
Communication Aspects with CommJ: Initial Experiment Show Promising
Improvements in Reusability and Maintainability

Ali Raza
Computer Science Department

Utah State University
Logan, Utah, USA

ali.raza@aggiemail.usu.edu

Jorge Edison Lascano
Computer Science Department

Universidad de las Fuerzas Armadas
ESPE

Sangolqui, Ecuador
jelascano@dcc.espe.edu.ec

Stephen Clyde
Computer Science Department

Utah State University
Logan, Utah, USA

stephen.clyde@usu.edu

Abstract—A 2013 ICSEA paper introduced CommJ as an
extension to AspectJ for encapsulating communication-related
crosscutting concerns in modular, conversation-aware aspects.
This paper now presents preliminary, but encouraging results
from a subsequent study that shows six different ways in which
CommJ can improve the reusability and maintainability of
applications requiring network communications. We begin by
defining a reuse and maintenance quality model as an
extension to an existing quality model. We then identify six
hypotheses that can be measured using metrics from the
quality model. Finally, to test the hypotheses, we compare
implementations of different sample applications across two
study groups: one for CommJ and another for AspectJ. Results
from the study show improvement in the CommJ for all six
areas addressed by the hypotheses.

Keywords-aspect-oriented programming (AOPL);
crosscutting concerns; AspectJ; software reuse and
maintenance; software metrics.

I. INTRODUCTION
Aspect-oriented Software Development (AOSD) first

started to appear in the literature in 1997 [4][12] as a way of
reducing the scattering and tangling of code caused by
crosscutting concerns [15]. Its contribution was to
encapsulate the essence of crosscutting concerns into
abstractions, called aspects. An aspect is an Abstract Data
Type (ADT) with all of the same capabilities as an object
class, plus a few enhancements. Specifically, it can contain
advice, which is logic for implementing crosscutting
concerns that is automatically woven into appropriate places
in the base applications. The aspects also include pointcuts,
which describe where and when the advice weaving takes
place. More specifically, each pointcut identifies a set of
joinpoints, which are intervals in the execution of the system
and weaving can occur before, after, or around these
intervals [15].

AspectJ is an Aspect-oriented Programming Language
(AOPL) that extends Java for aspects [14]-[17]. It allows
programmers to weave advice into joinpoints that correspond
to constructor calls or executions, methods calls or
executions, class attribute references, and exceptions. The
problem is that AspectJ, like other AOPLs, does not support
the weaving of advice into high-level abstraction, like Inter-
Process Communication (IPC) where each conversation has
an independent context. IPC are ubiquitous in today’s
software systems, yet they are rarely treated as first-class

programming concepts. Instead, developers typically have to
implement communication protocols using primitive
operations, such as connect, send, receive, and close. The
sequencing and timing of these primitive operations can be
relatively complex.

The CommJ framework (Section II) extends AspectJ so
developers can weave crosscutting concerns into IPC in a
modular and reusable way, while keeping the core
functionality oblivious to those concerns. Specifically, it
allows programmers to view individual conversations as
uniquely identifiable concepts, with its own context and
weave logic into a base application that makes use of the
context information for individual conversations.

Our study investigates potential changes to the reuse and
maintenance to software when developers use CommJ. It
does so by evaluating certain desirable characteristics
defining a quality model (Section III) that can be measured
by computable metrics (Section IV). Based on initial
theoretic notions, we hypothesize that developers should see
reuse and maintenance improvements relative to six desired
qualities (Section V) defined by the quality model. Section
VI talks about our experiment methodology, which required
formal approval from Institutional Review Board (IRB) [10],
selection of the sample software application, and identifying
interesting crosscutting concerns that would give us good
coverage. The methodology also included typically,
supporting activities such as recruitment and training of the
developers. After the experiment, we collected data from the
code, surveys, hourly journals, and questionnaires.

