
A Domain-Specific Language for Modeling Performance Testing
Requirements Analysis and Design Decisions

Maicon Bernardino, Avelino F. Zorzo, Elder Rodrigues, Flávio M. de Oliveira
Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Porto Alegre, RS, Brazil
bernardino@acm.org, eldermr@gmail.com, {avelino.zorzo, flavio.oliveira}@pucrs.br

Rodrigo Saad
Dell Computers of Brazil Ltd.

Porto Alegre, RS, Brazil
rodrigo saad@dell.com

Abstract—Performance is a fundamental quality of software
systems. The focus of performance testing is to reveal bottlenecks
or lack of scalability of a system or an environment. However,
usually the software development cycle does not include this effort
on the early development phases, which leads to a weak elicitation
process of performance requirements. One way to mitigate that
is to include performance requirements in the system models.
This can be achieved by using Model-Based Testing (MBT) since
it enables to aggregate testing information in the system model
since the early stages of the software development cycle. This
also allows to automate the generation of test artifacts, such as
test cases or test scripts, and improves communication among
different teams. In this paper, we present a set of requirements
for developing a Domain-Specific Language (DSL) for modeling
performance testing of Web applications. In addition, we present
our design decisions in creating a solution that meets the specific
needs of a partner company. We believe that these decisions help
in building a body of knowledge that can be reused in different
settings that share similar requirements.

Keywords—performance testing; domain-specific language.

I. INTRODUCTION AND MOTIVATION

Performance testing can be applied to improve quality of
a Web-based service or application hosted on cloud com-
puting or virtualization environments, since it supports the
verification and validation of performance requirements [1].
Furthermore, it also supports evaluation of infrastructure’s
resource consumption while the application is under different
workloads, e.g., to accurately measure the resources required
by an application that will respect the established Service
Level Agreements (SLA). Despite the fact that performance
testing is a well-known technique to validate performance
requirements of an application or service, there is a lack of
a modeling standard or/and language to support the specific
needs of the performance testing domain.

Nevertheless, there are some notations, languages, and
models that can be applied to represent a system behavior,
e.g., UML (Unified Modeling Language) [2], UCML (User
Community Modeling Language) [3], CBMG (Customer Be-
havior Modeling Graph) [4], and WebML [5]. Some available
modeling notations, e.g., UML testing profiles, rely on the
use of textual annotations on models, i.e., stereotypes and
tags, to support the modeling of performance aspects of an
application. The use of notations, languages or models improve
the performance testing activities, e.g., reducing misinterpre-
tation and providing a common document to stakeholders,
system analysts and testers. Moreover, the use of a well-
defined and concise notation, language or model, can support
the use of Model-Based Testing (MBT) to generate inputs to
the performance testing automation process, e.g., test data, test
scenarios and scripts can be automatically generated [6].

However, despite the benefits of using a UML profile to
model specific needs of the performance testing domain, its
use presents some limitations: (a) most of available UML
design tools do not provide support to work with only those
UML elements that are needed for a specialized language.
Thus, the presence of unused and not required elements
may result in an error-prone and complex activity; (b) UML
diagrams are restricted to the semantics that is defined by
Object Management Group (OMG) [2]. Therefore, in some
cases the available UML elements and their semantics can
restrict or even prevent the modeling of some performance
characteristics of the Web domain.

It is important to highlight that UML is useful to analyze
and design the architecture and the behavior of a system.
Furthermore, it is a standard notation that does not imply in an
implementation decision; besides, it is helpful for representing
higher level concepts and the initial glossary domain. When
compared to UML, Domain-Specific Languages (DSLs) are
less general, and are based on an implementation strategy.
That is, UML is used at an implementation independent level,
whereas DSLs are used at an implementation dependent level.
DSLs are restricted languages that can be used to directly
model concepts in a specific problem domain. These languages
can be textual, like most programming languages, or graphical.
Furthermore, each DSL is a domain-specific code generator
that maps domain-specific models into the required code.

In spite of the fact that performance testing is an active
research field, researches investigating how to apply MBT
approaches to automate the performance testing activities
essentially started to be reported in the last decade and it is
still on its early stages [6][7][8]. Furthermore, the lack of a
standard to represent performance testing information is one
of the major challenges to be explored from both, academic
and industrial practitioners.

