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Abstract—Creating an object-oriented design from user require- Modeling means choosing a proper abstraction and a

ments, given as a set of use-cases, means deriving a detailed suitable representation of it to facilitate its use. Firstate
class structure that can support an implementation of those models and interaction-diagrams are often used in explgini
requirements. We introduce here the Augmented Finite-Sta& 5 class-structure design [7]. We use a reverse approach: we
(AFS) model for a set of use-cases. An AFS model of a single use  first create an Augmented Finite-State (AFS) model of the use
caseU incorporates the inputs, outputs, and operations for each cases (interactions) that describe the requirements @mdwe

int tion i including the "int [” datafl th : . . . .
:ﬂtgiﬁt:gﬂs'nTUhé'rl\cpus 'g%def fcl)rr] 2";3 o?fsgvgzsgoc%gmbizsees build the classes and their relationships from this modeis T

the AFS models of individual use-case#/; € U to account for ~ 9iVes @& more systematic and precise (semi-formal) tecleniqu
common interactions amongU;,’s and the control-flows among compared to the other methods in the literature. A clasgdesi

U,’s. After we decompose the combined model into a unique set involves identification and grouping of operations and rthei
of disjoint Maximal Linear Segments (MLSs), we derive one @ss  supporting variables (inputs and outputs of the operations
from each MLS and finally create the class-hierarchy based on and other intermediate stored data to avoid recomputation)
the next-relationship among the MLSs. One advantage of our jn a way that minimizes the information overload. The AFS
approach over those based on the concept-analysis is thateh model facilitates both of these steps by capturing the dis$en
AFS model gives a simple controller for the call-sequences the  4herational details of the system’s functional requirem@he
class-methods corresponding to each;. identification of operational details for each use-casgka
Keywords-Augmented finite-state model; class hierarchy; object- key role in our approach. The method presented here can be
oriented design; refactoring; use-case model. regarded as a refinement of that in Kundu [8].

Many models are used in software engineering as effective
tools. For exampleFinite-statemachines are used by Chow
[9] for automated software testing. Our AFS model has some

Software design is an essential part of any software deresemblance tX-machineqg10]. In X-machinesa transition
velopment effort. For an object-oriented software, theigies between two states is labeled by an operation whereas in AFS
consists of the classes (their attributes, methods, anbadet the labels are constraints; the dataflow items in AFS model
parameters) and the relationships among those classes whicorrespond to the concept of "memory” ¥xmachines
includes the class-hierarchy and other associations. &sigrl In Section I, we give the detailed formal definition of a
gives a global view of the functionalities and structureltd t | se_case, and Section IIl defines the AFS model of a set of
software, and plays a critical role in understanding, imme-  se-casesSections IV and V explain our AFS-based approach
tation, and analysis of the software. for generating a class-hierarchy using a simplified set ef us

Semi-automated generation of UML-models and classcases for a bank's ATM machine. Section VI provides a brief

diagrams from natural language description of requirementconclusion.
are discussed in [1][2]. Automated generation of UML-madel
are discussed in [3][4]. These works are based on Natural Il. A FORMAL DEFINITION OF USE-CASE

Language Processing, and rely on use-cases defined using a Jacobson [11] defines a use-case as a sequence (chain)
semi-formal syntaxes and semantics. Cockburn [5] arguad th of interactionsU = (ty,ta,- - - ,t,), which provides the user
there is no formal syntax or semantics for writing use-casesa useful service, i.e., corresponds to a complete higH-leve
Roussev [6] uses an informal notion of "balance” of objectsfunctional requirement. It/; and U, are two use-cases, then
involved in a use-case, and assumes the use-cases aremgiverglearly U1 Us is also a use-case. Henceforth, a use-cagaill

terms of pre-conditions, post-conditions and invariantdtee ~ mean anelementaryuse-case, which cannot be decomposed
objects involved in the use-cases. The identification oécisj into a sequence of two or more disjoint smaller use-cases.

is a key missing step in [6]; also, the notion of "balance” of i

objects has a basic flaw because "information” do not behav8- Interactiont;

like the physical quantities force, energy, and mass, and we Formally, an interactiort; = (in;, op;, out;) is a triplet,

don’t have a principle like the "conservation of energy” for wherein; = in(¢;) is a set of input data-itemsp, = op(t;)
"information”. is an operation, anekut; = out(t;) is a set of output data-items.

I. INTRODUCTION
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The inputsin; consist of two disjoint parts: user-inputa}
and other "external” (with respect @) inputsin;. The term
"interaction” meansn} # (); however, one possible exception
to this is that the last interactiofy, in U may havein® = ()
(cf. Theorem 1). An operatiogp; may have multiple parts and
a user may provide different parts of! at different stages of
op;, with in; andout; interleaved. The inputs tep; may also
include zero or more additional "internal” data-itenis that
are generated by previous;’s, i < j andt; € U. We refer to
suchd,’s asdataflows The outputwut; also consists of two
parts: user-outputsuty and external-outputsut;; because

parts ofout’ maybe saved for use in other use-cases and hen%lere

included in out§, we may haveout N out # 0. Clearly,
inj = iny Uing andout; = out} Uout;. Henceforth, we use
t; andop; interchangeably when no confusion is likely. Figure
1 shows the structure of an interactibn We can regardp;

as a function ofn; and zero or moré;, i < j, i.e.,in(op;) =
U< ini- In contrastin(t;) = in; and thust; is not exactly
the same asp;. The dataflowd; is not determined byp; but

by tx,k > j in U, also,d; need not be a subset ofit;.

