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Abstract—Creating an object-oriented design from user require-
ments, given as a set of use-cases, means deriving a detailed
class structure that can support an implementation of those
requirements. We introduce here the Augmented Finite-State
(AFS) model for a set of use-cases. An AFS model of a single use-
caseU incorporates the inputs, outputs, and operations for each
interaction in U , including the ”internal” dataflows among those
interactions. The AFS model for a set of use-casesU combines
the AFS models of individual use-casesUj ∈ U to account for
common interactions amongUj ’s and the control-flows among
Uj ’s. After we decompose the combined model into a unique set
of disjoint Maximal Linear Segments (MLSs), we derive one class
from each MLS and finally create the class-hierarchy based on
the next-relationship among the MLSs. One advantage of our
approach over those based on the concept-analysis is that the
AFS model gives a simple controller for the call-sequences of the
class-methods corresponding to eachUj .

Keywords–Augmented finite-state model; class hierarchy; object-
oriented design; refactoring; use-case model.

I. I NTRODUCTION

Software design is an essential part of any software de-
velopment effort. For an object-oriented software, the design
consists of the classes (their attributes, methods, and method-
parameters) and the relationships among those classes, which
includes the class-hierarchy and other associations. The design
gives a global view of the functionalities and structure of the
software, and plays a critical role in understanding, implemen-
tation, and analysis of the software.

Semi-automated generation of UML-models and class-
diagrams from natural language description of requirements
are discussed in [1][2]. Automated generation of UML-models
are discussed in [3][4]. These works are based on Natural
Language Processing, and rely on use-cases defined using a
semi-formal syntaxes and semantics. Cockburn [5] argued that
there is no formal syntax or semantics for writing use-cases.
Roussev [6] uses an informal notion of ”balance” of objects
involved in a use-case, and assumes the use-cases are given in
terms of pre-conditions, post-conditions and invariants on the
objects involved in the use-cases. The identification of objects
is a key missing step in [6]; also, the notion of ”balance” of
objects has a basic flaw because ”information” do not behave
like the physical quantities force, energy, and mass, and we
don’t have a principle like the ”conservation of energy” for
”information”.

Modeling means choosing a proper abstraction and a
suitable representation of it to facilitate its use. Finite-state
models and interaction-diagrams are often used in explaining
a class-structure design [7]. We use a reverse approach: we
first create an Augmented Finite-State (AFS) model of the use-
cases (interactions) that describe the requirements and then we
build the classes and their relationships from this model. This
gives a more systematic and precise (semi-formal) technique
compared to the other methods in the literature. A class design
involves identification and grouping of operations and their
supporting variables (inputs and outputs of the operations,
and other intermediate stored data to avoid recomputation)
in a way that minimizes the information overload. The AFS
model facilitates both of these steps by capturing the essential
operational details of the system’s functional requirement. The
identification of operational details for each use-case plays a
key role in our approach. The method presented here can be
regarded as a refinement of that in Kundu [8].

Many models are used in software engineering as effective
tools. For example,Finite-statemachines are used by Chow
[9] for automated software testing. Our AFS model has some
resemblance toX-machines[10]. In X-machines, a transition
between two states is labeled by an operation whereas in AFS
the labels are constraints; the dataflow items in AFS model
correspond to the concept of ”memory” inX-machines.

In Section II, we give the detailed formal definition of a
use-case, and Section III defines the AFS model of a set of
use-casesSections IV and V explain our AFS-based approach
for generating a class-hierarchy using a simplified set of use-
cases for a bank’s ATM machine. Section VI provides a brief
conclusion.

II. A F ORMAL DEFINITION OF USE-CASE

Jacobson [11] defines a use-case as a sequence (chain)
of interactionsU = 〈t1, t2, · · · , tn〉, which provides the user
a useful service, i.e., corresponds to a complete high-level
functional requirement. IfU1 andU2 are two use-cases, then
clearlyU1U2 is also a use-case. Henceforth, a use-caseU will
mean anelementaryuse-case, which cannot be decomposed
into a sequence of two or more disjoint smaller use-cases.

A. Interactiontj
Formally, an interactiontj = (inj, opj , outj) is a triplet,

whereinj = in(tj) is a set of input data-items,opj = op(tj)
is an operation, andoutj = out(tj) is a set of output data-items.
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The inputsinj consist of two disjoint parts: user-inputsinu
j

and other ”external” (with respect toU ) inputsine
j . The term

”interaction” meansinu
j 6= ∅; however, one possible exception

to this is that the last interactiontn in U may haveinu
n = ∅

(cf. Theorem 1). An operationopj may have multiple parts and
a user may provide different parts ofinu