In this work, we discuss the requirements and design
decision on the development of a modeling notation for
performance testing. Thus, we propose a DSL that focus on
meeting specific needs for modeling performance testing of
Web applications. In this context, we also discuss the use of
our DSL to support an MBT approach to generate performance
testing artifacts to test these applications. Our contribution is
twofold: (a) we identify a set of requirements, specific to our
research context, that are not fully addressed by any known
languages, model or notation. Thus, we elicit some practical
scenarios that language providers and/or implementers may
consider supporting; (b) we report our design decisions in
supporting these requirements for an in-house solution. These
decisions, in turn, may be reused or adapted to improve
existing tools or devise new ones targeting similar needs.

This paper is organized as follows. Section II dis-

609Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



cusses background on performance testing, DSL and related
work. Section III presents the context in which our work
was developed. Section IV describes the domain analysis
process. Section V enumerates the elicited requirements,
which we address with specific design decisions, discussed
in Section VI. Section VII briefly presents an example of
use. Section VIII concludes the paper.

II. BACKGROUND

A. Performance Testing

Software Performance Engineering (SPE) [9] describes and
provides support to improve the performance through two
distinct approaches: an early-cycle predictive model-based,
and a late-cycle measurement-based. Performance testing is
an essential measurement-based activity in the software de-
velopment process, since it helps to identify bottlenecks that
impact performance and scalability in a system. It is used to
understand the behavior of a system under a certain workload.

According to Meier et al. [1], performance testing can be
applied in different domains of applications, such as desktop,
Web services, and Web applications. The process of designing
and executing performance testing to a specific domain is
composed by a set of well-defined activities. Therefore, to
support the performance testing process, as well as its activi-
ties, a set of tools has been developed, e.g., HP LoadRunner
or Microsoft Visual Studio. Some of these tools support the
generation of performance test scenarios and scripts through
Capture and Replay technique or just manually coding scripts.
Another technique that can be applied is MBT, which is useful
to automate the performance testing process. A few academic
and industrial performance testing tools based on models
can be found in the literature, e.g., SWAT [6], MBPeT [10]
or PLeTs [11]. Despite the existence of some MBT tools,
few of them use the same model, i.e., a modeling standard
for performance testing has not yet been set. Furthermore,
there are some theoretical notations that do not allow test
automation, e.g., UCML [3].

B. Domain-Specific Language

DSLs, also called application-oriented, special purpose or
specialized languages, are languages that provide constructs
and notations tailored for a particular domain. DSLs are spe-
cific domain and problem-oriented computer languages [12].
DSLs are created to solve specific problems of a particular
domain, e.g, in our case performance testing. However, to
create a DSL, a domain analysis phase is required, which
leads to a solid body of knowledge about the domain. During
this phase, the domain’s rules, features, and properties must
be identified and documented. Currently, there are several
tools, called Languages Workbenches (LWs), to support the
creation and maintaining of a DSL, such as Eclipse Modeling
Framework (EMF) [13], MetaEdit+ [14], among others. These
tools are not restricted to analysis and code generation, LWs
allow a DSL developer to create DSL editors with similar
power to modern IDEs [12]. Thereby, a DSL can be classified
in accordance with its creation techniques/design, that are the
following: internal, external, and based on LWs.

Therefore, the use of DSLs presents some advantages, such
as [15]: (a) better expressiveness in domain rules, allowing
to express the solution at a high level of abstraction. Con-
sequently, domain experts can understand, validate, modify

or develop their own solutions; (b) improves the communi-
cation and collaboration among software project stakeholders;
(c) supports artifacts and knowledge reuse. Inasmuch as DSLs
can retain the domain knowledge, the adoption of DSL allows
the reuse of the retained domain knowledge by a mass of
users, including those that are not experts in the domain; (d) a
DSL can provide a better Return Of Investment (ROI) than a
traditional model. Despite that, the use of DSLs can present
some disadvantages, such as [15]: (a) high cost to design and
maintain a DSL, especially if the project presents a moderate
or a high complexity. (b) high cost for training DSL users, i.e.,
steep learning curve; (c) difficulty to define an adequate scope
for a DSL; (d) a company could become dependent of an in-
house language that is not used anywhere else; (e) in case of
executable DSLs there are issues related to the performance
loss when compared to source code written by a developer.