“internal” dataflev inputsd; , d;,, ld;
(jx < J2 K jp < j) for o,

d;, m dj,
| — i —— out}‘
— ! —— Ou'[je

d; [ d;

d; generated byp; to zero or morep,, K > |

Figure 1. Structure of an interactian.

B. Use-Casd/

(3) dind; = 0 for i # j. Any part of d; can be made
available to eaclap;, j > i, as needed.

(4) Each (¢;,t;41)-pair has an associatettansition-
condition ¢; ;.1 which needs to be satisfied aftep; is
completed in order fobp;,; to start;c; ;41 = true means
the condition is trivially satisfied. The conditiof} ;41 does
not depend oning, k > j, and may depend only on parts
of in(op;). All non-trivial conditionsc; ;41,4 < j, contribute
directly or indirectly to the pre-condition fetp;;. We assume
for now thatc; ;41 is evaluated byp;.

We write If; = (Jin} and If; = (Jin§, where the unions
taken over alf, and finally I;; = I} U If;. Similarly, we
write Of, = Jout, Of, = Uoutj, Oy =0 UO0g, Dy =
Ud;, andCy = {7cj,j+1 : 1 < j < n}. The entities inly,

Oy, and Dy are the names of data-items and not any specific
values for them. (An instance of a use-césewith concrete
values for the data-items ify; and hence concrete values for
the data-items iy U Oy, is called a scenario.)

If the use-casé/’ is used after the use-caeand we need
to use parts ofn¥ att; € U as parts ofin}, att; € U’, then
we can include ‘those parts ofY into out¢ and those parts
of out can now become a part of¢,. This avoids having to
provide the common parts @f,; andin}, more than once.

A proper choice of the individual interactiorts in mod-
eling a use-cas& is a non-trivial task. A simpler or smaller
t; can help to reduce errors in determiniingop, ), out(op;),
and ¢; j+1, but it can also introduce unnecessary details in
the design of a class-structure for. A complex or largett;
can, on the other hand, prevent sharing interactions betwee
different use-cases. These issues are described next.

C. Merging Interactions

If we merget;,t;4+1 € U into a single interactiort; 1,

x 0y U — U sy U imi Y €

the;g we havenj,jJrl =dnjuUin},, and similarly formjﬁl,
out ;

%41, andouts . . In generald; ;11 C dj Udjqq, With

. . . g1 Jyj+1 . .
We formally define a use-case as a sequence of interactions;’ ; hiding dataflows fromt; to ;41 (making them internal

U = (t1,t2,- -, t,) with the properties (1)-(4) below.
(1) inj Nin§ = @ for i # j. A user should not be

to op; j+1); in the extreme case, we may ha¥g; 11 = dj41.
Also, op; j+1 = opjoop;+1, the composition (roughly speaking

required to provide the same input more than once in a usdD View of ¢; ;1) of op; andop; 1, in that order. The new in-

case. Ifop;,j > i, requires parts of the user-inpist}, then
op; may include those parts ah} in the internal dataflow
item d; generated byp;. However,out! N out?¥ may be non-
empty because parts ofit; might be repeated iout; (e.g., a
"confirm operation” prompt to the user for a critical opeoati
like deleting a file). We assume eaf); is as small as possible,
i.e., no unnecessary "early” inputs and alkief; is used inop;.
Likewise, we assume eachut; is as large as possible, i.e., no
"late” outputs. For efficient input/output operations itwiag
files and databases, one may want to maximize each chunk

information exchange but for modeling purpose these "&arly ¢,

and "late” viewpoints are more logical.

(2) ing Nin§ = 0 = out{ Nout§ for i # j. As before,
if opj,7 > 4, requires parts ofin¢, thenop; may include
those parts ofin{ in d;. This is desirable if accessing the
external input data-items are computationally expensiVe.
may also include parts odut; in d; to avoid recomputing
them inop;,j > 4. (A non-emptyout{ N out; would mean
parts ofout{ is overwritten byop;, j > i, based on additional
information available abp;.) Becauseop; does not use any
iny or di, k > j, there is nocyclic dependencgmongop;’s.
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teraction sequencély,to, - ,t—1,t j+1,tj+2, - ,tn) has
less information aboubp; ;11 (equivalently,t; ;+1) because
we know less about which parts 61, ;,1 are used by which
parts ofop; ;11 to produce which parts afut; ;1 andd; ;.
There is, however, no change Itt, I;, O, andOf,.

Except for the loss of some information as noted above, it
is safe to merge; andt; ;1 whenc; ;11 = true. In this case,
each use-casg’ containingt; will also containt;;, and thus
we can replace; andt;, by ¢;;41 in eachU’.
of The merging ot; and¢;,; has no impact on the condition
M tj—1 10 tj541, L€, iy (jj41) = ¢j-1,5, Which will
be evaluated byp;_,. However, determining the condition
C(j.j+1),j+2 fromt; ;1 t0t;, o might pose a problem as shown
below. Consider the situation on the left-side in FigRréhe
partej i "+ 2 # 07N ¢ 510 = g1 A Gt g
shown on the rightside in Figur2 is the result of "pushing
down” the conditionc; ;11: "2 # 0" through op;4+1, which
OiVeS Zpew = Told — 2, 1.€., Told = Tnew + 2, @Nd thuse; jy1:

"t #£ 0" = "xoq # 0" becomesc; iyl "Thew + 2 # 07
"r+2z # 0". But a difficulty arises if we replaced’ = z—2"in
opj+1 by "z = x2 — 2" because we cannot express noyy, in
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terms ofz,...,. We can, however, add the computatian;; = can cause problems with the condition fof_, ;, t’j’)—pair for
x” at the end ofop; and call itop’;, let op; ;11 = opoopjy1  U”. If there is noU”, we could form¢;_; ; to eliminatet;.
andcgj,j+1),j+2° (Tota # 0) A (y > ). But such tricks do not _ _

always suffice as would be the case if = x — 2" in op;;;  D. Decomposing an Interaction

is replaced by ¥ = = — z/x"; op;11 now needsr # 0 and If we can decompose asp; into a chain of suboperations
thus we cannot afford to do the testyjq # 0" after op; j+1.  (opj.1,0pj.2,- -+ ,0pjm), m > 2, then should we repladg in
U by the chain of interaction&; 1,¢;.2,- - - ,tj.m), Whereop; ,
L corresponds te; ,,? If we did, then we will have;_; ;1) =
Cj—14s Cim) j+1 = Cjjity ANACjp 5 (py1) = true, 1 < p <
X—=  Op; = Out; m. This iImplies that it is safe to merge ,’s and hence the
decomposition is unnecessary. Note that becayse ,+1) =
Cj j+1: X#0 x,z—» OPiini= | ooyt i, true, there is no use-cagé’ that includeg; , but nott; (4 1).
0pj O 0pjs1 1
OPj+1- E. Deleting an Interaction
z—» {y=y+z —»outj, ) . .
X=Xx-12} C(jj+1).je2: | (X +220) O(y > X) In general, the deletion of & € U may not give a vall_d
use-caseéti,ta, - ,tj—1,tj41,t542, - ,tn). FOr example, if
Cjsvjs2- ¥ > Xi ty, k > j, requiresd; generated byp; then removal oft;

makesop;, inapplicable; henceé, needs to be removed. This
may, in turn, require othet,,, m > k, to be removed and
so on. On the other hand, i > j is the smallest index such
thattk requiresdj then(tl, to, - ,tj_l, tj+1, tj+2, ce ,tk_1>
Even if we could define a suitablg; ;1) 1o, the creation May not be a valid use-case because the outpdj-of may
of ¢; 41 would prevent sharing just one of andt,.; involve a prompt to the user to provide an input;( # 0).
with another use-casé’, and this can be a good reason not The same argument shows that deletiort,of, may create a

to createt; ;,;. On the other hand, if we have a use-caseProblem, and so on. A similar argument shows that an initial
U ={(-- ,ij,tj+1,t;-+2, ---) containing botht; andt;,; but ~ part of a use-case may not be a valid use-case. Likewise, a

a different’ ,,, with ¢}, ., ="y < 2" = —¢jq1, 42 for tail part (ty41,tr42, -+ ,tn) Of & use-case may not be a valid

the pair(t; 41, ,,), then after we creat; ;, we will have use-case be_cause_the output,pfnay involve a prompt to the
= (fC Y2 #0)A(y <) in U'. Obviously, we user to provide an input and without that prompt; becomes

/

C/. . . =

(4,54+1),5+2 : ;
cannot merge; andt, k > j + 1, and keepl acyclic. meaningless.

Figure 2. lllustration of a simple case o[]-’jﬂ)’ﬂz.

[1l. AUGMENTED FINITE STATE (AFS) MODEL

The AFS model of a set of use-casks denoted by
AFS(U), combines the notions of finite state machines,
. ) flowcharts, and Dataflow Diagrams (DFDs, which can be

Proof. If in; = () andj < n, thenc,;,, depends only regarded as high-level dataflow-abstractions of flowchaks
on |, in; and thus we can create the shortened use-casg finjte-state machine, each statein AFS(l/) corresponds

Theorem 1For a use-cas&/ = (t1,to, - ,t,), there is
no loss of generality to assume that eagh # 0 for j < n
if some use-caseS’ sharet; € U exactly uptot;.

U by merging?; into ;.1 as follows. We letc;—1,j11 = tg an interactiort; in a use-case it¥. Each transitior(s;, sy
¢j—1,i ANifL(c)j41), wherelift(c;,j11) is the result of "lifting  ¢orresponds to the next-interactionof ¢, in a use-case it/
up” cj,j+1 through op;, and replaceop;+1 by op,,, = that containg;, and associated with the transitios (s;) we
op; o op;j+1. Note thatc; ; ;41 can be evaluated byp; ;. have the corresponding condition;,. Clearly,c; ;. is indepen-
If there is another use-cadé’ = (---,t;_1,¢;,%;.1,--+),  dentof the use-case in which is the next interaction after;,

which is identical toU upto¢;, then we can likewise create and it can be likened to a branching-condition in a flowchart.
the shortened use-cagé by mergingt; into ti1, Withopi,  We also have the dataflowk between interactions or states.
replaced byop’ | = op; o opjy, and lettingc} , ; ., =  As before, we consider a statg = ¢; to be synonymous

cj—1; A lift(cé,j+1)y where C},j+1 is the condition for the Wwith the operationop,; associated with;. If |¢/| = 1, then

pair (t;,t},,). Note thatc; 1 41 A ¢f 4,0y = i1y A AFS(U) takes the form of a single chain. The condition
lift(cj i) ANift(c) q) = ¢jm1y A lift(C} HIAC ) = Gk associated with transitiofis;, sy) must be satisfied for
cj_1, Nlift(false) = cj_14 A false = false, as desired. The the ttansmon Eo take place. For two transitiofrs, s;;) and
shortened use-casésand U’ now share only upta; ;. ] (85:8%), sk # sy, the conditions:; ,, andc; » must be disjoint,

i.e., ¢jx A ¢j = false. Unlike a flowchart, anAFS(U)

