
Vergil: Guiding Developers Through Performance and Scalability Inferno

Christoph Heger∗, Alexander Wert∗ and Roozbeh Farahbod†
∗Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Email: {christoph.heger, alexander.wert}@kit.edu
†SAP AG, 76131 Karlsruhe, Germany

Email: roozbeh.farahbod@sap.com

Abstract—Software performance problems, such as high response
times and low throughput, are visible to end users and can have
a significant impact on the user experience. Solving performance
problems is an error-prone and time-consuming task that is
ideally done with the help of experienced performance experts.
They often provide solutions in the form of work activities to
developers such as to move functionality from one component
to another in order to solve performance problems. Existing
approaches are mostly model-based and mainly neglect the
code base and measurement-based techniques. They can miss
important details from the implementation, configuration and
deployment environment of the application. In this paper, we
propose a novel approach in the field of software performance
engineering with the goal to solve recurring performance and scal-
ability problems based on a systematic process and formalization
of expert knowledge. Starting with a set of detected performance
problems in the target system, our proposed approach supports
developers by identifying, evaluating and ranking of solutions,
and by providing a work plan sketching the implementation of
the selected solution. In an example with a Java EE application,
we show the solution of a software bottleneck through result
caching.

Keywords–Software Performance; Software Engineering; Soft-
ware Measurement; Performance Evaluation.

I. INTRODUCTION

Over the last decade, software performance practitioners
have been documenting recurring performance problems and
their identified root causes and solutions as performance anti-
patterns (for example in [1][2]). The documentations include
general definitions and solutions to the performance problems
but nevertheless, solving recurring performance problems is
still a manual and time-consuming task that requires expertise
in software performance engineering [3], rigorous performance
evaluation techniques [4], and a deep understanding of the
system under study. After the presence of a performance
problem has been observed and the root cause (or root causes)
has been identified with the help of a performance expert, the
solution process often includes a comprehensive analysis of
the solution space and usually consists of (1) identification
of possible changes, (2) evaluation of the performance impact
of each possible change on the particular system, (3) effort
estimation for applying one or more changes, and (4) deciding
what changes to be applied to the system.

Currently, to the best of our knowledge, there are no
approaches that help developers with the implementation of a
performance and scalability solution with providing an ordered
set of work activities at the code level. Existing approaches
for solving performance problems, for example [5][6][7][8],
are model-based. A shortcoming of model-based approaches
is that not all performance problems can be solved at the

model level [7] when the implementation, measurement-based
experiments and monitoring-driven testing techniques are
neglected. Additionally, cost factors and constraints have to be
taken into account when a variety of solution choices exists.
Furthermore, decision support mechanisms have to be integrated
in order to support developers in selecting the most appropriate
solution [9]. Only [8] considers using the effort estimation
of the designer for the necessary design model changes in
selecting a solution among alternatives. Jing Xu also uses the
determined changes to suggest what should be changed in an
abstract way, but not how to do it concretely [8]. Nevertheless,
the existing approaches neither consider an existing code base,
measurement-based testing techniques nor do they integrate
decision support mechanisms or support the developer for
implementing a solution at the code level.

In light of these observations, we are developing the
Vergil approach (named after the ancient Roman poet Publius
Vergilius Maro, Dante’s guide through the inferno in The Divine
Comedy [10]) that guides developers from a performance or
scalability issue to solutions, by providing hypotheses about
what to change, evaluating the changes in the context of the
particular application and ranking the solutions to support
developers in making a decision. Solution alternatives are
provided as ordered lists of work activities sketching the
implementation of the solutions for developers. Additionally,
in order to support developers in making a decision on which
solution to implement when different alternatives exist, it is
necessary that developers estimate the effort to implement a
certain solution. Therefore, developers often expect concrete
work activities when asked for estimating the necessary effort.
Vergil targets the development and maintenance phase of the
software systems life cycle when an executable application
implementation is available.

The core idea of Vergil is a process to identify and
evaluate solutions to existing performance problems in a given
application context, and to rank and recommend the most
suitable of such solutions to the developers together with a
description on how to implement them. The conceptual founda-
tion is the formalization of performance expert knowledge into
hypotheses about what to change and when. The goal of the
approach is twofold: to make expert knowledge and methods
for performance problem solution easily available to developers
(who are not necessarily experts in performance engineering)
and to guide them through the solution process with automation
and tools [11].

In this paper, we introduce the overall concept of Vergil.
The remainder of the paper provides an overview of Vergil’s
overall process, individual process activities, involved artifacts
and how process activities and artifacts are connected.

598Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

In summary, we provide the following contributions in this
paper:

1) We introduce Vergil’s process, for exploring, evaluat-
ing and ranking of hypotheses to determine solutions
of recurring performance and scalability problems.

2) We formalize performance problems as symptom
traces in applications, and solutions as change hy-
potheses.

The remainder of the paper is structured as follows: In
Section II, we introduce the process, its activities, and the
artifacts of Vergil. In Section IV, we demonstrate the solution
of a software bottleneck within a Java EE application through
result caching. We present and discuss the related work in
Section V and finally, conclude the paper in Section VI, also
outlining our plan for future work.

II. THE VERGIL APPROACH

The main goal of Vergil is the provisioning of solutions
(e.g., to split an interface or to move functionality to a
certain component) to developers for solving performance
and scalability problems. Vergil combines the strengths of
a systematic process and the consideration of cost factors
and constraints of model-based performance improvement
approaches, for example [5][8][6], and extends them with
the introduction of measurement-based performance problem
solutions at the code level by means of monitoring-driven
testing techniques, decision support mechanisms for selecting
the most appropriate solution and work plans sketching the
implementation of the solution.

There are two roles involved in Vergil as shown in Figure 1:
Performance experts, who provide their knowledge about how
to solve performance problems, and users (e.g., developers or
other stakeholders; henceforth referred to as developers) who
use Vergil to solve performance problems. The knowledge of
performance experts about how to change a system is formalized
in rules (henceforth called Change Hypotheses). Knowledge
about how a change can propagate and impact other parts of
the application is formalized in Propagation Rules. In each use
case, developers provide the information about the problem
context. They provide the Performance Problem Model by
means of specifying the symptoms (e.g., high response times,
high CPU utilization, or high memory utilization) and where
they observe the symptoms in the application. They also provide
the Source Code of the application, a Test Environment where
the application can be deployed and the running application can
be monitored during the execution of load tests, the Performance
Requirements of the application as well as the willingness
to change certain parts of the application, and constraints as
Developer’s Preferences.