C. Related Work
The DSL community currently lacks evidence on the driving

factors on the development of a DSL for the performance
testing domain, its corresponding requirements and design
decisions. There are few works describing DSLs require-
ments [16][17]. Whilst Kolovos [16] presents the core require-
ments and discuss the open issues with respect to the DSL re-
quirements. Athanasiadis [17] describes the key requirements
for a DSL to the environmental software domain, and discusses
its benefits. However, these works present only an incipient
discussion about the design decisions and, are not focused on
the performance testing domain.

Conversely, there are some works [18][19] reporting design
decisions for creating DSLs. Kasai et al. [18] proposed de-
sign guidelines that covers the following categories: language
purpose, realization, content; concrete syntax; and abstract
syntax. Frank [19] suggests guidelines to support the design
decisions on a DSL development, aka DSML. Moreover, the
author presents a useful discussion concerning the design
decisions to DSLs. Although these studies are relevant, the
design decisions were not taken to meet real requirements (i.e
industrial requirements), but only based on the DSL creators
knowledge and academic experience.

Some studies propose similar DSLs for the testing do-
main [20][21]. Bui [20] presents a DSL, DSLBench, for
benchmark generation, while Spafford [21] presents a DSL,
Aspen, for performance modeling. Different from our DSL
proposal, focused in the measurement-based approach, Aspen
supports the predictive-based approach. However, these works
do not present any feedback from industrial cases where these
DSLs are used, or discuss where they succeed or fail when
applying on an MBT approach. Gatling [22] proposed an
internal DSL based on industrial needs and tied to a testing
tool. Unlike our proposal that provides a graphical DSL to
represent the performance notation, Gatling provides only a
textual DSL based on the Scala language. Moreover, our DSL
is not tied or dependent of any performance testing tool or load
generator. Wert et al. [23] present a novel automated approach
for performance problem detection, in which they combined
systematic search based on a decision tree with goal-oriented
experimentation. However, this work is not based on MBT.

III. CONTEXT

This study is being conducted in cooperation with the Tech-
nology Development Lab (TDL) of a global IT company. This

610Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



cooperation aims to develop new strategies and approaches
for software testing. The software process adopted by TDL
is briefly described as follows. First the development teams
implement the unity tests, which performs the preliminary
tests in a dedicated development environment. After a stable
version that meets its requirements is available, it is pub-
lished in the test environment for the test team to perform
functional and integration tests. If failures are found, the
development team removes faults from the application and
the process is restarted. If no failure is found, the software
version becomes available for the performance testing team to
perform load and stress testing in a new environment (called
performance environment). It is important to mention that for
some applications, sometimes the complexity or size of the
production environment is so high that testing is executed
only in a partial production environment and proportional
estimations are used [10]. Finally, when the application meets
the defined quality requirements, e.g., response time, that
version is deployed to the production.

Empirical evidences of our previous work [24], developed in
collaboration with the TDL, indicate that a performance MBT
approach is valuable to mitigate the effort to generate per-
formance scripts. Our findings also indicate that performance
testing teams, usually, choose notations and modeling tools
by their own convenience. Thus, many models can be found
across the company performance testing teams, which leads
to a segmented knowledge about applications requirements.
Hence, the use of different models can present other issues,
such as inhibit communications among testing teams and
increases the possibility of requirements misinterpretation. To
attenuate these issues, it is necessary that a single notation
is used across the entire performance testing division. Since
there is not a standard modeling language to model the specific
needs of the performance testing domain, we focused our effort
on investigating and proposing a DSL to this domain.

IV. DOMAIN ANALYSIS

Before we start to describe our DSL, it is important to
mention some of the steps that were taken prior to the
definition of the requirements and design decisions. These
steps were taken in collaboration with researchers from our
group and test engineers from TDL.

The first step is related to the expertise that was acquired
during the development of a Software Product Line (SPL) to
generate MBT tools called PLeTs [11]. This SPL was split in
two main parts: one to analyse models and generate abstract
test cases from those models, and; another that would take the
abstract test cases and derive actual test scripts to be executed
by performance testing tools. Actually, our SPL is divided
in four main features: parser, test case generation, script
generation, and execution. Several models were studied during
the first phase of the development of our SPL, e.g., UCML,
UML Profiles, Finite State Machines (FSM). Likewise, several
performance testing environments and tools were studied, such
as HP LoadRunner, Microsoft Visual Studio, among others.