Two remarks are due here. First, mergingwith ¢, to by definition does not have a cycle and this prevents cyclic
avoid in; # () does not cost us in terms of its effect on the data-dependencies. The usual use-dependencies among data
class design. The methods fas . andop’ _ in the classes items in assignments and other computations in a flowchart ar

. —J+l —j+l replaced inAF'S(U) by the higher-level abstractions inputs
for U andU’ will now have some commonalities becaugg b y g PUES,

is a part of bothop. . an d%;H. However, we can refactor outputs, and dataflows associated with a state.

i H — . u
the common part, Jianeeded, to a parent class. Second, we % \gs fgr;imallg de'”ﬁAis(Z’) - éS’ 50, Sfinat, €, D, I,
not merget; into ¢;_; in the proof of Theorem 1 because if * **~ +*~ 7T 6%, 9", 0%, 9°), where

there is an use-cadé” that is identical toU only upto¢;_; 1) S +#0is a set of states and, € S is the start-state;
then the merging would create an overloadgd, ; in terms each states; is reachable frony, by a sequence of
of outputs and the operatiarp;_,,; = op;_1 o op;, and this transitions and has an associated operajon
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2)  Spma C S is the subset of final (terminal) states, | Class-Creation-Rules for a single use-case
from which there are no transitions. 1. The variables are the internal dataflows, whicl
3) C = {c¢,: conditions associated with transitions may include parts ofy U Op. _
(si»s;)} = UCu, union over the use-casése U. 2. The class-methods are the operatiopse U or
4) D = {d;: the internal dataflow item generated &y, parts of them.
at s;} = |J Dy, union over the use-casésec U. .
5) Iv = UI¢ I¢ = JIg, O = JOY and O° = . If /| > 1, we can first create one clqss for each use-case
L O%, each union over the use-cadés: U. in & and then refactor common class-variables and methods to
6) 7:5xC — Sis the transition function. create the final class-structure. A better method is to kihitd

7) §:D — §xP*HS) is the function representing class-structure directly from the combined mod&F S (i),
the dataflows, wher®+(S) = the set of non-empty whose tree-structure directly leads to a tree-structutasise
subsets ofS, ,6(dj) = (s;,8;) = (61(dy),82(d;)) hierarchy, with one class for each maximal linear segment

meanssS; = {si: s, usesd,; generated at,}, and (MLS) of the tree. A linear segment idF'S(i/) is a path

d; # d; meanss; = 6, (d;) # 6,(d;) = s;. m in AF'S(U), where each state in other than those at the
8) ¢": It — PT(S) is the user-input functiony®(u’) start and end ofr has a single child (next) node.

= {s: s requires user-input'}. We remark that the notatioty = (in;, op;, out;) implies
9) ¢°: I° — P*(S) is the external-input function; thatif¢; € U is shared and equal$ = (in;, op);, out}) € U,

#°(e') = {sp: s requires external-input’}. thenin; = in, op; = op);, andout; = out’;. However, the
10) ¥ : 0% — PT(S) is the user-output function. dataflowd; from op; in U may differ from the dataflow?;

11) ¢ : 0° = P*(S) is the external-output function.  from op/; in U”. For a tree-structured F.S(U), with U, U’ € U,

12)  Foreachs; ¢ Syina, the conditions;; ; are mutually ¢ = ¢/ ‘implies op; = op/; can computel; U d’, and thus we
disjoint (i.e.,c;; A i = false for j # k). We may  can replace both; in U andd; in U’ by d; U d. Viewed
also assume tha{/c;; = true because otherwise another way, this simply points out that while the classes fo
we can add a "graceful” exit-transition to a new final {7 and {/’ obtained by the Class-Creation-Rules may contain
states; with the transition-condition; » = =\/¢; ;. different class variables due t # d, when we merge those

13)  For anys;, s; € ¢"(u') for an user-input/, neither  classes to create a class-hierarchy the class contaiping:
of s; ands; is reachable from the other. Similarly for op/; can include the variables for botly andd’.

¢¢ andy*. (But this is not required for.) We illustrate below our method by deriving a class-
structure for a bank’s ATM-system with three high-level ¢un
Sional requirements or use-casés = {U;,Us, Us}, where

1 = successful withdrawall/; = failed withdrawal due to

sufficient funds, and/; = balance enquiry. We first derive a
class for eacl/; using the Create-Class-Rules and then show
that the class-structure obtained by refactoring thesssela
Ean be obtained directly fro.