j at different stages of
opj , with inj andoutj interleaved. The inputs toopj may also
include zero or more additional ”internal” data-itemsdi that
are generated by previousopi’s, i < j andti ∈ U . We refer to
suchdi’s asdataflows. The outputsoutj also consists of two
parts: user-outputsoutuj and external-outputsoutej ; because
parts ofoutuj maybe saved for use in other use-cases and hence
included in outej , we may haveoutuj ∩ outej 6= ∅. Clearly,
inj = inu

j ∪ ine
j andoutj = outuj ∪ outej . Henceforth, we use

tj andopj interchangeably when no confusion is likely. Figure
1 shows the structure of an interactiontj . We can regardopj
as a function ofinj and zero or moredi, i < j, i.e., in(opj) =⋃

i≤j ini. In contrast,in(tj) = inj and thustj is not exactly
the same asopj . The dataflowdj is not determined byopj but
by tk, k > j in U ; also,dj need not be a subset ofoutj .

t j
inu

j

ine
j

d j1
⋅⋅⋅ d j p

"internal" dataflow inputsd j1
, d j2

, ⋅⋅⋅, d j p
( j1 < j2 ⋅⋅⋅ < j p < j ) for opj

outuj
outej

d j ⋅⋅⋅ d j

d j generated byopj to zero or moreopk, k > j

Figure 1. Structure of an interactiontj .

B. Use-CaseU

We formally define a use-case as a sequence of interactions
U = 〈t1, t2, · · · , tn〉 with the properties (1)-(4) below.

(1) inu
i ∩ inu

j = ∅ for i 6= j. A user should not be
required to provide the same input more than once in a use-
case. Ifopj , j > i, requires parts of the user-inputinu

i , then
opi may include those parts ofinu

i in the internal dataflow
item di generated byopi. However,outui ∩ out

u
j may be non-

empty because parts ofoutui might be repeated inoutuj (e.g., a
”confirm operation” prompt to the user for a critical operation
like deleting a file). We assume eachinj is as small as possible,
i.e., no unnecessary ”early” inputs and all ofinj is used inopj .
Likewise, we assume eachoutj is as large as possible, i.e., no
”late” outputs. For efficient input/output operations involving
files and databases, one may want to maximize each chunk of
information exchange but for modeling purpose these ”early”
and ”late” viewpoints are more logical.

(2) ine
i ∩ ine

j = ∅ = outei ∩ outej for i 6= j. As before,
if opj , j > i, requires parts ofine

i , then opi may include
those parts ofine

i in di. This is desirable if accessing the
external input data-items are computationally expensive.We
may also include parts ofouti in di to avoid recomputing
them in opj , j > i. (A non-emptyoutei ∩ outej would mean
parts ofoutei is overwritten byopj , j > i, based on additional
information available atopj .) Becauseopj does not use any
ink or dk, k > j, there is nocyclic dependencyamongopj ’s.

(3) di ∩ dj = ∅ for i 6= j. Any part of di can be made
available to eachopj , j > i, as needed.

(4) Each (tj , tj+1)-pair has an associatedtransition-
condition cj,j+1 which needs to be satisfied afteropj is
completed in order foropj+1 to start; cj,j+1 = true means
the condition is trivially satisfied. The conditioncj,j+1 does
not depend onink, k > j, and may depend only on parts
of in(opj). All non-trivial conditionsci,i+1, i ≤ j, contribute
directly or indirectly to the pre-condition foropj+1. We assume
for now thatcj,j+1 is evaluated byopj .

We write IuU =
⋃
inu

j andIeU =
⋃
ine

j , where the unions
are taken over allj, and finallyIU = IuU ∪ IeU . Similarly, we
write Ou

U =
⋃
outuj , Oe

U =
⋃
outej , OU = Ou

U ∪ Oe
U , DU =⋃

dj , andCU = {cj,j+1 : 1 ≤ j < n}. The entities inIU ,
OU , andDU are the names of data-items and not any specific
values for them. (An instance of a use-caseU , with concrete
values for the data-items inIU and hence concrete values for
the data-items inDU ∪OU , is called a scenario.)

If the use-caseU ′ is used after the use-caseU and we need
to use parts ofinu

j at tj ∈ U as parts ofinu
j′ at tj′ ∈ U ′, then

we can include those parts ofinu
j into outej and those parts

of outej can now become a part ofine
j′ . This avoids having to

provide the common parts ofinu
j and inu

j′ more than once.

A proper choice of the individual interactionstj in mod-
eling a use-caseU is a non-trivial task. A simpler or smaller
tj can help to reduce errors in determiningin(opj), out(opj),
and cj,j+1, but it can also introduce unnecessary details in
the design of a class-structure forU . A complex or largertj
can, on the other hand, prevent sharing interactions between
different use-cases. These issues are described next.