The second step is related to the use of some of the above
models and tools to actual applications, such as TPC-W and
Moodle. Furthermore, we also used some of the products
generated by our SPL to test those applications. Some of
other real applications from our partner were also tested in
the context of our collaboration. Those real applications were

tested in very complex environments, which gave us a very
thorough understanding of the needs a testing team has.

Besides that, we also based our DSL on well-known con-
cepts from SWEBOK, IEEE Std. 610.12-1999, IEEE Std.
829-2008, and other literature, such as Meier et al. [1].
These references were chosen to mitigate the bias, provide a
theoretical basis and ensure the coherency among concepts,
features, and properties of the performance domain. The
above steps provided us with a small Performance Testing
Body Of Knowledge (PTBOK) that is used to define the
performance testing requirements and design decisions for
our DSL. Furthermore, prior to create any DSL to support
modeling performance testing in the target DSL, the TDL
first considered the use of off-the-shelf solutions, provided that
specific requirements were met.

V. LANGUAGE REQUIREMENTS

This section enumerates the requirements we collected from
our expertise and also from the software engineers from
TDL. These requirements are related to features and concepts
from performance testing domain. Moreover, we discuss some
mechanisms for implementing the proposed DSL.

RQ1) The DSL must allow to represent the performance
testing features. One of the main functions of the performance
testing is to reveal bottlenecks of a system. Therefore, the
applications should be measured and controlled in small parts
that can be defined as transactions. This allows to measure the
performance quality for each activity of a system. For instance,
to define the response time SLA based on these transactions.

RQ2) The technique for developing our DSL must be based
on LW. Since we do not want to develop new tools, i.e., editor
or compiler, as in an external DSL; neither we intend to embed
our DSL in a GPL, we will base our DSL on a LW. This will
allow us to focus on the analysis domain and development of
the new DSL rather than spend effort on implementing new
tools or having to choose a GPL language that might not be
appropriate for the DSL that we want.

RQ3) The DSL must support a graphical representation of
the performance testing features. This requirement does not
concern the language itself, but the LW that will support its
development. Thereunto, we desire that the LW supports a
graphical-based editor for creating DSLs. Moreover, the LW
should allow to implement the domain concepts, their trans-
lation rules, designing symbols and elements of the language,
and also to generate different code for different tools.

RQ4) The DSL must support a textual representation. The
proposed DSL should also include a custom language that is
close to a natural language. This will facilitate its adoption by
test engineers that are used to use textual representation. The
language should have features and keywords that remember
the performance testing domain.

RQ5) The DSL must include features that illustrate perfor-
mance counters. In performance testing there are many per-
formance counters, e.g., response time or network throughput,
that provide means to analyze both application quality level
and host infrastructure.

RQ6) The DSL must allow to model the behavior of different
user profiles. This requirement is a specific function of the
performance domain, which should allow that the behavior of
different user profiles, such as a buyer or a new clients, is
modeled according to the System Under Test (SUT). In our
context we will focus on Web applications.

611Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



RQ7) Traceability links between graphical and textual rep-
resentations should require minimal human intervention/effort.
Traceability is an important feature in software solutions,
mainly when involve model transformation, e.g., translation
from a graphical to a textual representation. The proposed DSL
should automate the mapping process of graphical elements of
the model to their respective textual counterparts.

RQ8) The DSL must be able to export models to formats
of specific technologies. This requirement should ensure that
models written in our proposed DSL can be exported to
the format of the input of specific testing tools, e.g., HP
LoadRunner, MS Visual Studio or Apache JMeter.

RQ9) The DSL must generate model information in a
eXtensible Markup Language (XML) file. This requirement
aims to ensure that we can export our DSL to any other
technology in the future. That is, we export all information
from the system model into a XML file, so anyone that wants
to use our solution can import the XML into their technology.

RQ10) The DSL must represent different performance test
elements in test scripts. The modeled diagram using the pro-
posed DSL must represent multiples elements of test scripts,
such as conditional or repetition control flows, among others.