Vergil uses all artifacts to test the applicability of Change
Hypotheses and to evaluate which changes are leading to a
performance improvement either with measurements and/or
performance models. Vergil discards solutions that are not con-
forming with the Developer’s Preferences. For each determined
solution, Vergil derives a Work Plan with activities sketching
the implementation of the solution. Developers estimate the
implementation effort of each work plan. Vergil ranks the
solutions based on all the collected information throughout

VergilOverview

Performance Problem

Source Code

Ranked Solutions &
Work Plans

Performance Requirements

Test Environment

Vergil
Developer's Preferences

Change Hypotheses

Propagation Rules

Estimated Effort

Use Case

Expert Knowledge

Figure 1: Vergil Overview.

the process and presents the ranked list as feedback to the
developer. Developers can then discuss the solution proposals
and implement the selected solution with the help of the Work
Plan.

The process consists of four major activities as shown in the
BPMN diagram [12] of Figure 2. In the context of this paper,
we are focusing only on the overall concept of Vergil. The
details of the activities Propagate Work Activities and Estimate
Effort of Work Plans are described in [13].

A. Extract Models

The process starts with the Extract Models activity [14] that
takes the source code of the application as input. The source
code is parsed into the Source Code Model (SCM), for example
with the Java Model Parser and Printer (JaMoPP) [15] for Java
source code. An architecture performance model (APM) is
extracted from the source code (in the context of this paper
from Java) or when such a model already exists, it is imported.
In the context of this paper, the APM is a Palladio Component
Model (PCM) [16]. PCM is a software architecture simulation
approach to analyze software at the model level for performance
bottlenecks and scalability issues. It enables software architects
to test and compare various design alternatives without the
need to fully implement the application or buying expensive
execution environments. PCM has already been used to detect
and solve performance problems [7]. The PCM is created
from the source code using the Software Model Extractor
(SoMoX) [17]. The APM provides an architectural view of
the application and is used to evaluate architectural change
hypotheses in the remainder of the process. During the APM
extraction, the Correspondence Model (COM) is build that
links APM and SCM model elements, for example interfaces.
A correspondence expresses the equality relation of two model
elements in different meta-model instances. The SCM, APM,
and COM are forwarded to the Explore Change Hypotheses
sub-process.

B. Explore Change Hypotheses

The sub-process consists of the four activities Test Change
Hypotheses, Propagate Work Activities, Evaluate Work Activ-
ities, and Extract Work Plans. Before we are going into the
details of each activity in the remainder of this section, we
introduce the performance problem model and our concept of
change hypotheses. Change hypotheses provide the knowledge
about what can be changed to solve a performance problem.
The hypotheses are an important cornerstone in Vergil and are
rules expressing what to change and when.

599Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

�������	
����	����������
�����������

�����������
���������

��������
���

� ��	�����

�	��!���
���

� ��	�����
�"��� �

���������

��!�����#
���������$%���

��!�����#��&�����%
���������$%���

'����(�)�����!�����#
���������$%���

��!�����#
���������

���*�&�� �
'�+!���&����

���������
'!���

������
���������

�������	���&���

��������	�������

���*�&�� �
��)��&
,��� ��%

����&���
�**���*

���������

��!�����#����������

��������&���%��**��

���*�&�� �
��)��&�$%��

�!� �
�%�

�"��� �
$%���

'���
��!����

��!�������� ��%

�"����
������

���������

��!�����#
���������

'����%���!�����#
���������

,�	�����-�
���*���� ���!� ���%��$%��.

�������%�� ��$%���#
�� ���� �!������*�&�� ��$%��

Figure 2: Vergil Process Overview.

Definition 1: A performance problem is a symptom trace
through the application. It is formalized through a model of
its root cause(s) expressed by its symptom(s), the workload
specification [18] including the usage profile, and location(s)
inside the application as shown in Figure 3. The resulting
model is henceforth called Performance Problem Model (PPM).
A performance problem can have any number of other per-
formance problems as cause expressed through the causedBy
relation. One or more symptoms belong to a performance
problem. A symptom can be among others: high CPU utilization,
high response time, high memory utilization or high network
utilization. A location is the referenced element of the SCM like
a class, method, or statement where the symptoms are observed.
The workload specification describes the workload (e.g., the
number of users and their think time in a closed workload
scenario) and the usage profile under which the symptom can
be observed. The workload specification is formalized as a
finite state machine and probabilistic usage behavior by means
of Markov chains [18].

Performance Problem
1 1..*

SymptomLocation
1 1

1

0..*
causedBy

High Response
Times

High CPU Utilization
High Memory

Utilization
...

Workload Specification

Figure 3: Performance Problem meta-model.

The PPM can be automatically extracted from a tool such as
DynamicSpotter [19] or instantiated manually by the developer
and is given as input to the process.

Definition 2: A change hypothesis h consists of a set of
preconditions that must be fulfilled in order to be applicable
in the problem context, a set of transformation rules that
apply the changes of the hypothesis to the application on
the defined level of abstraction (e.g., APM, SCM, etc.), a set
of postconditions that test if the expected effect has taken
place, and a work plan model template for creating the initial
work plan model as shown in the meta-model in Figure 4.
The conditions can test structural or behavioural properties
of the application. A condition can consist of any number of
structural (on the SCM, PPM and APM model) and behavioral
(on measurement or prediction results) conditions testing static
and dynamic requirements of the hypothesis. The conditions
are rules expressed as logical predicates in first-order logic.
First-order logic has already been used before in literature to
formalize performance antipatterns [20]. The formalization of
the changes depends on the level of abstraction. For example,
in the case of APM and SCM (basically Java source code),
graph rewriting rules (in place transformations) are used to
transform the models. In the case of modifying parameter values
in configuration files, simple text replacement rules are used.

Change Hypothesis

Precondition

APM Rule

Transformation Rule
11..*

SCM Rule Configuration Rule

11
Work PlanTemplate

PostconditionCondition
1..*1

StructuralCondition BehaviouralCondition

11..*

Figure 4: Change Hypothesis meta-model.

600Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

In the following, we provide an example of a hypothesis
that caching the results of calling a method can improve
performance:

The behavioural precondition of the hypothesis that caching
the results of calling a method can improve performance
ensures that the method m producing the results is deterministic.
Deterministic means that for each method input i ∈ I and for
all method calls cm of method m there exists only one result
r ∈ R in the set of results so that cm(i) = r. The formalization
of the precondition as one basic predicate BP is as follows:

∀i ∈ I,∀cm ∈ methodCalls(m),∃!r ∈ R : cm(i) = r (1)

where m denotes the method whose results shall be cached.

The structural precondition of the hypothesis matches a
pattern in the SCM and PPM where a method is referenced
from a performance problem with the “High Response Time”
symptom and where the method implements an interface
method. The structural precondition is formalized through the
BP where m denotes the method (referenced by the performance
problem) and m′ denotes the interface method in the set of all
methods:

∃m,∃m′ ∈Methods ⊂ SCM : ∃p ∈ PPM :

impl(m,m′) ∧ ref(p,m) ∧ has(p,HighRespT imes) (2)

The postcondition of the hypothesis ensures that the number
of method calls of m has decreased after the changes of the
hypothesis have been applied.