C. Merging Interactions

If we mergetj , tj+1 ∈ U into a single interactiontj,j+1,
then we haveinu

j,j+1 = inu
j ∪ in

u
j+1 and similarly forine

j,j+1,
outuj,j+1, andoutej,j+1. In general,dj,j+1 ⊆ dj ∪ dj+1, with
tj,j+1 hiding dataflows fromtj to tj+1 (making them internal
to opj,j+1); in the extreme case, we may havedj,j+1 = dj+1.
Also, opj,j+1 = opj◦opj+1, the composition (roughly speaking
in view of cj,j+1) of opj andopj+1, in that order. The new in-
teraction sequence〈t1, t2, · · · , tj−1, tj,j+1, tj+2, · · · , tn〉 has
less information aboutopj,j+1 (equivalently,tj,j+1) because
we know less about which parts ofinj,j+1 are used by which
parts ofopj,j+1 to produce which parts ofoutj,j+1 anddj,j+1.
There is, however, no change inIuU , IeU , Ou

U , andOe
U .

Except for the loss of some information as noted above, it
is safe to mergetj andtj+1 whencj,j+1 = true. In this case,
each use-caseU ′ containingtj will also containtj+1 and thus
we can replacetj and tj+1 by tj,j+1 in eachU ′.

The merging oftj andtj+1 has no impact on the condition
from tj−1 to tj,j+1, i.e., cj−1,(j,j+1) = cj−1,j , which will
be evaluated byopj−1. However, determining the condition
c(j,j+1),j+2 from tj,j+1 to tj+2 might pose a problem as shown
below. Consider the situation on the left-side in Figure2. The
part c̄j,j+1: ”x + z 6= 0” in c(j,j+1),j+2 = c̄j,j+1 ∧ cj+1,j+2

shown on the rightside in Figure2 is the result of ”pushing
down” the conditioncj,j+1: ”x 6= 0” through opj+1, which
givesxnew = xold − z, i.e.,xold = xnew + z, and thuscj,j+1:
”x 6= 0” = ” xold 6= 0” becomesc̄j,j+1: ”xnew + z 6= 0” =
”x+z 6= 0”. But a difficulty arises if we replace ”x = x−z” in
opj+1 by ”x = x2−z” because we cannot express nowxold in
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terms ofxnew . We can, however, add the computation ”xold =
x” at the end ofopj and call itop′j , let opj,j+1 = op′j ◦ opj+1

andc(j,j+1),j+2: (xold 6= 0)∧ (y > x). But such tricks do not
always suffice as would be the case if ”x = x − z” in opj+1

is replaced by ”x = x − z/x”; opj+1 now needsx 6= 0 and
thus we cannot afford to do the test ”xold 6= 0” after opj,j+1.

opjx out j

opj+1:
{ y = y + z;
x = x − z}

z out j+1

c j , j+1: x≠0

c j+1, j+2: y > x

opj , j+1 ≡
opj opj+1

x, z out j , j+1

c( j , j+1), j+2: (x + z≠0) ∧ (y > x)

Figure 2. Illustration of a simple case ofc(j,j+1),j+2.

Even if we could define a suitablec(j,j+1),j+2, the creation
of tj,j+1 would prevent sharing just one oftj and tj+1

with another use-caseU ′, and this can be a good reason not
to createtj,j+1. On the other hand, if we have a use-case
U ′ = 〈· · · , tj, tj+1, t

′
j+2, · · · 〉 containing bothtj andtj+1 but

a different t′j+2, with c′j+1,j+2 = ”y ≤ x” = ¬cj+1,j+2 for
the pair(tj+1, t

′
j+2), then after we createtj,j+1 we will have

c′(j,j+1),j+2 = (x + z 6= 0) ∧ (y ≤ x) in U ′. Obviously, we
cannot mergetj and tk, k > j + 1, and keepU acyclic.

Theorem 1.For a use-caseU = 〈t1, t2, · · · , tn〉, there is
no loss of generality to assume that eachinj 6= ∅ for j < n
if some use-casesU ′ shareti ∈ U exactly uptotj .

Proof. If inj = ∅ and j < n, then cj,j+1 depends only
on

⋃
i<j ini and thus we can create the shortened use-case

U by merging tj into tj+1 as follows. We letcj−1,j+1 =
cj−1,j∧lift(cj,j+1), wherelift(cj,j+1) is the result of ”lifting
up” cj,j+1 through opj , and replaceopj+1 by op

j+1
=

opj ◦ opj+1. Note thatcj−1,j+1 can be evaluated byopj−1.
If there is another use-caseU ′ = 〈· · · , tj−1, tj , t

′
j+1, · · · 〉,

which is identical toU upto tj , then we can likewise create
the shortened use-caseU ′ by mergingtj into t′j+1, with op′j+1

replaced byop′
j+1

= opj ◦ op′j+1 and letting c′j−1,j+1 =

cj−1,j ∧ lift(c′j,j+1), where c′j,j+1 is the condition for the
pair (tj , t

′
j+1). Note that cj−1,j+1 ∧ c′j−1,j+1 = cj−1,j ∧

lift(cj,j+1) ∧ lift(c′j,j+1) = cj−1,j ∧ lift(cj,j+1 ∧ c′j,j+1) =
cj−1,j ∧ lift(false) = cj−1,j ∧false = false, as desired. The
shortened use-casesU andU ′ now share only uptotj−1. �

Two remarks are due here. First, mergingtj with tj+1 to
avoid inj 6= ∅ does not cost us in terms of its effect on the
class design. The methods forop

j+1
andop′

j+1
in the classes

for U andU ′ will now have some commonalities becauseopj
is a part of bothop

j+1
andop′

j+1
. However, we can refactor

the common part, if needed, to a parent class. Second, we do
not mergetj into tj−1 in the proof of Theorem 1 because if
there is an use-caseU ′′ that is identical toU only upto tj−1

then the merging would create an overloadedtj−1,j in terms
of outputs and the operationopj−1,j = opj−1 ◦ opj , and this

can cause problems with the condition for(tj−1,j , t
′′
j )-pair for

U ′′. If there is noU ′′, we could formtj−1,j to eliminatetj .

D. Decomposing an Interaction

If we can decompose anopj into a chain of suboperations
〈opj.1, opj.2, · · · , opj.m〉, m ≥ 2, then should we replacetj in
U by the chain of interactions〈tj.1, tj.2, · · · , tj.m〉, whereopj.p
corresponds totj.p? If we did, then we will havecj−1,(j.1) =
cj−1,j , c(j.m),j+1 = cj,j+1, and cj.p,j.(p+1) = true, 1 ≤ p <
m. This implies that it is safe to mergetj.p’s and hence the
decomposition is unnecessary. Note that becausecj.p,j.(p+1) =
true, there is no use-caseU ′ that includestj.p but nottj.(p+1).

E. Deleting an Interaction

In general, the deletion of atj ∈ U may not give a valid
use-case〈t1, t2, · · · , tj−1, tj+1, tj+2, · · · , tn〉. For example, if
tk, k > j, requiresdj generated byopj then removal oftj
makesopk inapplicable; hencetk needs to be removed. This
may, in turn, require othertm, m > k, to be removed and
so on. On the other hand, ifk > j is the smallest index such
thattk requiresdj then〈t1, t2, · · · , tj−1, tj+1, tj+2, · · · , tk−1〉
may not be a valid use-case because the output oftk−1 may
involve a prompt to the user to provide an input (inu

k 6= ∅).
The same argument shows that deletion oftk−1 may create a
problem, and so on. A similar argument shows that an initial
part of a use-case may not be a valid use-case. Likewise, a
tail part 〈tk+1, tk+2, · · · , tn〉 of a use-case may not be a valid
use-case because the output oftk may involve a prompt to the
user to provide an input and without that prompttk+1 becomes
meaningless.

III. A UGMENTED FINITE STATE (AFS) MODEL

The AFS model of a set of use-casesU , denoted by
AFS(U), combines the notions of finite state machines,
flowcharts, and Dataflow Diagrams (DFDs, which can be
regarded as high-level dataflow-abstractions of flowcharts). As
a finite-state machine, each statesj in AFS(U) corresponds
to an interactiontj in a use-case inU . Each transition(sj , sk)
corresponds to the next-interactiontk of tj in a use-case inU
that containstj, and associated with the transition (sj , sk) we
have the corresponding conditioncj,k. Clearly,cj,k is indepen-
dent of the use-case in whichtk is the next interaction aftertj ,
and it can be likened to a branching-condition in a flowchart.
We also have the dataflowsdi between interactions or states.
As before, we consider a statesj = tj to be synonymous
with the operationopj associated withtj . If |U| = 1, then
AFS(U) takes the form of a single chain. The condition
cj,k associated with transition(sj , sk) must be satisfied for
the transition to take place. For two transitions(sj , sk) and
(sj , s

′
k), sk 6= s′k, the conditionscj,k andcj,k′ must be disjoint,

i.e., cj,k ∧ cj,k′ = false. Unlike a flowchart, anAFS(U)
by definition does not have a cycle and this prevents cyclic
data-dependencies. The usual use-dependencies among data-
items in assignments and other computations in a flowchart are
replaced inAFS(U) by the higher-level abstractions inputs,
outputs, and dataflows associated with a state.

We formally defineAFS(U) = (S, s0, Sfinal, C, D, Iu,
Ie, Ou, Oe, τ, δ, φu, ψu, φe, ψe), where

1) S 6= ∅ is a set of states ands0 ∈ S is the start-state;
each statesj is reachable froms0 by a sequence of
transitions and has an associated operationopj .
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2) Sfinal ⊆ S is the subset of final (terminal) states,
from which there are no transitions.

3) C = {ci,j : conditions associated with transitions
(si, sj)} =

⋃
CU , union over the use-casesU ∈ U .

4) D = {di: the internal dataflow item generated byopi
at si} =

⋃
DU , union over the use-casesU ∈ U .

5) Iu =
⋃
IuU , Ie =

⋃
IeU , Ou =

⋃
Ou

U and Oe =⋃
Oe

U , each union over the use-casesU ∈ U .
6) τ : S × C → S is the transition function.
7) δ : D → S × P+(S) is the function representing

the dataflows, whereP+(S) = the set of non-empty
subsets ofS, δ(dj) = (sj , Sj) = (δ1(dj), δ2(dj))
meansSj = {sk: sk usesdj generated atsj}, and
di 6= dj meanssi = δ1(di) 6= δ1(dj) = sj .

8) φu : Iu → P+(S) is the user-input function;φu(u′)
= {sk: sk requires user-inputu′}.

9) φe : Ie → P+(S) is the external-input function;
φe(e′) = {sk: sk requires external-inputu′}.

10) ψu : Ou → P+(S) is the user-output function.
11) ψe : Oe → P+(S) is the external-output function.
12) For eachsi /∈ Sfinal, the conditionsci,j are mutually

disjoint (i.e.,ci,j ∧ ci,k = false for j 6= k). We may
also assume that

∨
ci,j = true because otherwise

we can add a ”graceful” exit-transition to a new final
states′i with the transition-conditionci,i′ = ¬

∨
ci,j .

13) For anysi, sj ∈ φu(u′) for an user-inputu′, neither
of si andsj is reachable from the other. Similarly for
φe andψe. (But this is not required forψu.)

In what follows, we consider only the special case where
AFS(U) has a tree-structure. Recall that not all paths in a
flowchart, even in absence of cycles, may represent a valid
execution-path; likewise, if the transitions inAFS(U) form a
general acyclic digraph, then we may have paths from the start-
states0 to a final-state that do not represent a valid use-case
and this can severely complicate the derivation of a suitable
class-structure fromAFS(U). In the case of a tree-structured
AFS(U), each path from the start-states0 to a final-state
represents a valid use-case inAFS(U).

AFS(U) helps us to see the relationships among the use-
casesU in terms of their shared interactions. In particular,
it helps us to identify inconsistencies inconsistent orderof
operations, invalid dataflow dependencies, and missing in-
puts/outputs for the use-casesU . One must, indeed, resolve
all inconsistencies before attempting to create a class-structure
from U for the desired software.

IV. M ETHODOLOGY

Given the AFS-model of a single use-caseU , we use the
Class-Creation-Rules below to obtain a class that supportsan
implementation ofU . These rules can be used also, more
generally, for any linear chain of interactions. Initially, the
class-methods have no parameters and this has the advantage
of a simple control mechanism for executing the methods
in a class (see Section V-C). We may later use refactoring
to introduce new methods (possibly, with parameters) for
common or similar parts of the original class-methods, and
replace the common parts in the original methods by calls to
the new refactored methods with suitable parameter-values.

Class-Creation-Rules for a single use-caseU :
1. The variables are the internal dataflows, which

may include parts ofIU ∪OU .
2. The class-methods are the operationsopj ∈ U or

parts of them.

If |U| > 1, we can first create one class for each use-case
in U and then refactor common class-variables and methods to
create the final class-structure. A better method is to buildthe
class-structure directly from the combined modelAFS(U),
whose tree-structure directly leads to a tree-structured class-
hierarchy, with one class for each maximal linear segment
(MLS) of the tree. A linear segment inAFS(U) is a path
π in AFS(U), where each state inπ other than those at the
start and end ofπ has a single child (next) node.

We remark that the notationtj = (inj, opj , outj) implies
that if tj ∈ U is shared and equalst′j = (in′

j , op
′
j , out

′
j) ∈ U ′,

then inj = in′
j, opj = op′j , and outj = out′j . However, the

dataflowdj from opj in U may differ from the dataflowd′j
from op′j in U ′. For a tree-structuredAFS(U), withU,U ′ ∈ U ,
tj = t′j implies opj = op′j can computedj ∪ d′j , and thus we
can replace bothdj in U and d′j in U ′ by dj ∪ d′j . Viewed
another way, this simply points out that while the classes for
U andU ′ obtained by the Class-Creation-Rules may contain
different class variables due todj 6= d′j , when we merge those
classes to create a class-hierarchy the class containingopj =
op′j can include the variables for bothdj andd′j .

We illustrate below our method by deriving a class-
structure for a bank’s ATM-system with three high-level func-
tional requirements or use-casesU = {U1, U2, U3}, where
U1 = successful withdrawal,U2 = failed withdrawal due to
insufficient funds, andU3 = balance enquiry. We first derive a
class for eachUj using the Create-Class-Rules and then show
that the class-structure obtained by refactoring these classes
can be obtained directly fromU .

A. Informal Description of ATM

A user swipes a debit card in the ATM’s card-slot. The
ATM reads the debit card and prompts the user to enter the
PIN. We assume for simplicity that no invalid ATM card or
PIN is used, and there is no cash dispenser malfunction. The
ATM validates the PIN and asks the user to choose one of
two displayed options ”withdrawal” and ”balance-enquiry”. If
the user selects withdrawal-option, the ATM calculates and
displays the maximum allowable withdrawal amount based on
the available ATM cash and debit-card-account-information.
Then, the ATM asks the user to enter the withdrawal amount
and it reads that amount. Then, either the ATM displays the
updates to debit-card-account-info and dispenses the desired
cash, or it displays a transaction-fail-message when withdrawal
amount is too large. If the user selects balance-enquiry option,
the ATM displays the debit-card-account-balance. In each case,
the ATM writes a transaction-log for future audit analysis as
part of session-closing operation.

B. Formal Description of Use-CaseU1

We show below the decomposition ofU1 into four
interactionst1-t4 and also show eachopj in detail, including
its lower level operations. This simplifies the identification of
inputsinj, outputsoutj, dataflow itemsdj , and the transition
conditionscj,j+1 for U1, which are shown in Tables I and
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II. The data-item ATMidAndOtherInfo inine
3 includes ATM-

cash-balance among others. The Transaction-Log-Information
(TLI) has many parts, including dateTime of transaction,
transaction amount, update of Bank-Debit-card-Account-
Detail-Info, etc. Differentoutej includes different parts of TLI.

U1: Successful withdrawal

t1: User swipes the debit card in the ATM’s card slot and
enters PIN when requested. [op1: ATM reads the
debit card number, then reads Bank-Debit-Card-PIN
Information based on the debit card number, displays
”Enter PIN” message, reads the PIN entered and vali-
dates it with Bank-Debit-Card-PIN information, reads
Bank-Debit-Card-Account-Detail Information for the
debit card number, and writes part-1 (debit card num-
ber, PIN, and transaction dateTime) of TLI]

t2: User sees the displayed transaction options and se-
lects the ”withdrawal” option. [op2: ATM displays
the transaction-options ”balance-enquiry” and ”with-
drawal”, requests the user to select an option, reads the
selected option (= ”withdrawal” forU1), and writes
part-2 (transactionOption = withdrawal) of TLI.]

t3: User sees the displayed max allowed withdrawal
amount and enters the desired withdrawal amount.
[op3: ATM calculates and displays the max al-
lowed withdrawal amount based on the ATM-cash-
balance (which is part of the external input AT-
MidAndOtherInfo) and the debit-card-account-detail
information (such as the single-transaction-limit, the
daily-withdrawal-limit for the card, today’s-current-
total-withdrawal, and the debit-card-account-balance).
Then, ATM requests user to enter the desired-
withdrawal-amount, reads it, and writes part-3 (max
allowed withdrawal amount) of TLI.]

t4: User takes the dispensed cash. [op4: ATM up-
dates ATM-cash-balance part of ATMidAndOther-
Info and the Bank-Debit-Card-Account-Detail infor-
mation (such as today’s-total-withdrawal and debit-
card-account-balance), displays the updated debit-
card-account-balance, displays ”collect-cash” message
(which includes the amount withdrawn), dispenses
cash for the withdrawal amount, and writes part-4 (up-
dates of ATM-cash-balance, this withdrawal amount,
debit-card-account-balance) of TLI.]

TABLE I. Inputs inj and outputsoutj for U1

in1

u: Debit-card number,
PIN number

e: Bank-Debit-Card-
PIN Info,
Bank-Debit-Card-
Account-Detail Info

in2
u: Selected Transaction

Option

in3

u: Desired Withdrawal
Amount
ATM-id-And-Other
Info

in4 u: Cash Collected

out1
u: "Enter PIN" message
e: Part-1 of TLI

out2
u: Transaction-options display,

"Select Option" message
e: Part-2 of TLI

out3

u: Max Allowable Withdrawal
Amount display,
"Enter Desired Withdrawal
Amount" message

e: Part-3 of TLI

out4

u: New BankAccountDetailInfo,
"Collect Cash" message

e: New BankAccountDetailInfo,
New ATMidAndOtherInfo,
Part-4 of TLI

TABLE II. Conditions cj,j+1 and data-itemsdj for U1

c1,2 true (no invalid card or PIN)

c2,3
"Withdrawal" = Selected
Transaction Option

c3,4

Max Allowable Withdrawal
Amount≥ Desired
Withdrawal Amount

d1
Bank-Debit-Card-Account-
Detail Info

d2 Selected Transaction Option

d3

Max Allowable Withdrawal
Amount,
Withdrawal Amount Desired

In general, the conjunction ofcj,j+1’s for the interaction-
sequence of a use-caseU does not give a pre-condition forU
because eachcj,j+1 is stated in terms of values of data-items
”after” the operationopj . ForU1, c2,3 ∧ c3,4 does give its pre-
condition. We considerd2 to be an ”implicit” dataflow from
op2 to op3 because execution ofop3 requiresc2,3 to be true.
Similarly, we considerd3 to be an implicit dataflow fromop3
to op4. (The controller to drive the execution of the methods
in the class forU1 will use d2 andd3; see Section V-C.) See
Figure 3, which shows the finite-state machine model and the
dataflow model forU1. There is no dataflow fromt1 to t2.

s1

s2

s3

s4

c1,2 = true

c2,3

c3,4

op1

op2

op3

op4

in1 out1

in2 out2

in3 out3

in4 out4

d2

d1

d3

Figure 3. FSM (left) and DFD (right) for the use-caseU1

s1

s2

s3

s4

in1 out1

in2 out2

in3 out3

in4 out4

d1

d2

d3

c1,2 = true

c2,3

c3,4

SuccessfulWithdrawal
ATMidAndOtherInfo
bankDebitCardPINinfo
bankDebitCardAccountDetailInfo
selectedTransactionOption
maxAllowableWithdrawalAmount
desiredWithdrawalAmount

// d1
// d2
// d3
// d3

readDebitCardPINinfo()
displayEnterPINmssg()
readAndValidatePIN()
readBankAccountDetailInfo()
writePart1TransactionLonInfo()
displayTransactionOptions()
readSelectedTransactionOption()
writePart2TransactionLogInfo()
displayMaxWithdrawalAmount()
displayEnterWithdrawalAmountMssg()
readDesiredWithdrawalAmount()
writePart3TransactionLogInfo()
updateATMandBankAccountInfo()
displayAccountDetailInfo()
displayCollectCashMssg()
dispenseCashOperation()
writePart4TransactionLogInfo()

// op1
// op1
// op1
// op1
// op1
// op2
// op2
// op2
// op3
// op3
// op3
// op3
// op4
// op4
// op4
// op4
// op4

Figure 4. AFS model (left) and class (right) for use-caseU1

C. AFS Model ofU1

Figure 4 showsAFS(U1), obtained by combining the
DFD and the FSM shown in Figure 3. It also shows the
SuccessfulWithdrawal-class obtained fromAFS(U1) based
on Tables I and II and the Class-Creation-Rules, and it is
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suitable for implementingU1. The detailed analysis of each
tj identified several low level functions (methods) for the
associatedopj , and we have labeled each of those low-level
functions as ”//opj” in SuccessfulWithdrawal-class. One could
merge the functions with the same label ”//opj” into a single
function, and call itopj . If we let each merged function
opj have parameters corresponding to the dataflows to it and
let eachopj call opj+1, then we can eliminate all the class
variables exceptd1; even d1 can be eliminated if we use a
parameter inop2 and passd1 for it when called byop1. But
we keep the class variables as shown to simplify the design of
a single general purpose controller for any sets of use-cases.)

D. Merging and Decomposing Interactions inU1

We can merge interactionst1 andt2 or, equivalently, states
s1 ands2 in Figure 4 into a single state becausec1,2 = true.
This will not adversely affect handlingU2 and U3 because
both t1 and t2 are common toU2 andU3. We do not merge
s2 and s3 because that would prevent sharings2 (and its
associated operations, inputs, and outputs) betweenU1 and the
use-casesU2 andU3. On the other hand, we do not decompose
a tj , 1 ≤ j ≤ 4, into severaltj.k ’s corresponding to the
methods in Figure 4 having the label ”//opj” because that
does not give us a better sharing oftj,k’s among the use-cases
U = {U1, U2, U3}, and thus does not help in the design of a
class-structure forU .

E. Classes and Formal Description of Use-CasesU2 andU3

Shown below are the decompositions of the use-casesU2

and U3 into their component interactions. The use-caseU2

shares its first three interations withU1 andU3 shares its first
two interactions withU1. Note thatt10 ∈ U3 is the same as
t2 ∈ U1, even though the value of data-iteminu

10 = inu
2 is

different in U1 andU3; that difference is reflected inc2,3 6=
c10,11. The conditionc7,8 = ¬c3,4 gives c7,8 ∧ c7,8 = false
andc3,4 ∨ c7,8 = true. The pre-condition forU2 is c2,3 ∧ c3,8
and that forU3 is c2,11.

U2: Failed withdrawal due to insufficient funds

tj+4: Same astj in U1 for 1 ≤ j ≤ 3.

t8: User sees ”insufficient funds” message. [op8: ATM
displays insufficient funds message for the desired
withdrawal amount, and writes part-5 (”failed with-
drawal”, withdrawalAmount = 0) of TLI.]