RQ11) The DSL must allow the modeling of multiple
performance test scenarios. Performance testing is responsible
to carry out testing of part of or the whole system under normal
and/or stress workload. The DSL, therefore, should be able
to generate multiples performance test scenarios, i.e., under
normal and stress workload conditions.

Currently, to the best of our knowledge, no existing lan-
guage or model (commercial or not) meets all of the presented
requirements. Therefore, given the automation needs of perfor-
mance testing, we propose a DSL for modeling performance
testing of Web applications.

VI. DESIGN DECISIONS

In this section, we describe our design decisions for creating
a DSL that supports the requirements discussed in Section V.
For each design decision, we mention the associated require-
ments that are being dealt with.

DD1) To use a LW that supports graphical DSLs (RQ2,
RQ3). To attend these requirements we performed a literature
review on existing LWs, including academic, commercial or
open-source. The work of Erdweg et al. [25] presents the state-
of-the-art in LWs and defines some criteria (the authors call
them features) that help someone to decide which tool should
be adopted. Given the requirements of our proposed DSL, we
chose the MetaEdit+ from MetaCase [14], because it supports
most of the features evaluated by work.

DD2) The features of the performance testing domain will
be used in an incremental way (RQ1, RQ5). Developing a
DSL requires a series of phases, such as analysis, design,
implementation, and use [26]. Usually researchers focus their
attention to the implementation phase, but only a few of them
focus on the analysis of the domain and design of the DSL.
Nevertheless, there are some methodologies for domain anal-
ysis, which helps to unravel the knowledge about the problem
domain analyzed. Among them we can highlight Domain
Specific Software Architectures (DSSA), Feature-Oriented
Domain Analysis (FODA), and Organization Domain Mod-
eling (ODM). Some works present an approach based on the
formalization of domain analysis through ontologies [27][28].
Thus, in order to determine the features that represent the

performance testing domain, we adopted a strategy to identify
and analyze the domain using an ontology [29]. This ontology
provides the basis for determining the concepts, relationships,
and constraints that represent the performance testing domain.
Besides the ontology, we have used the PTBOK (Section IV).

DD3) To provide a graphical language capable of repre-
senting the behavior of user profiles for different performance
test scenarios (RQ6, RQ11). To attend these requirements
we analysed different models and graphical representations
that support performance testing. Among the approaches and
techniques, the most relevant for our work were UML profiles.
Besides that, it is also important to mention a theoretical
language proposed by Scott Barber for modeling users behav-
ior, called UCML. Based on these different approaches and
techniques, the graphical language will have visual elements
capable of representing the behavior of different user profiles.
Besides the flow of activities that the user performs in the
SUT, the graphical language will have visual elements to
represent the performance test scenarios settings, including
information about the performance testing domain, such as
number of Virtual Users (VU), test duration, metrics to be
evaluated (response time, memory available, processor time,
among others). It is also possible to include the randomization
and execution probabilities for each interaction that a VU
executes during performance testing. Another very important
feature is that the DSL can represent abstract data that will be
instantiated in activity of the performance testing process, for
example, during the generation of the performance test scripts.

DD4) To create a textual representation in a semi-natural
language (RQ4). Behavior-Driven Development (BDD) [30] is
an agile software development process, in which acceptance
testing, mainly functional testing, is essential to advance
to next phase of a software project, since it facilitates the
understanding among testing and development teams and
stakeholders. Usually, tests are described in natural language
in order to ensure this common understanding regarding the
system requirements for all project members. Even though
it is common to find languages that use natural language to
describe functional testing, e.g., Gherkin [30], to the best of
our knowledge none of them includes performance testing
features. Therefore, we intend to extend this language, to
include the performance testing features described in Sec-
tion IV. Gherkin is interpreted by a command line tool called
Cucumber, which automates the acceptance testing execution.

DD5) To provide automated traceability between the graph-
ical and textual representations (RQ7, RQ10). Traceability is
an important feature that should be mapped in the implemen-
tation of a DSL. Thus, it is required that the LW allows the
creation of translation rules among models. In this case, the
mapping among the graphical elements with their respective
assets of the textual representation must be provided. It is
important that this mapping is not an one-to-one mapping.
Some graphical elements can be mapped to several instances
of the textual elements. For example, a graphical decision point
can be mapped to several textual scripts, one for each branch
present in the graphical representation. In order to solve this
mapping, algorithms such as the Chinese Postman Problem
can be used.