Taking the PCM as APM, the transformation rule of
the hypothesis targets the PCM instance of the application.
The performance-relevant behaviour of a method in PCM is
modelled through a Service Effect Specification (SEFF) [16]
(basically a series of actions) that can contain among others
BranchAction, InternalAction, and ExternalCallAction elements.
A BranchAction models a branch and can take the probabilities
for each transition. An ExternalCallAction models the call to
a method of another component. On an abstract level, caching
results means that there is a probability P that the result
is in the cache. This can be modeled in its simplest form
by means of putting the ExternalCallAction EA, calling the
method whose results shall be cached, inside a BranchAction
that has the probabilities P for the cache hit transition
and 1 − P for the cache miss transition (modeled through
a ProbabilisticBranchTransition). Therefore, the rule simply
wraps EA in the SEFF into a BranchAction.

The work plan model (WPM) template of the hypothesis is
a blue print to create the initial work activities. A hypothesis
knows the work activities resulting from the changes but not
the possible side-effects. For example, a hypothesis to split
an interface knows the work activity “Split”. The work plan
meta-model is introduced in the context of the Extract Work
Plans activity in the remainder of the paper.

This concludes the hypothesis example. In the following,
we describe the activities of the sub-process:

1) Test Change Hypotheses: The Explore Change Hypothe-
ses sub-process starts with the Test Change Hypotheses activity
that takes the change hypotheses H , the test environment, the
performance requirements and the models as input. In this
activity, the applicability of change hypotheses is tested, and

the effect of the hypotheses’ encapsulated changes is evaluated
to build solutions. Jing Xu [8], Mauro Drago [21] and Diaz-
Pace et al. [22] already considered performance evaluation
of changes. The exploration algorithm selects sets of change
hypotheses with fulfilled precondition and evaluates their effect
through instantiating the changes in the context of the particular
application and on the hypothesis’ level of abstraction (e.g.,
architecture performance model, source code, or configuration
file) and evaluates the performance. Vergil only considers
changes that can be applied automatically. To give an example,
two approaches for automated model refactoring for solving
performance problems are presented in [23] and [8].

The set of change hypotheses H is the input for the
EXPLORE procedure of the exploration algorithm as shown in
Figure 5 (line 5). The current algorithm uses backtracking (as
suggested by Arcelli and Cortellessa [9] and used in [24]) to find
solutions that fulfill the performance requirements. The basic
backtracking algorithm loops over all h ∈ H \H ′ and evaluates
the precondition of h after the changes of the hypotheses in H ′

have been applied (line 6-7). If hPreCon evaluates to true, the
hypothesis h is evaluated. The postcondition of h is evaluated
on the returned evaluation result (line 8). When hPostCon

evaluates to true then h is added to H ′ (line 9-10). When the
changes of a hypothesis are applied, the impacted elements of
the application are identified as well as how they are impacted
and also returned in result. The information is used to build
the work plan models and its initial work activities based on
the template. When hPostCon is not fulfilled, then the loop
continues with the next hypothesis h ∈ H \ H ′ (line 17).
When the postcondition and the performance requirements are
fulfilled, the hypotheses composition H ′ is added as solution
to solutions (line 12).

The performance requirements are expressed as upper bound
of a performance metric. For example, the performance metric
can be the response time of a method, the CPU, memory and/or
network utilization of a server the application is running on. The
performance evaluation and the postcondition also ensure that
the changes do not lead to a performance degradation [9]. If the
postcondition is fulfilled, but the performance requirements are
not fulfilled, the procedure EXPLORE calls itself recursively
with hypotheses composition H ′ and the set of hypotheses
H (line 14). The result of the algorithm is the set solutions
that consists of sets of change hypotheses. Mathematically,
the basic algorithm can miss solutions as it does not check
all possible combinations of hypotheses (for practical reasons).
However, a variation of exploration algorithm to test all possible
compositions has to neglect the pre- and postcondition tests.

The performance improvement in Line 8 is either estimated
by means of prediction through APM or determined through
measurement-driven testing techniques on the System Under
Test (SUT) as shown in Figure 6. The SUT consists of the
deployed application and the Test Environment (TE). The TE
is a testing and monitoring environment where the application
can be deployed and executed. Part of the TE is a load
generator (e.g., HP LoadRunner [25], Apache JMeter [26])
and a representative load test for the application that is used
to simulate users using the application. The load test itself
consists of: a usage profile (how the application is actually
used by its users), and the number of users to simulate and
their think time (in a closed workload scenario). The usage

601Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

1: Set H ← Change Hypotheses
2: Set H ′ ← ∅
3: Set solutions← ∅
4:
5: procedure EXPLORE(Set H’, Set H)
6: for all h ∈ H \H ′ do
7: if evaluate(hPreCon, H

′) then
8: result← evaluate(h,H ′)
9: if evaluate(hPostCon, H

′) then
10: H ′ ← H ′ ∪ {h}
11: if solved(result) then
12: solutions← solutions ∪ (H ′, result)
13: else
14: explore(H ′, H)
15: end if
16: else
17: Continue
18: end if
19: end if
20: end for
21: end procedure

Figure 5: Exploration of Change Hypotheses.

profile is often a probabilistic behaviour. Given a currently
visited web site, a user visits another web site or selects a
certain element with a certain probability. The probabilistic
usage profile and intensity-varying workload is specified in two
types of models. A finite state machine specifies the possible
interactions with the Web-based software system. Based on
the finite state machine, the probabilistic usage is specified
in corresponding user behavior models by means of Markov
chains [18]. Markov4JMeter [27] implements such an approach
for probabilistic workload generation by extending the workload
generation tool JMeter. The probabilities can be determined
from real-user monitoring of a deployed application running
in production or manually through the expected usage of the
application when no deployed application is available. In the
latter case, a common, non-probabilistic usage profile is used.

Figure 6: Evaluation Mean Alternatives.

For measurement-based experiments by means of
monitoring-driven testing techniques on the SUT, our Adaptable
Instrumentation and Monitoring (AIM) agents are deployed on
the servers of the TE to instrument Java bytecode to monitor
the application under load and to sample the resource utilization
(CPU, network, etc.) of the servers. AIM provides means to
automate the adaptation of instrumentation instructions. In
experiment-based performance engineering, this feature can be
utilized to automate a series of experiments to make manual
interventions between individual experiments unnecessary.
AIM specifies an extendable language to describe a desired
instrumentation and monitoring state on an abstract level. It
parses instances of the instrumentation description model and

realizes instrumentation and monitoring instructions utilizing
bytecode instrumentation, sampling and interception of the
underlying Java Virtual Machine (JVM). A separate publication
on AIM is in progress.