In what follows, we consider only the special case wher
AFS(U) has a tree-structure. Recall that not all paths in
flowchart, even in absence of cycles, may represent a vali
execution-path; likewise, if the transitions S (/) form a
general acyclic digraph, then we may have paths from the star
statesy to a final-state that do not represent a valid use-cas
and this can severely complicate the derivation of a siétabl
class-structure frond F'S(24). In the case of a tree-structured

AFSU), each path from the start-statg to a final-state Informal Df—:‘SCI‘IptIOﬂ O_f ATM .
represents a valid use-caseAFS(1). A user swipes a debit card in the ATM’'s card-slot. The

ATM reads the debit card and prompts the user to enter the
AFS(U) helps us to see the relationships among the usePIN. We assume for simplicity that no invalid ATM card or
casesl{ in terms of their shared interactions. In particular, PIN is used, and there is no cash dispenser malfunction. The
it helps us to identify inconsistencies inconsistent ordér ATM validates the PIN and asks the user to choose one of
operations, invalid dataflow dependencies, and missing intwo displayed options "withdrawal” and "balance-enquirif’
puts/outputs for the use-casés One must, indeed, resolve the user selects withdrawal-option, the ATM calculates and
all inconsistencies before attempting to create a classtste  displays the maximum allowable withdrawal amount based on
from U/ for the desired software. the available ATM cash and debit-card-account-infornmatio
Then, the ATM asks the user to enter the withdrawal amount
and it reads that amount. Then, either the ATM displays the
updates to debit-card-account-info and dispenses theedesi
cash, or it displays a transaction-fail-message when vatlul
Given the AFS-model of a single use-cdsewe use the amount is_too large. If the_z user selects balance-enquiigopt
Class-Creation-Rules below to obtain a class that supparts the ATM displays the debit-card-account-balance. In easlec
implementation ofU. These rules can be used also, morethe ATM writes a transaction-log for future audit analysss a
generally, for any linear chain of interactions. Initialthe ~ Part of session-closing operation.
class-methods have no parameters and this has the advantage o
of a simple control mechanism for executing the methodd3- Formal Description of Use-Casé,
in a class (see Section V-C). We may later use refactoring We show below the decomposition df; into four
to introduce new methods (possibly, with parameters) fointeractionst;-t, and also show eactp; in detail, including
common or similar parts of the original class-methods, andts lower level operations. This simplifies the identificatiof
replace the common parts in the original methods by calls tanputsin;, outputsout;, dataflow itemsi;, and the transition
the new refactored methods with suitable parameter-values conditionsc; ;1 for U;, which are shown in Tables | and

IV. METHODOLOGY
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Il. The data-item ATMidAndOtherinfo inng includes ATM- TABLE II. Conditions c; ;1 and data-itemsl; for U

cash-balance among others. The Transaction-Log-Inféomat
(TLI) has many parts, including dateTime of transaction, |ci |true (no invalid card or PIN) | | Bank-Debit-Card-Account-

transaction amount, update of Bank-Debit-card-Account- | |["Withdrawal" = Selected ||| Detail Info _ '
Detail-Info, etc. Differenbut¢ includes different parts of TLI. %3 | Transaction Option d,| Selected Transaction Optign
Max Allowable Withdraval Max Allowable Withdraval
. i C34 | Amount= Desired ds| Amount,
U: Successful withdrawal > |Withdrawal Amount *| Withdraval Amount Desired
t1:  User swipes the debit card in the ATM’s card slot and
enters PIN when requestedof;: ATM reads the _ ) ’ _ )
debit card number, then reads Bank-Debit-Card-PIN In general, the conjunction af; ;,’s for the interaction-
Information based on the debit card number, displaysequence of a use-casedoes not give a pre-condition féf
"Enter PIN” message, reads the PIN entered and valibecause each; ;1 is stated in terms of values of data-items
dates it with Bank-Debit-Card-PIN information, reads "after” the operatiorop;. For Uy, c2,3 A cs 4 does give its pre-
Bank-Dehit-Card-Account-Detail Information for the condition. We considetl; to be an "implicit” dataflow from
debit card number, and writes part-1 (debit card num-op2 to op; because execution efp; requirescy 3 to be true.
ber, PIN, and transaction dateTime) of TLI] Similarly, we considerl/s to be an implicit dataflow fronops
ts:  User sees the displayed transaction options and sé(—) opy. (The control!er to drive the gxecutlon pf the methods
| - ” . . : in the class for/; will use do andds; see Section V-C.) See
ects the "withdrawal” option. ¢p2: ATM displays . . . .

. . o - » ... Figure 3, which shows the finite-state machine model and the
the transaction-options "balance-enquiry” and "With- ' model fort/,. There is no dataflow from, to ¢
drawal”, requests the user to select an option, reads the L L
selected option (= "withdrawal” fol/;), and writes
part-2 (transactionOption = withdrawal) of TLI.] e ing