DD6) To support the integration of the DSL with other
technologies (RQ8, RQ9). It should be able to export the
models (test scenarios, abstract test cases, etc.) described in
the DSL to other formats, such as XML or HP LoadRunner

612Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



and MS Visual Studio input formats. The ability to export data
in XML format will allow future users of the language to use
it with other technologies or IDEs.

VII. DSL FOR MODELING PERFORMANCE TESTING

This section presents the DSL we developed to meet the
requirements described in Section V and based on the design
decision from Section VI. Our DSL is composed of three parts:
monitoring, scenario, and scripting.

Monitoring: The performance monitoring part is responsi-
ble for determining all servers used in the performance testing
environment. For each server (i.e., application, databases, or
even the load generator), information on the actual testing
environment has to be included, e.g., IP address or host
name. It is worth mentioning that even the load generator
has to be described in our DSL, since we can also monitor
the performance of the load generator. Sometimes, the load
generator has to be split in several servers if we really want
to stress the application or database server. For each host,
it is possible to indicate the performance counters that will
be monitored. This monitoring part requires that at least two
servers have to be described: one that hosts the application
(SUT) and another to generate the workload and monitor the
performance counters of the SUT.

Scenario: The performance scenario part allows to set user
and workload profiles. Each user profile is associated to test
scripts. If a user profile is associated with more than one test
script, a probability is attributed between the user profile and
each test script, i.e., it describes the probability that that test
script is executed. In addition to setting user profiles, in this
part, it also is important to set one or more workload profiles.
Each workload profile of is composed of several elements,
defined as follows: (a) virtual users: number of VU who will
make requests to the SUT; (b) ramp up time: time it takes for
each set of ramp up users to access the SUT; (c) ramp up
users: number of VU who will access the SUT during each
ramp up time interval; (d) Test duration: refers to the total time
of performance test execution for a given workload; (e) ramp
down users: defines the number of VU who will left the SUT
on each ramp down time; (f) ramp down time: defines the time
it takes for a given ramp down user stop the testing.

Scripting: The performance script part represents each of
the test scripts from the user profiles in the scenarios part.
This part is responsible for determining the behavior of the
interaction between VU and SUT. Each test script includes
activities, such as transaction control or think time between
activities. The same way as there is a probability for executing
a test script, which is defined in the scenarios part, each test
script can also contain branches that will have a user distribu-
tion associated to each path to be executed, i.e., the number
of users that will follow each path. During the description of
each test script it is also possible to define a decision table
associated to each activity. This decision table [12] represents
the decisions that is taken by a user based on the response
that an application provides. Actually, the decision table will
be used to guarantee that the user distribution rate is achieved.

A. Example of Use: TPC-W
This section presents a small sample of the graphical rep-

resentation described in previous sections. We instantiate the
modeling performance testing process through the proposed
DSL for the TPC-W e-commerce Web application. The goal

Figure 1. Graphical representation of a performance test scenario model.

is to give some understanding of the requirements and design
decisions of a language to model user behavior, as well as
the performance test scenarios. The graphical representation
contains elements for virtual users, test duration, ramp up time,
ramp up users, ramp down time, think time, among others.

Figure 1 gives an example of a performance test scenario
model that represents the SUT functionalities divided into
three scripts: Browser, Shop e Order. Each script has a
percentage of the VU that will execute such script. For each
script, a VU has a probability of buying a product from the
site. This probability is bigger for script Order and smaller
for script Browser. Due to space limitation this is not shown
in this paper. The model also shows the interaction behavior
of three different user profiles: Browsing, Shopping e
Ordering. Basically, the user profiles differ from one an-
other on the probability that they will order, shop or browse.

A snippet of the Browser script is presented in Figure 2.
The model is composed of six activities, five of them with
transaction control, shown by dashed border figures. The
model also contains a Think Time of 15 seconds (Clock ele-
ment) and three Data Table, e.g., Transaction Data.
In some cases, there is the necessity to store the results of
processing of an activity into global variables or parameters,
so that this data can be used in other activities, for example to
decide a path in a decision point (see Category choice).
The model also shows a transaction composed by a set of
activities, see the Search Products transaction, which is
composed of Search request and Search result.