From the results (Section VII) of the study, we conclude
that IPC software components developed with CommJ were
more cohesive and oblivious. They were also less scattered,
coupled, complex and smaller in size than similar
components programmed in AspectJ. These preliminary
results lead us to believe that further experimentation with
CommJ and refinement of its framework could prove to be
very beneficial to a wide range of software systems.

II. HIGH-LEVEL OVERVIEW OF COMMJ
CommJ enables the partitioning of a complex

communication problem into manageable cohesive concepts
and promotes greater reuse with better maintainability.
Figure 1 shows an architectural block diagram that represents
relevant conceptual layers and their dependencies. The
following paragraphs describe these high-level components
and their dependencies. More details on the architecture,

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

design and examples are given in [1].
The lowest layer on the left is conceptual model, called

the Universe Model for Communication (UMC). It is a
formal description of common knowledge related to IPC. It
describes, for example, the notation of a communication
protocol in terms of role-specific state machines and message
types. It then defines a conversation as an instance of two or
more processes exchanging data according to the behavioral
rules defined by a protocol. One important part of the UMC
is the definition of message. Regardless of the system, every
message is a uniquely identifiable thing (object) that is part
of a conversation. How a system identifies messages and
tracks their relationship to conversations are different, but
the underlying concept is assumed to be true for systems that
use IPC.

The next layer is the Core CommJ Infrastructure. It is an
AspectJ library that defines message-event joinpoints and
provides mechanisms to track conversations, which will hold
value context information for communication aspects. A
software developer that wants to use communication-related
aspects simply has to include this library in the project.

The Reusable Aspect Library (RAL) is a toolkit-like
collection of communication aspects that application
programmers should find useful for many different kinds of
applications. They include aspects for measuring turn-around
times, tracing conversations, and introducing behaviors into
complex, multi-step protocols [1].

Application-level Aspects are those written by the
application programmers, either using the abstractions
provided by CommJ directly or by specializing the aspects in
RAL. These aspects can encapsulate complex crosscutting
behaviors in understandable and maintainable software
components, without sacrificing obliviousness or flexibility.

III. EXTENDED QUALITY MODEL (EQM)
McCall identifies a list of eleven quality attributes [2],

which have influence on quality of the software in general.
Of these, we selected maintainability and reusability as the
important qualities to consider initially because of potential
for cost savings they both represent. Further work could
focus on some of the other nine qualities.

To formalize the reuse and maintainability qualities, we
adapt and extend the Sant’Anna quality model [3], because it

allows for more generalized measurement, compared to
Lopes’ work [4] and it supports different types of
implementation environments. The author builds the Quality
model [3] using Basili’s GQM Methodology [6]. Basili
provides a three-step framework: (1) list the major goals of
the empirical study, (2) derive from each goal the questions
that must be answered to determine if the goals have been
met; (3) decide what must be measured in order to be able to
answer the questions adequately. In a nutshell, the model
consists of Qualities, Factors, Internal Attributes, and
Metrics (see Figures 2 and 3 for more details.).

The qualities, such as reusability and maintainability, are
the most abstract of the concepts in the model and represent
the ultimate goals of “good” software. Each quality is
determined by one or more factors, which are in turn
determined by internal attributes. Although still abstract,
these internal attributes are properties related to well-
established software-engineering principles and there exists
some informal notations on how to assess or evaluate them.
And, that’s where the metrics come in. The metrics means of
measuring the internal attributes, or at least giving them a
rough relative ranking. Ideally, we would like to be able to
compute all metrics automatically, but that is not mandatory.

In our EQM [3], localization of design decisions, and
code obliviousness were not part of original quality model
[3]. However, we introduced them in our EQM for two
reasons. Firstly, Parnas [27], in his landmark paper proposes
three important characteristics of modular code, which were
understandability, flexibility, and localization of design
decisions (information hiding). Hence, reasoning
maintainability and reusability only in terms of
understandability and flexibility is not complete.
Introduction of obliviousness is also equally important. By
the time Parnas proposed the definition of modular code,
obliviousness had not been invented as a fundamental design
principle. However, in the context of our research
experiment, which depends heavily on measuring
crosscutting concerns, code obliviousness becomes very
critical.

Figure 1. CommJ Architectural Block Diagram.

	

Figure 2. Extended Quality Model (EQM).

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 3. Measurement Metrics in EQM.

	

IV. EQM METRICS
The EQM includes 16 metrics for the six different

internal attributes shown in Figure 3. Ten of the metrics can
be computed automatically [20] from the code written by the
subjects. The others have to be computed by hand. Below are
brief descriptions of these metrics, so the reader can better
understand the results presented in Section VII.

A. SoC Metrics
Separation of Concerns (SoC) defines ability to identify,

encapsulate and manipulate those parts of software that are
relevant to a particular concern [23]. Concern Diffusion over
Application (CDA) and Concern Diffusion over Application
Operations (CDO) are the two SoC metrics. CDA counts the
number of primary components (class or aspect) whose main
purpose is to contribute to the implementation of a concern.
CDO counts the number of primary operations and advices
that contribute to the implementation of a concern.

B. Coupling Metrics
Coupling is an indication of the strength of

interconnections between the components in a system [24].
The EQM describes three coupling metrics. First, Coupling
between Components (CBC) counts the number of other
classes and aspects to which a class or an aspect is coupled.
Excessive coupling of concerns increases CBC, which can be
detrimental to the modular design and prevent reuse &
maintenance. Depth Inheritance Tree (DIT) counts how far
down in the inheritance hierarchy a class or aspect is
declared. As DIT grows, the lower-level components inherit
or override many methods and leads to design complexity
and understanding problems. Number of Children (NOC)
counts the number of children for each class or aspect. As
NOC increases, the abstraction represented by the parent
component can be diluted.

C. Cohesion Metrics
The cohesion of a component is a measure of the

closeness of relationship between its internal components
[24]. Lack of Cohesion in Operations (LCO) is the only
cohesive metric in EQM that measures the cohesion of a
class or aspect in our model. It does so in terms of number of
method and advice pairs that do not access the same instance
variable and hence should be separated.

D. Size Metrics
Size metrics physically measure the length of a software

system’s design and code [25]. EQM describes the following
six size related metrics. Lines of Code (LOC). The greater
the LOC, the more difficult it is to understand and manage
the software. Method lines of Code (MLOC) is the average
number of the lines of code per method. Kemerer [9] states
that the greater the MLOC for a component, the more
complex the component would be. Number of Operations
(NO) counts the number of operations in a component.
Objects with large number of operations are less likely to be
reused. Number of Parameters (NP) counts the number of
parameters for methods in each class or aspect. A method
with more parameters is assumed to have more complex

collaborations and may call many other method(s).
Vocabulary Size (VA) counts the number of system
components, i.e., the number of classes and aspects into the
system. Sant’Anna [3] claims that if VA increases, it is an
indication of more cohesion and less tangling for set of
ADTs. Finally, Weighted Operations per Component (WOC)
metric measures the complexity of a component in terms of
its operations. The operation size measure is obtained by
counting the number of parameters of the operation. An
operation with more parameters than another is likely to be
less understandable.

E. Complexity Metric
Complexity measures how components are structurally

interrelated to one another. EQM uses Cyclomatic
Complexity (CC) for measuring the complexity of the
program. Mathematically, the cyclomatic complexity of
a structured program is defined with reference to the control
flow graph of the program. The metric is defined by the
number of independent paths and provides an upper bound
for the number of test cases that must be conducted to ensure
that all statements have been executed at least once. A high
value of CC affects program maintenance and reuse.

F. Obliviousness (Aspects) Metrics
Obliviousness is the idea that core functionality should

not have to know about crosscutting concerns [13]. EQM
defines three quality metrics for obliviousness. First, Number
of Inter-type Declarations (NITD). A higher value of NITD
indicates a tighter coupling between the aspect and
application components. Second, Aspect Scattering over
Components (ASC) counts the number of aspect components
scattered over application components. It measures the
tangling of aspects in the application components. More
tangling of aspects in the program makes the original
application less reusable and maintainable. Finally, Aspect
Scattering over Component Operations (ASCO) counts the
number of aspect components scattered over application
component operations. ASC gives a high-level overview of
the application tangling in the aspect components but ASCO
provides more insight on operations-level tangling of
applications inside aspect components.