tz: User sees the displayed max allowed withdrawal B
amount and enters the desired withdrawal amount. C12 = rue
[ops: ATM calculates and displays the max al- ()
lowed withdrawal amount based on the ATM-cash- Cra
balance (which is part of the external input AT- ' ins
MidAndOtherInfo) and the debit-card-account-detail 9
information (such as the single-transaction-limit, the C3.4
daily-withdrawal-limit for the card, today's-current- ing
total-withdrawal, and the debit-card-account-balance).
Then' ATM requests use_r to ent_er the desired- Figure 3. FSM (left) and DFD (right) for the use-calSe
withdrawal-amount, reads it, and writes part-3 (max
allowed withdrawal amount) of TLI.]
. fulwith
ty: User takes the dispensed caslpf: ATM up- ATMidAndoSt:Zflensfzu ithdnaa
dates ATM-cash-balance part of ATMidAndOther- bankDebitCardPINinfo
Info and the Bank-Debit-Card-Account-Detail infor- balnkltD%thardAtC_couontPetailInfO Z gl
i 'go Wi it- selected [ransactionOption
mation (such as today’s Fotal withdrawal and deblt_ maxAllowableWithdravalAmount I d§
card-account-balance), displays the updated debit- desiredWithdravalAmount Il ds
card—acc_:ount—balance, displays "_coIIect—cash“_ message readDebitCardPINinfo() 11 opy
(which includes the amount withdrawn), dispenses dis%lzyléetel_rgl{\lngls’\?g() Zopl
. . _ _ readAndValidate opy
cash for the withdrawal amount, anq writes part-4 (up _ readBankAccountDetaillnfo() 1l op.
dates of ATM-cash-balance, this withdrawal amount, in, out writePart1TransactionLonInfo() Il op,
debit-card-account-balance) of TLI.] _ displayTransactionOptions() Il op,
C1 2 =true readSelectedTransactionOption() Il op,
writePart2TransactionLoglnfo() Il op,
TABLE . Inputs in; and outputsout; for Uy out displayMaxWithdrava Amount() I ops
displayEnterWithdraea AmountMssg() // ops
cn B readDesiredWithdmal Amount() Il ops
u: Debit-card number, || out, g: pi?i?{ OP]JI}IFL{r]essage writePart3TransactionLoglnfo() 1 ops
I;IN Equ%erC q ) outg updateATMandBankAccountinfo()  // op,
.| e: Bank-Debit-Card- . P ; displayAccountDetaillnfo() 11 op,
N pIN Info, u: "Transactlon °E’.“°”S display. displayCollectCashMssg() 1 op;1
. out, Select Option" message . -
Bank-Debit-Card- e: Part-2 of TLI dispenseCashOperation() 1 opy
Account-Detail Info ) oug writePart4TransactionLoglnfo() 1 opy
u: Max Allowable Withdraval
.| u: Selected Transactign Amount display, Figure 4. AFS model (left) and class (right) for use-cé&e
N2\~ Option outs| "Enter Desired Withdnaal
Amount" message
u: Desired Withdraa e: Part-3 of TL| C. AFS Model of/;
i . : Nav BankA tDetailInf : . -
N3] ATM-id-And-Other ! ..Ceg{le;”Ca;fﬁP‘r;”esseagg”" Figure 4 showsAFS(U;), obtained by combining the
Info outy| e: Nev BankAccountDetaillnfo DFD and the FSM shown in Figure 3. It also shows the
in, |u: Cash Collected New ATMidAndOtherinfo, SuccessfulWithdrawal-class obtained fromF'S(U;) based

on Tables | and Il and the Class-Creation-Rules, and it is
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suitable for implementind/;. The detailed analysis of each
t; identified several low level functions (methods) for the
associatetp;, and we have labeled each of those low-level
functions as "fép;” in SuccessfulWithdrawal-class. One could
merge the functions with the same labeb}/” into a single
function, and call itop;. If we let each merged function

op; have parameters corresponding to the dataflows to it and

let eachop; call op;+1, then we can eliminate all the class
variables exceptl;; evend; can be eliminated if we use a
parameter irops and passl; for it when called byop,. But

we keep the class variables as shown to simplify the design of

a single general purpose controller for any sets of usesgase

D. Merging and Decomposing Interactions i

We can merge interactioris andt, or, equivalently, states
s1 andss in Figure 4 into a single state because, = true.
This will not adversely affect handlings and Us because
both#; andt, are common td/> andUs. We do not merge
sy and s3 because that would prevent sharing (and its
associated operations, inputs, and outputs) betwgeand the

TABLE Ill. Inputs and outputs foilUs and Us that are different fronUUy

ing |0 (empty) outs gf "!gftt@g%e%t_runds“ message
: u: Selected

Mo | Transaction Eugtot 0 (empty)

~72 | Option i

- out. | Y- Account Balance

ing; |0 (empty) 11 | e: Part-6 of TLI

TABLE V. Conditions c; 3, for U2 andUs that are different froni/;

Max Allowable Withdraval
Amount < Withdraval Amount Desired

true (no ivalid Card)
"Balance Enquiry" = Selected Transaction Op

C78=C38=
7C34

C9,10= C1,2

C10,11= C2,11 ion

F. AFS Models foil/; and U;

We do not show the FSM and DFD fdr, and Us, but
their AFS models and the corresponding classes are shown in
Figures 5 and 6. As in the case bf, we could merge the
functions (methods) with the same labelof/f” in Figures 5
and 6 into a single function and call dp;.

use-cased; andUs. On the other hand, we do not decompose

at;,1 < j < 4, into severalt;;'s corresponding to the
methods in Figure 4 having the label d§;” because that
does not give us a better sharingtgj,’s among the use-cases
U = {U,,Us,Us}, and thus does not help in the design of a
class-structure foif.

E. Classes and Formal Description of Use-Caggsand Us

Shown below are the decompositions of the use-céses
and U; into their component interactions. The use-cége
shares its first three interations with andUs shares its first
two interactions withU;. Note thatt,y € Us is the same as
to € Uy, even though the value of data-item?, = in} is
different in U; and Us; that difference is reflected in 3 #
€10,11- The Conditionczg = C34 gives crg Necrg = false
andcs 4 V ¢7 g = true. The pre-condition folJ; is ca 3 Ac3 g
and that forUs is c2 1.