Figure 2. Performance test scripting model of the Browser script.

VIII. LESSONS LEARNED AND FINAL REMARKS

Basically, the main lessons we have learned from the
requirements and design decisions of our DSL are: (a) there

613Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



are several techniques to achieve the best possible results from
requirements elicitation process, such as interviews, ethnogra-
phy, domain analysis, among others. We have used domain
analysis to understand and capture our domain knowledge,
and to identify of reusable concepts and components. Thus,
we learned that eliciting requirements based on domain anal-
ysis, having as output the PTBOK, was effective to identify
what we needed for our DSL; (b) domain analysis based on
ontologies is a good alternative to transform the concepts and
relationships from the ontology into entities and functionalities
of the DSL. There are several methods and techniques for
describing this approach, for instance [27][28]; (c) one of
the disadvantages of using DSLs is the high cost of training
users who will use the DSL, i.e., steep learning curve [15].
However, based on our previously experience using several
load generator tools in an industrial setting, this disadvantage
can be handled pragmatically, since the cost for a new staff to
learn several load generators technologies is higher than com-
pared to our DSL. Nonetheless, this drawback must be proved
with empirical evidences; (d) Global Software Development
refers to software development geographically or globally
distributed, which aims to streamline the process of product
development. In such scenario it is common that infrastructure
and performance teams are located in different countries. For
this reason, it is important to adopt a standard language for
creating scripts and models for performance testing, hence we
chose the English as default for the textual representation of
our DSL, implicitly we avoid a cacophonous language [12];
(e) we adopt an incremental development methodology for
creating our proposed DSL. This methodology allows us to im-
prove the DSL on each interaction, which is composed by the
following steps: analysis, development, and utilization [15].

This paper presented a set of requirements elicited in
the context of an industrial partner. Through a pilot study
and based on our PTBOK, we collected specific needs for
performance modeling adoption to create a DSL for model-
ing performance testing, and argue that existing models and
languages do not meet the specificity of the requirements at
hand. We then presented our design decisions for creating
a DSL. We claim that the reported requirements and design
decisions as the two contributions of this work, since currently
few studies bring such discussion. Our work adds to that
in the sense that the elicited requirements evidence practical
scenarios that other load generators may consider supporting;
the design decisions, in turn, may be reused or adapted to
improve existing DSLs, models or languages, or even new
ones, targeting similar requirements.

IX. ACKNOWLEDGMENT

Study developed in the context of PDTI 001/2014, financed
by Dell Computers with resources of Law 8.248/91.

REFERENCES

[1] J. Meier, C. Farre, P. Bansode, S. Barber, and D. Rea, Performance
Testing Guidance for Web Applications: Patterns & Practices. Microsoft
Press, 2007.

[2] OMG, “Object Management Group,” 2014, URL: http://www.omg.org
[retrieved: 08, 2014].

[3] S. Barber, “User Community Modeling Language (UCML) for perfor-
mance test workloads,” Sep. 2003, URL: http://www.perftestplus.com/
articles/ucml.pdf [retrieved: 08, 2014].

[4] D. Menascé, V. Almeida, R. Fonseca, and M. Mendes, “A Methodology
for Workload Characterization of E-commerce Sites,” in 1st ACM
Conference on Electronic Commerce. ACM, 1999, pp. 119–128.

[5] N. Moreno, P. Fraternali, and A. Vallecillo, “WebML modelling in
UML,” IET Software, vol. 1, no. 3, pp. 67–80, June 2007.

[6] M. Shams, D. Krishnamurthy, and B. Far, “A Model-based Approach
for Testing the Performance of Web Applications,” in 3rd International
Workshop on Software Quality Assurance, 2006, pp. 54–61.

[7] D. Krishnamurthy, M. Shams, and B. H. Far, “A Model-Based Per-
formance Testing Toolset for Web Applications,” Engineering Letters,
vol. 18, no. 2, pp. 92–106, 2010.

[8] M. B. da Silveira et al., “Generation of Scripts for Performance Testing
Based on UML Models,” in 23rd International Conference on Software
Engineering and Knowledge Engineering, Jul. 2011, pp. 258–263.

[9] M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software
Performance Engineering,” in Future of Software Engineering, 2007,
pp. 171–187.