V. HYPOTHESIS
The theoretical ideas that underpin CommJ lead to the

following six hypotheses, with respect to comparing the

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

reusability and maintainability of IPC software built with
CommJ instead of just AspectJ.
• Hypothesis 1: If crosscutting IPC concerns are

effectively encapsulated in CommJ aspects, then the
software has better separation of concerns and less
scattering (as described by CDA, CDO in Section IV.A
than equivalent systems developed with AOP design
techniques.

• Hypothesis 2: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software has
lower coupling (as described by CBC, DIT, NOC in
Section IV.B) than equivalent systems developed with
AOP design techniques.

• Hypothesis 3: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software has
higher cohesion and less tangling (as described by LCO
in Section IV.C) than equivalent systems developed with
AOP design techniques.

• Hypothesis 4: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software is not
significantly complex (as described by CC in Section
IV.D) than equivalent systems developed with AOP
design techniques.

• Hypothesis 5: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software is
significantly more oblivious (as described by NITD,
ASC, ASCO in Section IV.E) than equivalent systems
developed with AOP design techniques.

• Hypothesis 6: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software is not
significantly larger (as described by LOC, MLOC, NO,
NP, VA, WOC in Section IV.F) than equivalent systems
developed with AOP design techniques.

VI. EXPERIMENT METHODOLOGY
The research experiment consisted of the following steps:

A. Experimental Approval
In the first step, we submitted an application for

conducting this Human Research Experiment to the IRB [10]
and got its approval. All the researchers then passed the
online human research experiment-training course offered
through Collaborative Institutional Training Initiative (CITI)
[11].

B. Selection of Applications and Crosscutting Concerns
We selected applications that were multithreaded, used

whether JDK sockets or channels. The applications were
diverse in the way they implemented IPC and therefore
provide good coverage of different types of communication
heterogeneities. Finally, each application supported more
than one communication protocol. Table 1 lists the set of
selected applications.

Since the experiment would eventually require
developers to modify or extend applications for requirements
that represented communication-related crosscutting
concerns, our methodology included a step, which
systematically selected our representative crosscutting
concerns. Developers would have to apply each of these to
the applications, individually. Additionally, to minimize
noise in our data, we wanted to make sure that these
crosscutting concerns were sufficiently simple that a novice
programmer could understand the need and come up with a
solution in less than 10 hours. Table 2 introduces the set of
selected crosscutting concerns.

C. Recruitment and Training of Participants
To transparently recruit the candidates, we sent invitation

letters and recruited seven volunteer developers who were
experienced in object-oriented software development, Java
and software-engineering design principles such as
modularity and reusability. We then randomly organized
them into two study groups: A and B. Group A programmed
using an AOP approach and Group B used CommJ. Next, the
participants completed a survey that assessed their
background and skill levels. We also provided AOP training
to developers in Group A, and had them worked through
some practice applications. Similarly, we trained Group B

TABLE I. SELECTED SAMPLE APPLICATIONS

Application Name Description
Levenshtein Edit-Distance
Calculator (LD)

A server will calculate the LD between two input strings, provided by the client,
over a connection-oriented communication.

File Transfer Program (FTP) A file transfer protocol over connection-oriented communication.

Weather Station Simulator (WS) A simple weather station simulator, supported by a Transmitter and a Receiver.
	

TABLE II. SELECTED CROSSCUTTING CONCERNS

Application Name Description

Version Compatibility
This concern adapted one version of the message to another, so processes running
different versions could still communicate with each other. The crosscutting
concern included knowledge of converting one version to another and conversely

Symmetric-Key Encryption It encrypted the communication between a sender and receiver using symmetric-
key encryption

Measuring Performance It measured some performance related statistics for message-based
communications between sender and receiver

	

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

developers with CommJ, and had them worked through some
practice applications.

D. Experiment Phases
In the first phase, participants filled a pre-implementation

questionnaire, developed the application using initial
requirements, recorded hourly journals and completed a post
implementation questionnaire. In the second phase, we
requested enhancements (sample applications and
crosscutting concerns), had them revised their
implementation accordingly, and then collected those
software systems. Participants again completed the pre and
post questionnaire and wrote their experiences in the hourly
journals.

Finally, after the second phase, we analyzed and
evaluated the reusability and maintainability using various
software artifacts, which included surveys, questionnaires,
hourly journals, and actual code.

We used both manual computation and automated tools
to compute measurements for all 16 metrics [20].
Experiment generated a total of 28 software systems. With
16 code metrics in the EQM, we had a total of 448
measurements, 280 computed automatically with a tool [20]
and 168 calculated manually.

VII. RESULTS
This section presents the data collected from the

experiment and our results in context of the six hypotheses.
In the following graphs, the vertical axes represent the
measurements, and the horizontal axes represent the four
activities of the experiment. For each activity there are two
bars: a blue bar is for the results of AspectJ group and a
green bar for CommJ group.

A. Hypothesis 1: Better Separation of Concerns
From the graph in Figure 4, we found that CDA and

CDO values for the CommJ group went to zero in all four
activities of the experiment. The reason for this phenomenon
is that CommJ pointcuts provide total obliviousness between
the application and communication-related crosscutting
concern. AspectJ, components and their operations for
crosscutting concern were significantly more diffused in the
application because the pointcuts had to be tied to
programming constructs instead of communication

abstractions. From these results, we can conclude that
Hypothesis 1 holds true for better separation of concerns in
CommJ than in AspectJ.

B. Hypothesis 2: Reduced Coupling
The graph in Figure 5 indicates that CommJ

implementations significantly reduced the values of CBC,
DIT and NOC as compared to AspectJ implementations.
CommJ crosscutting concerns didn’t maintain any direct
relationship with the application components and thus had a
lower CBC value. However, in AspectJ, excessive coupling
of concern with the application increased CBC, which
hindered reuse and maintenance.

The reason for higher DIT and NOC values in AspectJ
was that the participants preferred to override parent methods
in crosscutting concerns to share data structures across aspect
and application components during message passing.
However, CommJ provides comprehensive set of pointcuts
that fully encapsulates the IPC abstractions and thus
participants didn’t need to override or inherit the aspects.

From these results, we can conclude that Hypothesis 2
holds true for reduced coupling in CommJ than in AspectJ.

C. Hypothesis 3: Improved Cohesion
The results from the graph in Figure 6 demonstrate that

CommJ maintains a lower value for LCOO than AspectJ in
all phases of the experiment. Sant’Anna [3] says that LCO
measures the degree to which a component implements a
single logical function. Results argue that CommJ
implementations are more cohesive and logical than AspectJ,

Figure 4. CDA, CDO coverage over phases.

Figure 6. LCOO coverage over phases.

Figure 5. CBC, DIT, NC coverage over phases.

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

hence have a lower LCO value, which concludes that
Hypothesis 3 holds true for increased cohesion in CommJ
than in AspectJ.

D. Hypothesis 4: Reduced Complexity
The graph in Figure 7 shows that value of CC is smaller

for CommJ than AspectJ, because CommJ hides complex
IPC abstractions, which results in simple conditional
statements and less tangled code. From these results, we can
conclude that Hypothesis 4 holds true for less complex
software in CommJ than AspectJ.

E. Hypothesis#5: Improved Obliviousness
The following graph in Figures 8 shows that CommJ

implementations significantly reduced the values of NITD,
ASC and ASCO metrics.

The reason for having a zero value for NITD in CommJ
was that the participants used IPC constructs and did not
need to use inter-type declarations (ITD) for sharing of data
structures between application and aspect component.
Significant reduction in ASC and ASCO was due to the
layers of indirection between the application and aspect
components, which CommJ provides but missing in AspectJ.

From these results, we believe that Hypothesis 5 holds
true for less oblivious software concerns in CommJ than
AspectJ.

F. Hypothesis#6: Reduced Size
The graphs in Figure 9 shows that CommJ

implementations significantly reduced the metrics values for
LoC, MLoC, NP, NO and WOC and increase for VA in all
phases of the experiment.

In comparison with AspectJ, CommJ participants found
better pointcuts that helped them code the crosscutting
concerns with less LOC. This is because the UMC models
various general network and distributed abstractions. CommJ
captures those abstractions in meaningful, reusable
joinpoints and a family of base aspects, which helped the
participants implement the application crosscutting concerns
in simpler units, with no extra lines of code and fewer
operations. Hence, CommJ reduced MLOC, NO, NP and
WOC. Finally, the VA results indicate that average VA for
all programs was more for CommJ than AspectJ, which, as
Sant’Anna [3] claims, is an indication of more cohesion and
less tangling. From these results, we can conclude that
Hypothesis 6 holds true.

Besides analysis of the hypotheses via the metrics, we
also collected observations through participant
questionnaires and daily journals. On writing clean code, we
found that 100% of AspectJ participants in the Phase 1 were
struggled with identifying meaningful pointcuts for
implementing the add-on requirements, while 33% of them
still struggled with the same issue during Phase 2. On the
other side, none of the CommJ participants struggled with
this problem in either phase, which seem to indicate that
CommJ provides simple pointcuts for IPC abstractions.

On reusability, we observed that 67% of the AspectJ
participants in Phase 1 agreed that their applications might
not run after removing the extension part from the original
application. This percentage further increased to 100% in
Phase 2. On the other hand, none of the CommJ participants
felt this way for either phase. Similarly on maintainability,
100% of the AspectJ participants said that their changes (for
either phase) introduced new dependencies in the original
sample application. However, none of the CommJ
participants felt the same way. The survey also provided
some anecdotal information on frequency of bugs,
specifically 67% of the participants in AspectJ group said
that their implementation of extensions introduced new bugs
in Phase 1. This percentage further increased to 100% in
Phase 2. However, only 25% of the CommJ participants felt
that their extensions introduced bugs in Phase 1 and Phase 2.
This tells us that CommJ modularization and obliviousness
may decrease the introduction of failures and the debugging
time.

G. Threats to the Validity
Despite our best effort to perform the experiment

objectively with minimize extraneous variables, it is
important to recognize that this preliminary study has some
significant threats to validity. These include variations in
intelligence among the developers, health factor, work
environment, and personnel commitment. Still, we believe
that the results are very encouraging.

Figure 7. CC coverage over phases.

Figure 8. ASC, ASCO, NITD coverage over phases.

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

VIII. SUMMARY AND FUTURE WORK
In ICSEA 2013, we presented the design and

implementation of a new AOPL framework, called CommJ,
which allows developers to encapsulate IPC crosscutting
concerns in reusable and maintainable modules [1]. This
paper discusses an initial study on hoped-for benefits of
CommJ in comparison with AspectJ. It defines an extended
quality model, then setup an experiment methodology,
involving six quality hypotheses and data collection from 28
programs. The results from this preliminary investigation
provides sufficient evidence to conclude that CommJ is
capable of encapsulating a wide range of communication-
related crosscutting concerns and that it can provide better
maintainability and reusability. In the future, we plan to
conduct additional studies, refine the CommJ Infrastructure,
and extend the library of reusable aspects (RAL).

REFERENCES
[1] A. Raza and S. Clyde, “Weaving Crosscutting Concerns into

Inter-Process Communication (IPC) in AspectJ,” in ICSEA
2013, Venice, Italy, pp. 234-240.

[2] Jim A. McCall, “Factors in Software Quality,” in Nat’l Tech.
Information Service, 1977, vol. 1, 2 and 3.