G. Merging of States fot/; and Us

We do not merge, with s3 or s;; because; 3 andez 11
are disjoint; likewise, we do not mergg with s, or ss.

V. CLASS STRUCTURE AND IMPLEMENTATION

The classes in Figures 4-6 together allow us to implement
the ATM described in section IV-A. We get the class-hiergrch
shown in Figure 8 when we eliminate the duplicate attributes
and methods in these classes using refactoring and combine
the classes into a hierarchy. We can also directly get theesam
class-hierarchy, without creating the classes in Figur€s 4
from the combined AFS model fdv;-Us shown in Figure 7.

A. Combining AFS Models

We use the following notion afquivalenstates to combine
two AFS modelsM = AFS(U) and M’ = AFS(U') for the
sets of use-caség and/’. Two statess; € M ands’; € M’
are equivalent if all computations along the patfs;) from

U»: Failed withdrawal due to insufficient funds the start-state ofl/ upto s; are identical to those along the
X . 1! _ 1 /N
tirs. Sameag; in U for1<j<3. path7’(s}) from the start-state oM’ upto s’; in terms of the
ts: User sees "insufficient funds” messagepf: ATM
displays insufficient funds message for the desired InsufficientFund
withdrawal amount, and writes part-5 ("failed with- ATMidAndOtherinfo
LYY - bankDebitCardPINinfo
drawal”, withdrawalAmount = 0) of TLI] bankDebitCardAccountDetaillnfo Il dq
selectedTransactionOption I d,
. ; maxAllowableWithdravalAmount Il d3
Us: Balance enquiry desiredWithdraalAmount Il ds
. : readDebitCardPINinfo() I/l op
to:  Same ag, in U out |displayEnterPINmssg() 11 opy
. . readAndValidatePIN() Il op
tio: "Same asts |n_U,1’ except that the user selects the €10 = true readBankAccountDetaillnfo() 11 opy
balance-enquiry” option. writePart1 TransactionLoglnfo() Il opy
. . oug displayTransactionOptions() Il op,
t11 User sees account balance informatiamp{;: ATM readSelectedTransactionOption() ~ // op,
displays the account balance and writes part-6 ("bal- writePart2TransactionLoginfo() 1"op,
P . displayMaxWithdravalAmount() Il ops
ance enquiry”) of TLL] outy displayEnterWithdrara AmountMssg() // ops
readDesiredWithdmalAmount() 1/ ops
) ) ) ) C38="C34 writePart3TransactionLoglInfo() Il ops
Table 1l gives the inputs and outputs for the interactions . outy displayInsufficientFundsMssg() Il opg
tg, t1p andt;; in the use-casel, andUs. Table IV gives the writePart5TransactionLoginfo() ! opg
conditions for these new interactions. Figure 5. AFS model and class for use-cage
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order of computations and the underlying constraints. To b&Ve obtain the same class structure in Figure 8 if we start with
precise,s; ands’; are equivalent if the classes in Figures 4-6 and apply refactoring [7].

1) Fork < j, si is equivalent tos).

2) The dataflows tos; and s’ are identical in terms of
the data-sources and the data-items.

3) The operations a; ands’; are the samenp; = op’;,
including the inputsin} = in* andin§ = in’® and
the outputsout? = out’s andout§ = out’s.

4)  The dataflows frons; ands’, are the samed(; = d).

5)  The conditionc;_; ; in M is the same ag)_; ; in

’ o
M’, l.e.,Cj—1,5 = Ci_1,5-

BalanceEnquiry

AT MidAndOtherinfo
bankDebitCardPINInfo

bankAccountDetaillnfo 1l dq
selectedTransactionOption 1l dy
readDebitCardPINinfo Ilo . .
outy displayEnterPINmssg(()) /I 0& Figure 7. Combined AFS model fdr;-Us.
readAndValidatePIN() Il opy
C12=true readBankAccountDetaillnfo() Il opy -
writePart1TransactionLoginfo()  // op, ATMtransaction
out displayTransactionOptions() /1 op, ATMidAndOtherInfo
readSelectedTransactionOption() // op, bankDebitCardPINinfo
writePart2TransactionLoginfo() ~ // op, bankDebitCardAccountDetaillnfo // d;
displayAccountBalance() Il opyy selectedTransactionOption Id,
out;; writePart6TransactionLogInfo() // opy; _ .
readDebitCardPINinfo() Ilop,
Figure 6. AFS model and class for use-cédge Séi%i%g?/g?irdﬂt’\églsl\?(%o Zggi
N ] readBankAccountDetaillnfo() Ilop,
The conditions (1)-(3) and (5) above imply we can assume \(’jvlrslﬁg’i{trgglst%ﬁggkggls?;‘o() ZSB;
— ! H H H H
d; = dj, i.e., condition (4) holds without loss of generality. readSelectedTransactionOption() //op.
This can be seen as follows. Becauge = op’j can compute writePart2TransactionLoglnfo() ~ //op,
each ofd; andd;, it can computed; U d; and thus we can L
. / ) / i [ \
replace /each ofl; and d; by d; U dj. The equivalence of Withdrava BalanceEnquiry
s; and s’; depends only on the states on the patlis;) and < AlowebieWihdravaAmout 7 d
w’(s;-), the inputs, outputs, and dataflows to and from those |desiredwithdraral Amount Il dg dlsgl?yACC(C))unt- llopyy
- . alance
states, and the transition-conditions alomg;) and 7’(s}). displayMaxWithdraval Amount() /lops| | writePart6Tran-  //opy;

Note that the above definition of equivalence differs in many |displayEnterWithdraa AmountMssg()/ops sactionLoglnfo()
ways from that in finite-state automata theory, where thiesta  |éadDesiredWithdwaAmount() //op;

; . writePart3TransactionLoglnfo() /lops
equivalence depends on what can happen in future from those r
states; in particular, the final states play a critical radeour | l
definition, the final-states have no special role. SuccessfulWithdnaal InsufficientFund
. updateATMandBankAccountinfo() //ops| | displayinsufficient- //o
B. Combining AFS models displayAccountDetaillnfo() //Opi gun}éMSsgo Pe
/ . i displayCollectCashMssg() /lops| |writePart5Tran-  //o
Supposé/ andU’ are two (elementary) use-cases with one dispenseCashOperation() //opi ectonLoginto0 Ps
or more equivalent states. (We can always imagine a dummy|yritePart4TransactionLoglnfo() Ilop,

start-state for a use-case, which just displays "startingnd
having no dataflow from this state. This will make the start- Figure 8. Class-hierarchy from the AFS model in Figure 7

state of all use-cases equivalent.) We can merge the pairs of |t js worth pointing out that if we apply the concept analysis
equivalent-states, one in each 4#'S(U) and AFS(U’), and  technique [12] to the attributes (variables) and methodbef
the result is an AFS model having a tree-structure with twocjasses in Figures 4-6, based on the use-relationship betwe
terminal nodes (final states). We can repeat the process f@ose variables and methods, then we would arrive basically
a set of use-casdd, merging a state iMAFS(U;) with its 5t the same final class structure in Figure 8, except that each
equivalent-state (if any) the result of merging”"S(U;),1 <  of the classes ATMtransaction and Withdrawal will become a
i < j. The final AFS modelAF'S(/) does not depend on chain of simpler classes (involving a partitioning of véizs
the order in which we mergd "S(U;)'s. Figure 7 shows the  and methods in those classes). We will then simply mergeethos
merged AFS model obtained from those in Figures 4-6.  chains to form the classes ATMtransaction and Withdrawal as
The pathm = (s1, s2) in Figure 7 gives the class ATM- given in Figure 8. Note that a major part of buildiagFS (1/)
Transaction in Figure 8. The other classes in Figure 8 ar@wvolves, via the details of the interactions in the usescas
obtained from the single-state pat{ss), (s4), (ss), and(s11). U, the identification of all class variables and methods, and
The next-relationship between the paths,s2) and (ss) their use-relationships, and the latter are the inputs t@ept
makes Withdrawal-class a subclass of ATMTransactionsclasanalysis. The only part o F'S(U) which does not explicitly
in Figure 8, and likewise for the other subclass-relatigpsh appear in the class-structure and is not used in conceptsinal
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is the transition-conditions; they play, however, a catioole
in the correctness of the tree-structureA'S(l/), its unique
decomposition into maximal linear segments (likg, s2)),

and methods for each class in the hierarchy, for an object-
oriented design of a software from its requirements given in
the form of a set of use-cases. We use two formal models:

and in developing the controller (see Section V-C) to drive(l) a detailed model of a use-case in terms of its inter-
the execution of the methods in the class-structure. In thisctions (operations), which includes the user and external
sense, our approach based on the AFS model is superior to theputs/outputs of each operation and the dataflows to/from
concept analysis method. After all, there is not much vatue i it, and (2) an Augmented Finite State (AFS) model for a
a class-structure design unless we clearly understand dow set of use-cases, which captures shared operations ameng th

control the calls to its methods.

C. Implementation

Figure 9 shows theexecutiondependencies among the

methods for the AFS model in Figure 7. Herf, represents
the group of methods correspondingde; (see Figure 8) for
states;. A link (f;, f;) implies the execution off; follows
that of f;, partly becausé,; generated byf; is required byf;
for its computations od; is needed in determining whethgy
can execute or not. It is not surprising that the lirlgs, f;)
in Figure 9 parallel the linkgs;, s;) in Figure 7.

‘ Controller for eecuting f;’s ‘

!

al Al G
user and . Memory
LNy | _da
external dy, dy| for
inputs %{ C—E all class
inj d3 .
(ing = - d; |variables
8= . -
ing =0) N4 | _da

Figure 9. The execution dependency among methfds
corresponding twp; in Figure 8;d;’s are the dataflows.

There are many ways [13] to implement the dependencies
in Figure 9. The simplest and the best solution is a centraljs

controller that works as follows. It first calls the root fuion
f1, and following the execution of aifi; it tests the disjoint
conditionsc; 5, for the "child” functions f;, of f; and calls

use-cases, the points-of-divergence between use-caddhean
related control-flow conditions. The AFS model can help to
identify missing use-cases, missing interactions in the- us
cases, and the potential need to decompose some intesaction
into simpler ones. If the AFS model has a tree structure, then
this directly gives a hierarchical class-structure suéator

an object oriented implementation of the requirementss Thi
means, in principle, one could start from, say, a C-progfam
and reverse engineer it to obtain an AFS model for it, anddf th
AFS model has a tree structure then create a hierarchica-cla
structure from that AFS model, and finally obtain an object-
oriented programP’ with the same functionality a®.
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