[10] F. Abbors, T. Ahmad, D. Truscan, and I. Porres, “MBPeT - A Model-
Based Performance Testing Tool,” in 4th International Conference on
Advances in System Testing and Validation Lifecycle, 2012, pp. 1–8.

[11] E. M. Rodrigues, L. D. Viccari, A. F. Zorzo, and I. M. Gimenes, “PLeTs
Tool - Test Automation using Software Product Lines and Model Based
Testing,” in 22th International Conference on Software Engineering and
Knowledge Engineering, Jul. 2010, pp. 483–488.

[12] M. Fowler, Domain Specific Languages, 1st ed. Addison-Wesley, 2010.
[13] EMF, “Eclipse Modeling Framework,” 2014, URL: http://www.eclipse.

org/modeling/emf/ [retrieved: 08, 2014].
[14] S. Kelly, K. Lyytinen, and M. Rossi, “MetaEdit+: A Fully Configurable

Multi-User and Multi-Tool CASE and CAME Environment,” in 8th

International Conference on Advances Information System Engineering.
Springer, 1996, pp. 1–21.

[15] D. Ghosh, “DSL for the Uninitiated,” Queue, vol. 9, no. 6, pp. 10–21,
2011.

[16] D. Kolovos, R. Paige, T. Kelly, and F. Polack, “Requirements for
Domain-Specific Languages,” in 1st Domain-Specific Program Devel-
opment, Jul. 2006, pp. 1–4.

[17] I. N. Athanasiadis and F. Villa, “A Roadmap to Domain Specific Pro-
gramming Languages for Environmental Modeling: Key Requirements
and Concepts,” in ACM Workshop on Domain-Specific Modeling, 2013,
pp. 27–32.

[18] G. Karsai et al., “Design Guidelines for Domain Specific Languages,” in
9th OOPSLA Workshop on Domain-Specific Modeling, 2009, pp. 7–13.

[19] U. Frank, “Domain-Specific Modeling Languages: Requirements Analy-
sis and Design Guidelines,” in Domain Engineering, 2013, pp. 133–157.

[20] N. Bui, L. Zhu, I. Gorton, and Y. Liu, “Benchmark Generation Using
Domain Specific Modeling,” in 18th Australian Software Engineering
Conference, Apr. 2007, pp. 169–180.

[21] K. L. Spafford and J. S. Vetter, “Aspen: A Domain Specific Language
for Performance Modeling,” in International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, 2012, pp. 1–11.

[22] Gatling, “Gatling Stress Tool,” 2014, URL: http://gatling-tool.org [re-
trieved: 08, 2014].

[23] A. Wert, J. Happe, and L. Happe, “Supporting Swift Reaction: Automat-
ically uncovering performance problems by systematic experiments,” in
35th International Conference on Software Engineering, May 2013, pp.
552–561.

[24] E. M. Rodrigues et al., “Evaluating Capture and Replay and Model-
based Performance Testing Tools: An Empirical Comparison,” “forth-
coming” in International Symposium on Empirical Software Engineering
and Measurement, 1–8 2014.

[25] S. Erdweg et al., “The State of the Art in Language Workbenches,” in
Software Language Engineering, 2013, vol. 8225, pp. 197–217.

[26] M. Mernik, J. Heering, and A. M. Sloane, “When and How to Develop
Domain-Specific Languages,” ACM Computing Surveys, vol. 37, no. 4,
pp. 316–344, 2005.

[27] R. Tairas, M. Mernik, and J. Gray, “Models in Software Engineering,”
M. R. Chaudron, Ed. Springer, 2009, ch. Using Ontologies in the
Domain Analysis of Domain-Specific Languages, pp. 332–342.

[28] T. Walter, F. S. Parreiras, and S. Staab, “OntoDSL: An Ontology-Based
Framework for Domain-Specific Languages,” in 12th International Con-
ference on Model Driven Engineering Languages and Systems, 2009,
pp. 408–422.

[29] A. Freitas and R. Vieira, “An Ontology for Guiding Performance Test-
ing,,” “forthcoming” in International Conferences on Web Intelligence
and Intelligent Agent Technology, 2014, pp. 1–8.

[30] M. Wynne and A. Hellesoy, The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. The Pragmatic Bookshelf,
Jan. 2012.

614Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances


