5. Mixxx Commonalities and Differences of UD, ITS, and Feature List

3) Commonalities and differences of UD and ITS and pro-
vided features (RQ2): Figure 4 and 5 illustrate the common-
alities and differences of the UD, ITS, and provided feature
sets. The graph in Figure 4 does not show the identical features
AutoDJ, Microphone Input, Recording and Vinyl Control, as
well as the 3 features of ITS (Development, Internationaliza-
tion, Playback) and one feature each of UD (DJing) and List
(Replay) which are not related to other features.

There are fewer provided features (a tenth) compared to
Radiant (roughly a third) which have not been mentioned
by UD or ITS. This was expected from the fact that the
ITS blueprints and the UD seem to be well maintained.
Similar to Radiant, more features from the provided list were
directly identified from the ITS (40%) compared to the 30%
of the provided features identified from the UD. However, the
difference is smaller. Furthermore, there are more ITS features
(24%) which are not related to provided features. Two of them
are related UD features. There are many identical features
between ITS and UD (between 30 and 40%) and very few
non-related ones(< 10%). However, there are also many part-
of-relationships between ITS features and either UD (48%) or
the provided features (38%). And there are even more PO-
relationships from UD features to either the ITS (58%) or the

provided features (63%). This indicates that even when well-
maintained, the granularity in the different sources is different.
The distinction between F und Q is not relevant as no Q
features were involved. Again, no pattern wrt O/U could be
found.

4) Automatic identification of feature information (RQ3):
As the Mixxx ITS is maintained very systematically, the
possibilities to categorize the status (e.g. implemented, draft,
in progress) as well as the issue (e.g. bug, wishlist, blueprint)
could be used as indicators for feature relevant information.
The identification of the feature labels remains a problem.

The Mixxx UD is a well-structured document separated
into chapters and two section levels. 9 of the 14 chapters
are feature-relevant, compared to 3 out of 11 for Radiant.
Often the chapter and section titles directly contain feature-
relevant terms. As for Radiant the relevant chapters can be
identified just by manually looking at the chapter titles. For
the identification of features on the requirement abstraction
level, the chapter titles can be used. The section titles on the
first section level can be used for feature identification on the
function abstraction level.

C. Results of Project Apache OFBiz

1) Provided feature list: The project OFBiz was studied
only partially. As the project is very large a complete analysis
was not feasible. The feature page4 lists features on the
requirements level. We decided to look at the manufacturing
feature (one component) and the corresponding UD and issues,
only.

2) Identification of feature information from UD and
ITS(RQ1): The UD for OFBiz is organized as a wiki. How-
ever, the wiki only contains more or less empty pages and
some basic structures (e.g. sections for role specific documen-
tation, e.g., for managers). Based on this fact, we decided to
use the outdated Manager Reference for our UD analysis (last
updated in 2004, uploaded to the wiki as PDF attachment
between 2006-12 and 2007-01). Based on the experience
gained from the previously analyzed projects, we looked at
the chapter and section headings, only. The document contains

TABLE VII. OFBIZ MANUFACTURING FEATURES FROM UD AND ITS

Feature UD Feature ITS

Bill of Materials (F,U) Data Security (Q,O)
Bill of Mat. Simulation (F,U) Internationalization (F,O)
Calendar (F,U) Manage orders (F,U)
Job Shop (F,U) Manage Products (F,U)
Manufact. Res. Planning (F,U) Manage Production Machines (F,O)
Manufacturing Rules (F,U) Manage Production Runs ()
Production Run (F,U) Resource Planning (F,U)
Reports (F,O)
Requirement Verification (F,U)
Routing (F,U)
Routing Task (F,U)
Shipment Plans (F,U)
Status Report (F,U)

4http://OFBiz.apache.org, accessed on August 8, 2014

103Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://OFBiz.apache.org

343 subdivisions organized into 4 hierarchy levels. We decide
to remove the sections on the 3rd and 4th hierarchy level, since
they only refer to single attributes, e.g. of specific input form
values. 8 chapters and 28 sections remained. From this we
could identify 13 distinct features (cf. Table VII, left column).
8 of the features are on the requirement abstraction level, based
on the chapters. The other 5 features are mostly additional
aspects of the requirement abstraction level features, i.e. they
have been identified in subsections of the respective chapters.
As expected for a manager reference, code details were not
mentioned. Also, quality features were not mentioned and only
one object of the domain.

The OFBiz Project uses Jira as ITS. It contains 5567 issues,
120 of these issues are related to the manufacturing component
which was determined by filtering the ITS. We analyzed all
120 issues of the manufacturing component and identified 7
features (cf. Table VII right column). Security was the only
quality aspect identified.

In OFBiz the issue feature descriptions are generally longer
(in terms of words) as in the other projects. Requirements, for
example are described in detail and often include multiple
solution ideas (though not mentioning concrete code), e.g.
“[...] this can be implemented in many ways: a) expanding
the concept of Fixed Asset groups [...] b) (more complex)
add new association entities to link a task [...]”. Although
this suggests a very accurate handling of the ITS, we found
multiple misclassifications of issues (e.g. bugs classified as
improvements). In addition, some features were distributed
over many issues. E.g. I18N included multiple issues for every
single language and one main issue describing the feature and
none of these were linked.

TABLE VIII. COMMONALITIES AND DIFFERENCES OF ITS AND UD

Feature ITS (7) Feature UD (13) Map

Data Security (Q,O), In-
ternationalization (F,O)
Manage Orders (F,U) Bill of Materials (F,U), Bill of Ma-

terials Simulation (F,U), Calendar
(F,U). Shipment Plans (F,U)

(O)

Manage Products (F,U),
Manage Production Ma-
chines (F,O)

Manufacturing Rules (F,U) (O)

Manage Production Runs
(F,U)

Production Run (F,U) I

Ressource Planning (F,U) Manufacturing Resource Planing
(F,U)

I

Job Shop (F,U), Reports (F,O), Requ.
Verification (F,U), Routing (F,U),
Routing Task (F,U) Status Report
(F,U)

3) Commonalities and differences of UD and ITS and
provided features (RQ2): As the descriptions of the UD were
coarse and we mainly looked at the headings, we did not derive
a full mapping. Table VIII shows a rough mapping of the
features of UD and ITS. Two features are identical and a few
have overlaps. However, almost half of the UD features were
not mentioned in the issues. This can be explained by the fact

that the UD was outdated.

4) Automatic identification of feature information (RQ3):
The OFBiz analysis did not reveal any new insights wrt
automatic identification. For the UD we only used the chapter
and section titles manually. Thus, this could be also the basis
for an automatic identification. As for Radiant, most feature
related information was identified in older issues. In the ITS,
we found a feature ratio over all issues from 10 to 18%
between 2006 and 2009 and only about 3 to 5% between 2009
and 2013.

D. Overall Results

1) Identification of feature information from UD and ITS
(RQ1): ITS as well as UD can serve to identify features. The
features, however, are described on different abstraction levels
[7] (cf. Figure 6). For both, Mixxx, and OFBiz the UD does
not contain features on code level and > 75% on function
level. In contrast, the UD of Radiant mainly contains feature
information on the code and function levels. In the ITS, feature
information is found on all three levels, but, similar to the UD,
there are only few features on the requirements level, and the
distribution of abstraction levels in the ITS is quite different
for each of the projects. Quality features are typically not

34,4
46,0

10,7

50,0

54,7
44,0

87,1

87,5

76,0

25,0

10,9 10,0 12,9 1,7
24,0 25,0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UD ITS UD ITS UD ITS

Radiant Mixxx OFBiz

Code

Funct.

Requ.

Fig. 6. Abstraction Levels

mentioned in the UD. Radiant and OFBiz UD’s mention few
quality features and Mixxx’s UD none. Most quality features
were found in the ITS.

2) Commonalities and differences of UD and ITS and pro-
vided features (RQ2): There is a noticeable overlap between
the feature information in the ITS, the UD, and the provided
feature list. In the Radiant project, roughly a third of the listed
features could not be identified by UD or ITS, in the Mixxx
project only a tenth could not be identified. Similarly, for
Radiant only a third and for Mixxx only a tenth of the features
was not related between ITS and UD. This indicates that,
both ITS and UD could be used to record feature information
systematically.

As the ITS is mainly important for the developers and the
UD is targeted to the users, it seemed more likely that the
UD better records the listed features [9]. However, it turned
out that UD and ITS record the listed features equally well.
It is interesting to note that in both projects 30-50% of the

104Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

features were identical (between List and UD, List and UD,
and ITS and UD). This means that in the case of Mixxx
there is a high percentage of overlapping features, while in
the case of Radiant there are few overlapping features. Thus,
even for a systematically documented project like Mixxx, a
feature representation generated from UD or ITS would be
different from the marketing feature list. Thus, different feature
representations are likely needed for different purposes.

3) Automatic identification of feature information (RQ3):
We have preliminary insights for automatic identification. It
seems feasible to manually delimit the relevant pages of the
UD and to focus on page or section titles to identify feature
labels. Also for the ITS, there are first ideas to delimit the
relevant issues, but the label identification will require more
sophisticated techniques. As neither ITS nor UD were a perfect
source, it seems likely that at least both sources must be
searched and combined to yield a complete feature set.

Although best practices in RE suggest to describe new
features as as-is and to-be situations, we found only one
issue which mentions both situations. Generally, the to-be
situation was described and the as-is situation was implicit.
Furthermore, the quality and use of language, the quality of
descriptions as well as categories and links differ from project
to project. An automatic identification therefore needs to be
“tuned” for each project.

From our experience, we see the following hints for using
ITS and UD to record features instead of setting-up a separate
feature documentation:

• The Mixxx project shows that feature information can
be explicitly managed within an ITS, if it is separated
from (but linked to) the usual stream of bugs and change
requests. Furthermore, it seems likely that issues in ITS
could profit from an abstraction classification or traces to
more abstract information.

• Berry et al. recommend structuring an UD into objects,
use cases and advanced features [9]. The UD of the
projects have some similarities to this structure, but this
could be improved. It might be helpful to structure the
feature list accordingly.

• Blueprints and issues are much simpler to allocate to soft-
ware components, because both have a technical nature.
Without detailed knowledge of the software architecture,
this is almost impossible for UD. Thus, if relationships
between features and software components are important,
ITS should be used as a source.

IV. RELATED WORK

In this section, we discuss related work which derives
feature information from diverse sources manually or semi-
automatically.

Ghazarian identified generic classes of software functional-
ity from 15 different requirement specifications in the domain
of web-based enterprise systems. The identified classes such
as data input or user interface navigation could potentially

be useful as indicators of feature information [15]. They also
describe that much feature-related information could be found
and categorized analyzing only a small amount of issues,
respectively only section and paragraph names in the UD.
Their classification, however, is very technical and uses low
abstraction levels. In contrast, our work classified features for
different abstraction levels.

Noll et al. analyze an open source project to identify by
whom and where requirements are proposed [16]. They select
13 given features and then trace them. In contrast we first
looked at our data sources to manually identify features and
then compared them with the given feature list. Thus, we
gathered more data about how features are described in detail.

The following approaches use text mining to derive feature-
like information from requirements specifications. Thus, their
data sources are much more elaborate than the feature de-
scriptions in ITS. Although the quality of UD and of the
requirements specifications could be comparable, requirements
specifications are rather structured than UD. Thus, results
from both document sources are not quite comparable. These
approaches can be used as a starting point for our future work
on a semi-automatic feature-derivation approach. Gacitua et
al. provide an approach for identifying abstractions from text
documents which outperforms the usual information-retrieval
methods [17]. In [18], Boutkova and Houdek describe an ap-
proach applied in industry to derive features from requirements
documents based on a list of nouns. In the study it provided
helpful input for experts.

Kuhn et al. recover topics from source code [19] and note
that some extracted clusters represent software features. Since
the features are extracted from source code, they are on
the functional level (for example handling text buffers). In
contrast, this paper is interested in feature descriptions on
different abstraction levels.

V. CONCLUSION AND LESSONS LEARNED

The exploratory study of the OSS projects has shown
commonalities and differences of feature information in UD
and ITS and provided feature lists. The results are promising
in the sense that ITS and UD provided relevant features. The
results also show that deriving a complete feature set semi-
automatically will be very difficult and will depend on the
project.

In the projects we studied, the feature information within the
project was consistent and some feature descriptions formed
patterns (e.g. headings in the UD often denoted features).
However, most of these patterns were not transferable to other
projects.

During our research, we found that feature information is
contained in only few issues of an ITS. Due to an ITS’s nature,
other issues like bugs are also tracked. Although many ITS
provide the option to categorize issues manually as feature or
bug, the quality of those manual categories depends largely on
the project. Therefore, an analysis of the natural language is

105Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

also needed to identify all feature information. Furthermore,
the feature information can be scattered all over the issue and
can be found in title, description or even comments (although
title and description are most common). Therefore, only a very
small part of the natural language in an issue contains the
feature description apart from rationale, solution ideas, social
interaction and so on.

For UD, the starting point to detect and extract feature
data semi-automatically is the structure of the respective
documents. The analysis of the projects in this study showed
that different structure levels in UD map to different feature
abstraction levels. Our first experiments in the direction of
using the UD headings and applying filter operation to remove
common conjunctions seems promising. Moreover, certain UD
parts, like administrative instructions, can be omitted for fea-
ture derivation since they do not contain feature-relevant data.
To create a feature list from ITS and UD data automatically,
a structured way of storing feature information would be
necessary.

In future work, we will develop semi-automatic feature
identification algorithms as well as guidelines for maintaining
feature information in UD and ITS. They will be applied
in industry to explore whether the identified features can be
successfully used in release management.

ACKNOWLEDGMENT

This work is partly funded by the Bonn-Rhein-Sieg Univer-
sity Graduate Institute. We thank the Open Source community
for the freely available data that was used in this research.

REFERENCES

[1] S. Fricker and S. Schumacher, “Release planning with feature trees:
industrial case,” in Requirements Engineering: Foundation for Software
Quality. 18th International Working Conference, REFSQ 2012, vol.
LNCS 7195. Essen, Germany: Springer Berlin Heidelberg, 2012, pp.
288–305.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feasibility Study Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Software Engineering Institute, Carnegie Mellon
University, Tech. Rep. November, 1990.

[3] P. Shaker, J. M. Atlee, and S. Wang, “A feature-oriented requirements
modelling language,” in 2012 20th IEEE International Requirements
Engineering Conference (RE). IEEE, Sep. 2012, pp. 151–160.

[4] T. a. Alspaugh and W. Scacchi, “Ongoing software development without
classical requirements,” in 2013 21st IEEE International Requirements
Engineering Conference (RE). Rio de Janeiro, Brazil: Ieee, Jul. 2013,
pp. 165–174.

[5] B. Paech, R. Heinrich, G. Zorn-Pauli, A. Jung, and S. Tadjiky, “An-
swering a Request for Proposal Challenges and Proposed Solutions,” in
18th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 12), vol. LNCS 7195. Essen,
Germany: Springer, 2012, pp. 16–29.

[6] G. Zorn-Pauli, B. Paech, T. Beck, and H. Karey, “Analyzing An
Industrial Strategic Release Planning Process A Case Study At Roche
Diagnostics,” in International Working Conference on Requirements En-
gineering: Foundation for Software Quality, vol. LNCS 7830. Springer,
2013, pp. 269–284.

[7] T. Gorschek and C. Wohlin, “Requirements Abstraction Model,” Re-
quirements Engineering Journal, vol. 11, no. 1, pp. 79–101, Nov. 2006.

[8] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code. A taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[9] D. M. Berry, K. Daudjee, I. Fainchtein, J. Dong, M. A. Nelson,
T. Nelson, and L. Ou, “User s Manual as a Requirements Specification
: Case Studies,” Requirements Engineering, vol. 9, no. 1, pp. 67–82,
2004.

[10] K. Herzig, S. Just, and A. Zeller, “Its Not a Bug, Its a Feature: How
Misclassification Impacts Bug Prediction,” in Proceedings of the 2013
International Conference on Software Engineering (ISCE). IEEE Press,
2013, pp. 392–401.

[11] R. K. Yin, Case Study Research: Design and Methods, 5th ed., ser.
Applied Social Research Methods. SAGE Publications, Inc., 2013.

[12] C. Robson, Real World Research, 3rd ed. Wiley, 2011.
[13] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, Dec. 2009.

[14] D. M. Blei, “Probabilistic topic models,” Communications of the ACM,
vol. 55, no. 4, p. 77, Apr. 2012.

[15] A. Ghazarian, “Characterization of functional software requirements
space: The law of requirements taxonomic growth,” in 2012 20th IEEE
International Requirements Engineering Conference (RE). Chicago,
Illinois, USA: IEEE, Sep. 2012, pp. 241–250.

[16] J. Noll and W.-M. Liu, “Requirements elicitation in open source software
development: a case study,” in Proceedings of the 3rd International
Workshop on Emerging Trends in Free/Libre/Open Source Software
Research and Development - FLOSS ’10. New York, New York, USA:
ACM Press, 2010, pp. 35–40.

[17] R. Gacitua, P. Sawyer, and V. Gervasi, “Relevance-based abstraction
identification: technique and evaluation,” Requirements Engineering,
vol. 16, no. 3, pp. 251–265, Jun. 2011.

[18] E. Boutkova and F. Houdek, “Semi-automatic identification of features in
requirement specifications,” in 2011 IEEE 19th International Require-
ments Engineering Conference. Trento, Italy: Ieee, Aug. 2011, pp.
313–318.

[19] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering: Identifying
topics in source code,” Information and Software Technology, vol. 49,
no. 3, pp. 230–243, Mar. 2007.

106Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

	Introduction
	Case Study Planning and Operation
	Study Definition and Planning
	Study Projects
	Study Operation
	Feature Indicators
	Procedure

	Threats to Validity

	Results
	Results of Project Radiant CMS
	Provided feature list
	Identification of feature information from UD and ITS (RQ1)
	Commonalities and differences of UD and ITS and provided features (RQ2)
	Automatic identification of feature information (RQ3)

	Results of Project Mixxx
	Provided feature list
	Identification of feature information from UD and ITS (RQ1)
	Commonalities and differences of UD and ITS and provided features (RQ2)
	Automatic identification of feature information (RQ3)

	Results of Project Apache OFBiz
	Provided feature list
	Identification of feature information from UD and ITS(RQ1)
	Commonalities and differences of UD and ITS and provided features (RQ2)
	Automatic identification of feature information (RQ3)

	Overall Results
	Identification of feature information from UD and ITS (RQ1)
	Commonalities and differences of UD and ITS and provided features (RQ2)
	Automatic identification of feature information (RQ3)

	Related Work
	Conclusion and Lessons Learned
	References