When the effect of changes is evaluated, the evaluation
starts in Current State (cf. Figure 6) where a series of
reference measurements S0 is obtained. In the case of a
SUT → SUT ′ evaluation, the measurements are obtained by
means of monitoring-driven testing techniques with AIM and
the execution of a workload. The source code transformation
rules are applied to the SCM. The transformed SCM is used
to transform the source code, for example in the case of Java,
with JaMoPP. Configuration transformation rules are applied to
the configuration files. Component configurations specified in
the source code are treated as implementation transformation
rules. The application of the transformation rules creates the
SUT ′. The series of evaluation measurements S1 from the
SUT ′ are then obtained analogous to S0.

In the case of a APM → APM ′ evaluation, the resource
demands for the calibration of the APM instance are obtained
from the SUT . To determine the resource demands, the
corresponding source code regions are instrumented with AIM
to derive cumulative distribution functions CDFs through
experiment-based measurements with the SUT . The determined
resource demands are inserted into the APM instance. The series
of reference measurements S0 is obtained through simulating
the calibrated APM instance. The transformation rules are
applied to the APM instance to create the APM ′. In the
Target State, APM ′ is simulated to derive the evaluation
measurements S1, as a prediction for the measurements
expected from SUT ′.

In both evaluation scenarios, the estimated performance
improvement is determined as the difference S0 − S1. After
the Target State is reached and S1 is obtained, the changes
are reverted (cf. Figure 5, line 8). The solutions and the
corresponding WPMs fulfilling the requirements are forwarded
to the Propagate Work Activities activity.

2) Propagate Work Activities: In this activity, the WPMs are
completed by identifying all impacted elements of a solution
and determining for any impacted element the required work
activity. Vergil uses impact propagation rules to accomplish this
task. The directly affected elements are identified during the
instantiation of a change hypothesis (because it is applied to
these elements). The WPM template of the change hypothesis
provides the initial set of work activities. Changes can ripple
through the application impacting other elements that are in
a relationship (side-effects). To complete the WPMs, the side-
effects and their work activities are determined through impact
propagation rules [28]. Impact rules know if and how a work
activity propagates itself to other elements, for example, when
an interface in SCM is referenced from a “Split” work activity,
then the rule knows that a class implementing that interface
has to be splitted too. A side-effect can also be that new
tests have to be added when a new interface is going to
be created. Another example for such a follow-up activity
is the redeployment of a component if the implementation will
undergo changes. Rules are also used to conclude follow-up
activities. The completed WPMs with the propagated impact
and the corresponding solutions are forwarded to the Evaluate
Work Activities activity.

602Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

3) Evaluate Work Activities: In the Evaluate Work Activities
activity, the work activities are validated against the Developer’s
Preferences. Their referenced elements are tested if they can be
changed. Developers express their willingness or unwillingness
to execute a certain type of change on a grading scale. They
can also express what cannot be changed, such as legacy parts
of the application or the database. Arcelli and Cortellessa [9]
already raised the concern that cost factors and constraints (e.g.,
the database cannot be changed) have to be taken into account
when proposing solutions. Solutions whose WPMs contain
unchangeable elements are discarded, removed from the set
of solutions and the corresponding WPM is deleted. In the
case of Java programs, Vergil takes unchangeable elements into
account through the specification of the full qualified name or
namespaces by the developers. For example, if a work activity
references an element in the APM then an architecture impact is
concluded. If the architecture is unchangeable, then the solution
is discarded. The set of remaining solutions and WPMs are
forwarded to the Extract Work Plans activity.

4) Extract Work Plans: In the Extract Work Plans activity,
a list-based representation of the WPMs for the developers
is extracted. The list of work activities sketches the imple-
mentation of the corresponding solution for developers. It also
serves as foundation for the Estimate Effort of Work Plans
activity. The list structure is determined through the refinedBy
and dependsOn relations between work activities in the WPM.
The refinedBy relation expresses the parent-child relationship
of work activities whereas the dependsOn relation expresses
the order of work activities.

Work Activity

Impacted Element

Atomic Activity

Composite Activity
Work Plan

1..*1

1
1..*

SplitMergeSwapReplace

AddDeleteUpdate

Move

0..11

dependsOn

refinedBy

Figure 7: Work Plan meta-model.

Definition 3: A work plan is an ordered set of work
activities. A work activity can be atomic such as add, delete,
or update an element like a class, interface, and method
or composite such as split, move, merge, swap, or replace
elements [29]. A composite activity can be composed of other
composite and atomic activities and is broken down until it is
expressed through atomic activities. Refinement rules are used
to break composite activities in the WPM down into atomic
activities.

Work plans are not prescribing how the solution has to be
concretely realized in the application. Jing Xu already motivated
in [8] that the solution suggests what should be changed in
an abstract way, but not how to do it concretely because there
can be a host of ways. Vergil accomplishes this by modelling
only abstract work activities sketching the implementation of
a solution. The work plan can also, if necessary, list follow-
up activities such as redeployment work activities and testing
activities. The Explore Change Hypotheses sub-process ends
after the extraction of the work plans is completed and forwards

them together with the solutions to the Estimate Effort of Work
Plans activity.

C. Estimate Effort of Work Plans

In the Estimate Effort of Work Plans activity, the effort for
any work plan application is estimated by developers. This is
a manual task done by the developers themselves because the
effort can vary between individual developers depending on
their knowledge, experience and practice. Vergil accepts the
effort as unit less quantities for all atomic work activities. This
leaves the decision of the concrete unit of measurement by
the developers. Chosen once (in the current execution of the
process), the unit of measurement has to remain the same for
all work activities and work plans. The effort can be estimated,
for example, in person (-hours, -days, or -months) [8]. The
total effort estimation for a work plan is the computed sum
of the unit less quantities of each atomic work activity. The
consideration of the estimated effort takes the costs of solution
alternatives into account [8], [9]. The solutions and the work
plans with estimated effort are forwarded to the Rank Solutions
activity.

D. Rank Solutions

In the Rank Solutions activity, the solutions are ranked
through the rating of a multi-criteria decision analysis. The
rating takes costs and constraints into account to support
developers in deciding on an appropriate solution when a
variety of choices exists [8][9]. The rating is done similar
to [30] with a combination of the Analytic Hierarchy Process
(AHP) [31] and the Simple Multi-Attribute Rating Technique
(SMART) [32] taking the performance impact, cost factors,
constraints and the developer’s preferences into account. In the
first step, AHP is used to obtain the priorities of the criteria.
In pairwise comparisons, the developer judges the importance
based on a fundamental scale of absolute numbers [31]. The
priorities are given as input to SMART. SMART is a method of
the multi-attribute utility theory. In contrast to the AHP where
decision-making is done through pair-by-pair comparison of
alternatives requiring human intervention, SMART ranks the
solution alternatives based on the information already collected
throughout the process using the given priorities (henceforth
referred to as weights).

SMART uses a decision table consisting of m crite-
ria C1, C2, . . . , Cm as rows and n solution alternatives
A1, A2, . . . , An as columns. The cells contain the value of
the alternative with respect to the criteria. Each criteria has
an assigned weight wi as dimensionless, normalized number
originating from the developer’s judgements (e.g., the impor-
tance of performance improvement, effort, or the willingness
to change the architecture, etc.). For all alternatives, SMART
computes the rating xj of alternative Aj as follows:

xj =

∑m
i=1(wi aij)∑m

i=1 wi
, j = 1, 2, . . . , n (3)

where aij is the normalized value of criteria Ci and alternative
Aj .

The list of solutions is sorted descending according to
the computed SMART ratings x1, x2, . . . , xn. The solution
with the highest SMART rating in the list is placed on top.

603Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Developers are then able to review and discuss the proposed
solutions based on the work plans, the impacted elements—and
how they are actually impacted, the costs, and the estimated
performance improvement and to select a solution they are
willing to implement. The selected solution and its work plan
are the final result of the process.

III. DISCUSSION

In this section, we clarify the current implementation
status of Vergil’s framework, the dependency on component-
based software architectures and programming languages, and
different categories of refactoring changes.

A. Automation of process activities

Currently, there are implementation prototypes for the two
activities Rank Solutions and Propagate Work Activities. The
activities of the Explore Change Hypotheses sub-process are
intended to be automated in the near future. The Estimate
Effort of Work Plans activity is not automated. However, Vergil
still supports the developer by providing work plans sketching
the implementation steps. In our next steps, we are designing
the architecture of Vergil’s framework based on the feedback
we have received. Our goal is to design an architecture that
allows tailoring the process to the specific needs of a use
case. To give an example, in a certain use cause, it might
be infeasible to estimate the implementation effort for each
solution alternative. Instead, it is only feasible to estimate
the implementation effort of the top-k solution candidates.
Therefore, the solution alternatives must be ranked based on
the criteria (neglecting the implementation effort) to identify
the top-k solution candidates. In such a scenario, the rank
solutions activity must occur twice in the process: (1) before
the Estimate Effort of Work Plans activity, and (2) thereafter
considering only the top-k candidates. In another use case,
the developer may want to have all solution proposals in the
ranking regardless of their conformity with the Developer’s
Preferences. In this case, the Evaluate Work Activities must be
skipped.

B. Extension of the framework

Conceptually, Vergil is designed to be applicable to ap-
plications following component-based architecture and object-
oriented design principles. The implementation of Vergil in
the context of our research focuses on the Java programming
language and the Palladio Component Model, which are both
established means in industrial practice. We designed Vergil’s
framework to use exchangeable plugins to be able to support
different programming languages and technologies. We specify
and provide interfaces to implement plugins, e.g., to support the
C# programming language. However, to make Vergil support
other languages, there are certain key aspects that must be
considered: programming language and technology specific
knowledge encapsulated in Vergil’s artifacts must be changed,
extended, or developed to work with different languages and
technologies.

C. Proposal of non-automatic evaluable solutions

In general, the changes of a change hypothesis can be
assigned to one of the following three categories: (A) auto-
matically executable, (S) semi-automatically executable, and

(M) manually executable. Each category determines the ability
to apply the changes of a change hypothesis automatically
and the demand of human intervention, in order to evaluate
the performance improvement of a change hypotheses (or a
solution in general). The execution of refactorings in a work
plan can also be categorized into (A), (S), and (M). As a result,
we distinguish between nine possible categories of solutions
described by the tuple:

Solution Category = Cat(DoAEv, DoAEx) (4)

where DoAEv determines the Degree of Automation (DoA) for
evaluating the changes of a change hypothesis (the application
of changes to the system respectively) and DoAEx determines
the degree of automation for the execution of a work plan.

Categories (A,A), (A,S), and (A,M) are expected to
require no human intervention to evaluate the performance
improvement of a change hypotheses. Category (S, S) and
(M,M), on the other hand, require human intervention. The
category is often determined through the complexity of the
refactoring. For example, simple refactorings like changing
annotations are categorized as automatically executable. Refac-
torings categorized as semi-automatically or manually exe-
cutable require the implementation of refactorings prior to their
evaluation which is infeasible in most cases (cost vs. benefit
trade-off). In order to avoid the implementation of changes
just to evaluate the performance improvement, Vergil can still
provide solution proposals in terms of work plans but without
evaluating the performance improvement accompanied to the
risk of introducing a performance degradation. Nevertheless, the
proposal of such solutions can still be valuable for developers.

IV. MEDIASTORE EXAMPLE

In this section, we provide an outlook on the validation of
Vergil. We present an excerpt of the Test Change Hypotheses
activity by evaluating the change hypothesis given as example
in Section II-B to cache the results of a method with the
high response time symptom in a APM → APM ′ evaluation
scenario. The example is structured as follows: In the current
state, measurement-driven experimenting techniques are used to
determine the resource demands from the SUT and to calibrate
the APM. The calibrated APM is simulated to obtain the series
of reference measurements S0. Then, the hypothesis’ changes
are applied to transform the APM into APM ′. The APM ′

is simulated to obtain the series of evaluation measurements
S1 (cf. Figure 6 and Section II-B1). To present preliminary
results, we also show the response time measurements before
and after implementing the changes in Figure 8.

We use a MediaStore [16] application as a simple use
case example accessing the database and processing the data.
The MediaStore allows its users to upload and store audio
files as well as to download audio files encoded in a less
or equal audio bit rate compared to the uploaded one. The
application is implemented in Java EE and is deployed in a
GlassFish 4 application server with Derby 10.10 as the database
management system. The application server and the database
management system are located on separate nodes. A short
overview of the most relevant components for the example
is shown in Figure 9 as excerpt from the PCM model. Only
features relevant for the example are shown here and other

604Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

Response Time [s]

P
ro

ba
bi

lit
y

Measured w/o Cache (SUT)
Predicted w/o Cache (PCM)
Predicted with Cache (PCM')
Measured with Cache (SUT')

Figure 8: Measured and predicted response times.

PCM features can be found in [16]. We use the PCM model
as APM in the example. The PCM model shows the resource
container, on which the WebGUIBean, MediaStoreBean,
AudioAdapterBean, and EncoderBean components are
deployed. The resource container corresponds to the node in
the Test Environment on which the MediaStore is deployed
for measurement-based experiments. The SEFF models the
performance-relevant behaviour of the MediaStoreBean’s
download method and consists of the external call action to
fetch an audio file from the database and the external call action
to encode the audio file in a specified audio bit rate.

Figure 9: MediaStore PCM model excerpt.

We consider a scenario where multiple users download an
audio file α ∈ AudioF iles, |AudioF iles| = 81 randomly with
a bit rate β ∈ B = {32, 64, 128, 160} that is less compared to
the uploaded bit rate of 190 kBit/s to force the re-encoding
of α with bit rate β. Mathematically, the encoding function is
defined as follows:

encode(α, β) = α′ (5)

where α′ is the re-encoded audio file α in the desired bit rate
β. The simulated usage profile is as follows: Users login, select
the desired audio file α and bit rate β randomly following a
uniform distribution, download the re-encoded audio file a′,
and logout. We simulate three power users with zero think time
who execute the usage profile in a closed workload scenario
using HP LoadRunner.

We instrument the WebGUIBean’s download method with
our AIM agent and monitor the response time of the method.
Therefore, the agent adds code statements at the beginning
and the end of the method’s body at the byte code level. The
instrumentation (manipulating the byte code) is already fully
automated. The added byte code instructions measure the time it
takes to execute the method. In the monitoring results, shown as
cumulative distribution function in Figure 8 (as dashed red line),
we observe a measured median response time r̄mea = 14.29s
of the SUT in the applied workload and usage scenario. This
is high in our considered scenario. The high response times
are caused by the re-encoding of α.

We use the hypothesis (given as example in Section II-B)
that caching the results of calling the encode method can
improve performance. The encode method (as formalized in
Equation 5) fulfills the precondition as it returns for the same
input tuple (α, β) the same result α′. The size of an object
cache is often specified by the number of elements that can
be added to the cache before eviction takes place. In the case
of a data access profile following a uniform distribution like
in this example, the cache hit probability P only depends on
the size of the cache and the total number of elements. For
example, to achieve a hit probability P = 0.8, the cache size
can be determined as follows:

d|AudioF iles| ∗ |B| ∗ P e = d81 ∗ 4 ∗ 0.8e = 260 (6)

where the result is rounded to the next integer. In general, the
size of the cache can be limited by the amount of memory
that is available for caching objects. For the APM → APM ′

evaluation of the changes, we use the PCM model as shown
in Figure 9, as APM. We extract the resource demands for
the internal actions (not shown in Figure 9) in the SEFF of
IAudioDBAdapter.getFile and IEncoder.encode
with measurement-driven experiments on the SUT. The extrac-
tion is done (semi-) automatically. We are currently working
on the full automation of resource demand extraction for PCM
models with measurement-based experiments in the context of
our publication about AIM. We calibrate the PCM model with
the determined resource demands and simulate the usage profile
and workload to obtain the series of reference measurements
S0. In S0, also shown as cumulative distribution function in
Figure 8 (as dashed blue line), we observe a predicted median
response time r̄pre = 14.39s in the current state of the APM.

In order to evaluate the hypothesis, we manually transform
the SEFF IMediaStoreBean.download as shown in
Figure 10. How the transformation can be automated is shown
in literature [7][23][33]. We introduce a BranchAction and two
ProbabilisticBranchTransitions (PBT) to simulate the cache. We
assign the hit probability P = 0.8 to the CacheHit PBT and the
miss probability 1−P = 0.2 to the CacheMiss PBT. We assume
the cache access time to be negligible, based on our practical
experience (fetching an α′ from the cache takes on average
0.02µs in the SUT ′ with the implemented caching solution).

605Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 10: SEFF in target state of APM ′ with simulated cache.

The simulation results S1 (denoted as blue line) for PCM ′

are shown in Figure 8 as cumulative distribution function. The
simulation predicts a median response time r̄′pred = 2.95s.
Based on the evaluation results, a performance improvement
of 487% is estimated for the changes of the hypothesis.

To validate the simulation results, we also executed
the SUT → SUT ′ evaluation. We implemented the
cache as an Enterprise Java Bean with the help of
Google’s Guava libraries [34]. In the implementation of
the MediaStoreBean.download method, the cache is
checked first for the tuple (α, β). When the audio file cannot
be obtained from the cache, α is fetched from the database
and re-encoded with bit rate β. The resulting α′ is added to
the cache. We set the cache size to 260 objects and repeated
the load test. The initial warm-up of the cache is done during
the ramp-up phase of the load test. In the monitoring results
(as shown in Figure 8 denoted as red line), we observe the
measured median response time r̄′mea = 2.71s. The measured
response times show a performance improvement of 527%.

V. RELATED WORK

The comprehensiveness of Vergil’s process leads to a broad
area of related fields of research. In the following, we cite
only the most important and most relevant approaches to
performance problem solutions due to space constraints. The
interested reader may refer to [21][35] for more details about
meta-heuristic approaches and generic design space exploration
approaches. We categorize related approaches into model-based
and measurement-based performance solution approaches.

A. Model-based Performance Solution

In [35], Cortellessa et al. present a model-based approach to
automatically detect and solve performance antipatterns. Their
approach targets the early design phase and the suggestion of
architectural design changes to overcome performance problems.
The goal of their proposed process is to modify a software
system model to produce a new model without the performance
problems of the former one [35]. They formalize antipatterns
(often defined in natural language) as logical predicates in first-
order logics [20][36]. Arcelli et al. present the automation
of the model refactoring to improve the performance by
applying model differences based on a Role-based Modeling

Language [6][23]. Their approach suggests developers how to
refactor models in order to remove problems. In the context
of the approach of Cortellessa et al., Trubiani and Koziolek
present the detection and rule-based solution of performance
problems in Palladio Component Models in [7]. In [9], Arcelli
and Cortellessa raise the need to take cost factors and constraints
into account when a variety of solution choices exists and to
integrate decision support mechanisms to support designers
in selecting the most appropriate solution(s). In [8], Jing Xu
presents a rule-based approach to detect and solve performance
bottlenecks and long-path performance problems based on
performance models. Models are modified with the help of the
rules in ways that can be converted to design changes, which are
then done manually. The costs for changing the design (carried
out manually) is taken into consideration and can discourage
rules from selecting changes, on a cost-effectiveness basis and
for practical reasons. The proposed design changes describe
what should be changed, and in what way, but not how to do
it. The search is an iterative process. In each round, multiple
alternatives can be created and the performance improvement is
evaluated. When multiple design change branches are obtained
at the end of each round, the performance improvement and
weight of each branch is listed and ranked. Solutions are
provided at the performance model level. Designers have to
transfer the solutions from the performance model level to the
design model level. In [37], Martens et al. propose an approach
for automated performance improvement of component-based
software systems based on meta-heuristic search techniques
and rules applied to Palladio Component Models to find
solutions for performance problems. In [21], Mauro Drago
automates the detection-solution loop to automatically generate
and propose design alternatives as feedback to the designer
to improve non-functional properties of a software design.
Quality-driven transformations are used to generate alternatives.
Queuing Networks are used with estimated service demands
to predict non-functional properties of each alternative. Diaz-
Pace et al. [22] propose a framework to assist the software
architect in the design of software architectures meeting quality
requirements. Rules are used to change the design of the system.
Currently, only rules to improve modifiability are supported that
are applied to a graph-based representation of the architecture.
The modifiability is evaluated with change impact analysis
to determine the cost of changes while the performance is
predicted with a simple performance model.

Neither of the approaches presented above considers an ex-
isting code base and measurement-based performance problem
solutions nor do they support the developer in implementing the
solution with an ordered list of work activities. The detection of
performance problems with measurements and/or performance
models is not in focus of Vergil. Also, Vergil targets the software
development and maintenance phase of a systems lifecycle,
when an implementation of the application is available. Vergil
calibrates performance models with resource demands obtained
from the system under test providing a more representative
evaluation.

B. Measurement-based Performance Solution

Currently, to the best of our knowledge, there is no
measurement-based performance solution approach that consid-
ers a comprehensive process for performance problem solution.
In [14], Trevor Parsons uses monitoring-based techniques to

606Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

extract a performance model of a Java EE application. The
performance model is searched for detecting EJB-specific
performance antipatterns. Problem solution is not part of the
approach. To improve the deployment of components, Malek
et al. introduce a framework [38] that guides the developer
in the design of their solutions for component redeployment
for large distributed systems. The goal is to find a deployment
architecture that exhibits desirable system characteristics or
satisfies a given set of constraints. They use runtime monitoring
and consider quality of service (e.g., latency, availability).
Aled Sage presents in [39] an approach for the observation-
driven configuration of complex software systems. The author
uses established statistical methods from manufacturing, called
Taguchi Methods, and experiments to find configurations such
as communication concurrency that meet the needs of various
stakeholders. Lengauer and Mössenböck [40] propose the use
of iterated local search methods to automatically compute
application-specific Java garbage collector configurations. The
selected configuration candidates are evaluated with monitoring-
based techniques. The evaluation results are used to solve an
objective function to determine the best configuration. In [41],
Chen et al. use measurement-based experiments and source
code changes in the context of object relational mapping only
to prioritize the solution of performance problems based on the
estimated performance improvement. However, their proposed
approach does not consider performance problem solution.

Existing measurement-based approaches are focused mainly
on a particular problem and its solution at the configuration
level or at the architecture level. Neither of the approaches also
considers the solution of performance problems at the code
level nor do they provide a comprehensive process guiding the
developer from a problem to a solution with work activities.
Also, neither of the approaches consider cost factors and
constraints for selecting the most appropriate solution when a
variety of solution alternatives exist.

VI. CONCLUSION

Vergil guides developers from a detected performance
or scalability problem to a solution. The proposed process
explores hypotheses about what solutions can be applied to the
software system, evaluates the performance improvement based
on measurements and/or performance models, and ranks the
solutions with respect to performance improvement, cost factors,
constraints and the developer’s preferences. The solutions are
presented as an ordered list of work activities, sketching the
implementation of the solution without prescribing to the
developer how the solution is actually implemented. Strong
concepts already used in existing model-based approaches
are brought together and are extended with measurement-
based performance problem solutions at the code level and
the integration of decision support mechanisms to support
the developer in selecting the most appropriate solution when
a variety of choices exists. Vergil provides a comprehensive
process for solving performance problems in the development
and maintenance phase of an application’s lifecycle where an
implementation exists and where the solution of performance
problems is known as expensive [42]. In this work, we presented
the main idea, the details of the process and its activities as well
as the formalization of performance problems and performance
expert knowledge. Using an example, we presented promising

preliminary results as a proof of concept for measurement-
based performance problem solution and the calibration of
performance models. We are currently working on the validation
of the overall approach on a case study with a large open
source e-commerce system. Additionally, we plan to conduct
an empirical study with software performance consultants and
developers.

ACKNOWLEDGMENT

The authors would like to thank Jonas Kunz and Sven
Kohlhaas for their support that contributed to the paper. This
work is supported by the German Research Foundation (DFG),
grant RE 1674/6-1.

REFERENCES

[1] C. Smith and L. Williams, “More new software performance antipatterns:
Even more ways to shoot yourself in the foot,” in CMG-CONFERENCE-,
2003, pp. 717–725.

[2] B. Dudney, S. Asbury, J. Krozak, and K. Wittkopf, J2EE antipatterns.
Wiley, 2003.

[3] C. U. Smith, “Performance engineering of software systems,” Addison-
Wesley, vol. 1, 1990, p. 990.

[4] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java
performance evaluation,” ACM SIGPLAN Notices, vol. 42, no. 10, 2007,
pp. 57–76.

[5] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and C. Trubiani,
“Approaching the model-driven generation of feedback to remove
software performance flaws,” in Software Engineering and Advanced
Applications, 2009. SEAA’09. 35th Euromicro Conference on. IEEE,
2009, pp. 162–169.

[6] D. Arcelli, V. Cortellessa, and C. Trubiani, “Antipattern-based model
refactoring for software performance improvement,” in Proceedings of
the 8th international ACM SIGSOFT conference on Quality of Software
Architectures. ACM, 2012, pp. 33–42.

[7] C. Trubiani and A. Koziolek, “Detection and solution of software
performance antipatterns in palladio architectural models.” in ICPE,
2011, pp. 19–30.

[8] J. Xu, “Rule-based automatic software performance diagnosis and
improvement,” Performance Evaluation, vol. 69, no. 11, 2012, pp. 525–
550.

[9] D. Arcelli and V. Cortellessa, “Software model refactoring based on
performance analysis: better working on software or performance side?”
in Proceedings 10th International Workshop on Formal Engineering
Approaches to Software Components and Architectures, Rome, Italy,
March 23, 2013, ser. Electronic Proceedings in Theoretical Computer
Science, B. Buhnova, L. Happe, and J. Kofroň, Eds., vol. 108. Open
Publishing Association, 2013, pp. 33–47.

[10] Virgil. [Online]. Available: http://en.wikipedia.org/wiki/Virgil [retrieved:
08, 2014]

[11] C. Heger, “Systematic guidance in solving performance and scalability
problems,” in WCOP ’13: Proceedings of the 18th international doctoral
symposium on Components and Architecture. New York, NY, USA:
ACM, 2013, pp. 7–12.

[12] O. M. Group. Business process model and notation (bpmn). [Online].
Available: http://www.omg.org/spec/BPMN/2.0 [retrieved: 08, 2014]

[13] C. Heger and R. Heinrich, “Deriving work plans for solving performance
and scalability problems,” in EPEW. Springer, 2014, pp. 104–118, (in
press).

[14] T. Parsons, “Automatic detection of performance design and deployment
antipatterns in component based enterprise systems,” Ph.D. dissertation,
University College Dublin, 2007.

[15] Jamopp. [Online]. Available: http://www.jamopp.org [retrieved: 08,
2014]

[16] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, no. 1, 2009, pp. 3–22.

607Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://en.wikipedia.org/wiki/Virgil
http://www.omg.org/spec/BPMN/2.0
http://www.jamopp.org

[17] S. Becker, M. Hauck, M. Trifu, K. Krogmann, and J. Kofron, “Reverse
engineering component models for quality predictions,” in Software
Maintenance and Reengineering (CSMR), 2010 14th European Confer-
ence on. IEEE, 2010, pp. 194–197.

[18] A. Van Hoorn, M. Rohr, and W. Hasselbring, “Generating probabilistic
and intensity-varying workload for web-based software systems,” in
Performance Evaluation: Metrics, Models and Benchmarks. Springer,
2008, pp. 124–143.

[19] A. Wert, J. Happe, and L. Happe, “Supporting swift reaction: Automati-
cally uncovering performance problems by systematic experiments,” in
Proc. of the 35th ACM/IEEE Int’l Conference on Software Engineering,
ser. ICSE ’13. New York, NY, USA: ACM, 2013, pp. 552–561.

[20] V. Cortellessa, A. Di Marco, and C. Trubiani, “An approach for modeling
and detecting software performance antipatterns based on first-order
logics,” Software and Systems Modeling, 2012, pp. 1–42.

[21] M. L. Drago, “Quality driven model transformations for feedback
provisioning,” Ph.D. dissertation, Italy, 2012.

[22] A. Diaz-Pace, H. Kim, L. Bass, P. Bianco, and F. Bachmann, “Integrating
quality-attribute reasoning frameworks in the arche design assistant,” in
Quality of Software Architectures. Models and Architectures. Springer,
2008, pp. 171–188.

[23] D. Arcelli, V. Cortellessa, and D. Di Ruscio, “Applying model differences
to automate performance-driven refactoring of software models,” in
Computer Performance Engineering. Springer, 2013, pp. 312–324.

[24] M. Drago, C. Ghezzi, and R. Mirandola, “A quality driven extension to
the qvt-relations transformation language,” Computer Science - Research
and Development, 2011, pp. 1–20.

[25] HP LoadRunner. [Online]. Available: http://www.hp.com/go/loadrunner
[retrieved: 08, 2014]

[26] JMeter. [Online]. Available: https://jmeter.apache.org [retrieved: 08,
2014]

[27] Markov4JMeter. [Online]. Available: http://www.se.informatik.uni-kiel.
de/en/research/projects/markov4jmeter/ [retrieved: 08, 2014]

[28] S. Lehnert, Q. Farooq, and M. Riebisch, “Rule-based impact analysis
for heterogeneous software artifacts,” in Software Maintenance and
Reengineering (CSMR), 2013 17th European Conference on. IEEE,
2013, pp. 209–218.

[29] ——, “A taxonomy of change types and its application in software
evolution,” in Engineering of Computer Based Systems (ECBS), 2012
IEEE 19th International Conference and Workshops on, April 2012, pp.
98–107.

[30] F. Moges Kasie, “Combining simple multiple attribute rating technique
and analytical hierarchy process for designing multi-criteria performance
measurement framework,” Global Journal of Researches In Engineering,
vol. 13, no. 1, 2013.

[31] T. L. Saaty, “The analytic hierarchy and analytic network processes
for the measurement of intangible criteria and for decision-making,” in
Multiple criteria decision analysis: state of the art surveys. Springer,
2005, pp. 345–405.

[32] W. Edwards, “How to use multiattribute utility measurement for social
decisionmaking,” Systems, Man and Cybernetics, IEEE Transactions on,
vol. 7, no. 5, 1977, pp. 326–340.

[33] A. Koziolek, H. Koziolek, and R. Reussner, “Peropteryx: automated
application of tactics in multi-objective software architecture opti-
mization,” in Proceedings of the joint ACM SIGSOFT conference
(QoSA+ISARCS’11). New York, NY, USA: ACM, 2011, pp. 33–42.

[34] Google Guava-Libraries. [Online]. Available: http://code.google.com/p/
guava-libraries/ [retrieved: 08, 2014]

[35] V. Cortellessa, A. Martens, R. Reussner, and C. Trubiani, “A process to
effectively identify “guilty” performance antipatterns,” in Fundamental
Approaches to Software Engineering. Springer, 2010, pp. 368–382.

[36] V. Cortellessa, A. Di Marco, and C. Trubiani, “Performance antipatterns
as logical predicates,” in Engineering of Complex Computer Systems
(ICECCS), 2010 15th IEEE International Conference on. IEEE, 2010,
pp. 146–156.

[37] A. Martens, H. Koziolek, S. Becker, and R. Reussner, “Automatically
improve software architecture models for performance, reliability, and
cost using evolutionary algorithms,” in Proceedings of the first joint
WOSP/SIPEW international conference on Performance engineering.
New York, NY, USA: ACM, 2010, pp. 105–116.

[38] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “An extensible frame-
work for autonomic analysis and improvement of distributed deployment
architectures,” in Proceedings of the 1st ACM SIGSOFT workshop on
Self-managed systems, ser. WOSS ’04. New York, NY, USA: ACM,
2004, pp. 95–99.

[39] A. Sage, “Observation-driven configuration of complex software systems,”
2010.

[40] P. Lengauer and H. Mössenböck, “The taming of the shrew: Increasing
performance by automatic parameter tuning for java garbage collectors,”
in Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’14. New York, NY, USA: ACM,
2014, pp. 111–122.

[41] T.-H. Chen et al., “Detecting performance anti-patterns for applications
developed using object-relational mapping,” in Proceedings of the 36th
International Conference on Software Engineering, ICSE, 2014, pp.
1001–1012.

[42] B. W. Boehm, Software Engineering Economics, 1st ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1981.

608Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://www.hp.com/go/loadrunner
https://jmeter.apache.org
http://www.se.informatik.uni-kiel.de/en/research/projects/markov4jmeter/
http://www.se.informatik.uni-kiel.de/en/research/projects/markov4jmeter/
http://code.google.com/p/guava-libraries/
http://code.google.com/p/guava-libraries/

	Introduction
	The Vergil Approach
	Extract Models
	Explore Change Hypotheses
	Test Change Hypotheses
	Propagate Work Activities
	Evaluate Work Activities
	Extract Work Plans

	Estimate Effort of Work Plans
	Rank Solutions

	Discussion
	Automation of process activities
	Extension of the framework
	Proposal of non-automatic evaluable solutions

	MediaStore Example
	related work
	Model-based Performance Solution
	Measurement-based Performance Solution

	Conclusion
	References