[3] C. Sant'Anna, A. Garcia, C. Chavez, C. Lucena, and A. Von
Staa, “On the Reuse and Maintenance of Aspect-Oriented
Software: An Assessment Framework,” in 17th Brazilian
Symposium on Software Engineering (SEES 2003), Manaus,
Brazil (2003), PUC-RioInf.MCC26/03.

[4] C. Lopes, “D: A Language Framework for Distributed
Programming,” in PhD Thesis, College of Computer Science,
Northeastern University, 1997.

[5] J. Zhao, “Towards a Metrics Suite for Aspect-Oriented
Software,” in Technical-Report SE-136-25, Information
Processing Society of Japan (IPSJ), March 2002.

[6] V. Basili, G. Caldiera, and H. Rombach, “The Goal Question
Metric Approach,” in Encyclopedia of Soft. Eng., September
1994, vol. 2, pp. 528-532, John Wiley & Sons, Inc.

[7] L. Benavides, M. Sudholt, W. Vanderperren, B. Fraine, and
D. Suvee, “Explicitly distributed AOP using AWED,” in
AOSD 2006, pp. 51-62.

[8] G. Kiczales and M. Mezini, “Aspect-Oriented Programming
and Modular Reasoning,” in ICSE 2005, pp. 49-58.

[9] S. Chidamber and C. F. Kemerer, “A Metrics Suite for

Object-Oriented Design,” in IEEE Trans. Software
Engineering, June 1994, vol. SE-20, No. 6, pp. 476–493.

[10] Institutional Review Board (IRB), http://rgs.usu.edu/irb,
retrieved: August, 2014.

[11] Collaborative Institutional Trainig (CIIT),
https://www.citiprogram.org, retrieved: August, 2014.

[12] G. Kiczales et al., “Aspect-oriented programming,” in
(ECOOP), 1997, pp. 220—242.

[13] L. Bergmans and M. Aksit, “Composing Software from
Multiple Concerns: Composability and Composition
Anomalies,” in ICSE’2000. Position paper.

[14] AspectWorkz2, http://aspectwerkz.codehaus.org, retrieved:
August, 2014.

[15] ApectJ, http://www.eclipse.org/AspectJ, retrieved: August,
2014.

[16] JBoss AOP, http://www.jboss.org/jbossaop, retrieved:
August, 2014.

[17] Spring AOP,org.springframework, retrieved: August, 2014.
[18] C. Clifton and T. Leavens, “Obliviousness, Modular

Reasoning, and the Behavior Subtyping Analogy,” in SPLAT
2003.

[19] R.D. Tennent, “The Denotational Semantics of Programming
Languages,” in Communications of ACM 1976, pp. 437-453.

[20] Metrics plugin, http://metrics2.sourceforge.net, retrieved:
August, 2014.

[21] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair,
“Distributed Systems: Concepts and Design (5th ed.),” in
2011, Addison-Wesley Publishing Company, USA.

[22] R. Dromey, “A Model for Software Product Quality,” in IEEE
Transactions on Software Engineering,” in February 1995,
vol. 21, No. 2, pp. 146-162.

[23] P. Tarr and S. Sutton, “N-Degrees of Separation: Multi-
Dimensional Separation of Concerns,” in 21st International
Conference on Software Engineering, May 1999, pp. 107-
119.

[24] I. Sommerville, “Software Engineering”, 6th Edition, Harlow,
England. Addison-Wesley. 2001.

[25] N. Fenton and S. Pfleeger, “Software Metrics: ARigorous and
Practical Approach,” in 2.ed. London: PWS. 1997.

[26] A. Raza,. “Improving reuse and maintenance of
communication softwares with conversation-aware aspects,”
in Ph.D. Disseration, Computer Science Department, Utah
State Univeristy 2014.

[27] D. Parnas, “On the criteria to be used in decomposing systems
into modules,” in Communications of the ACM 15, val. 12
(December 1972), pp. 1053-1058.

Figure 9. LoC, MLoC, NP, NO, WoC coverage over phases.

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