U3: Balance enquiry

t9: Same ast1 in U1.

t10: Same ast2 in U1 except that the user selects the
”balance-enquiry” option.

t11: User sees account balance information. [op11: ATM
displays the account balance and writes part-6 (”bal-
ance enquiry”) of TLI.]

Table III gives the inputs and outputs for the interactions
t8, t10 andt11 in the use-casesU2 andU3. Table IV gives the
conditions for these new interactions.

TABLE III. Inputs and outputs forU2 andU3 that are different fromU1

in8 ∅ (empty)

in10
= in2

u: Selected
Transaction
Option

in11 ∅ (empty)

out8
u: "Insufficient Funds" message
e: Part-5 of TLI

out10
= out2

∅ (empty)

out11
u: Account Balance
e: Part-6 of TLI

TABLE IV. Conditions cj,k for U2 andU3 that are different fromU1

c7,8 = c3,8 =
¬ c3,4

Max Allowable Withdrawal
Amount < Withdrawal Amount Desired

c9,10 = c1,2 true (no invalid Card)

c10,11 = c2,11 "Balance Enquiry" = Selected Transaction Option

F. AFS Models forU2 andU3

We do not show the FSM and DFD forU2 andU3, but
their AFS models and the corresponding classes are shown in
Figures 5 and 6. As in the case ofU1, we could merge the
functions (methods) with the same label ”//opj” in Figures 5
and 6 into a single function and call itopj .

G. Merging of States forU2 andU3

We do not merges2 with s3 or s11 becausec2,3 andc2,11
are disjoint; likewise, we do not merges3 with s4 or s8.

V. CLASS STRUCTURE AND IMPLEMENTATION

The classes in Figures 4-6 together allow us to implement
the ATM described in section IV-A. We get the class-hierarchy
shown in Figure 8 when we eliminate the duplicate attributes
and methods in these classes using refactoring and combine
the classes into a hierarchy. We can also directly get the same
class-hierarchy, without creating the classes in Figures 4-6,
from the combined AFS model forU1-U3 shown in Figure 7.

A. Combining AFS Models

We use the following notion ofequivalentstates to combine
two AFS modelsM = AFS(U) andM ′ = AFS(U ′) for the
sets of use-casesU andU ′. Two statessj ∈ M ands′j ∈ M ′

are equivalent if all computations along the pathπ(sj) from
the start-state ofM upto sj are identical to those along the
pathπ′(s′j) from the start-state ofM ′ upto s′j in terms of the

s1

s2

s3

s8

in1 out1

out2in2

out3in3

out8in8

d1

d3

d2

c1,2 = true

c2,3

c3,8 = ¬ c3,4

InsufficientFund
ATMidAndOtherInfo
bankDebitCardPINinfo
bankDebitCardAccountDetailInfo
selectedTransactionOption
maxAllowableWithdrawalAmount
desiredWithdrawalAmount

// d1
// d2
// d3
// d3

readDebitCardPINinfo()
displayEnterPINmssg()
readAndValidatePIN()
readBankAccountDetailInfo()
writePart1TransactionLogInfo()
displayTransactionOptions()
readSelectedTransactionOption()
writePart2TransactionLogInfo()
displayMaxWithdrawalAmount()
displayEnterWithdrawalAmountMssg()
readDesiredWithdrawalAmount()
writePart3TransactionLogInfo()
displayInsufficientFundsMssg()
writePart5TransactionLogInfo()

// op1
// op1
// op1
// op1
// op1
// op2
// op2
// op2
// op3
// op3
// op3
// op3
// op8
// op8

Figure 5. AFS model and class for use-caseU2
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order of computations and the underlying constraints. To be
precise,sj ands′j are equivalent if

1) For k < j, sk is equivalent tos′k.
2) The dataflows tosj and s′j are identical in terms of

the data-sources and the data-items.
3) The operations atsj ands′j are the same:opj = op′j ,

including the inputsinu
j = in′u

j and ine
j = in′e

j and
the outputsoutuj = out′uj andoutej = out′ej .

4) The dataflows fromsj ands′j are the same (dj = d′j).
5) The conditioncj−1,j in M is the same asc′j−1,j in

M ′, i.e., cj−1,j = c′j−1,j .

s1

s2

s11

in1 out1

out2in2

out11in11

d1 c1,2 = true

c2,11
d2

BalanceEnquiry
ATMidAndOtherInfo
bankDebitCardPINInfo
bankAccountDetailInfo
selectedTransactionOption

// d1
// d2

readDebitCardPINinfo()
displayEnterPINmssg()
readAndValidatePIN()
readBankAccountDetailInfo()
writePart1TransactionLogInfo()
displayTransactionOptions()
readSelectedTransactionOption()
writePart2TransactionLogInfo()
displayAccountBalance()
writePart6TransactionLogInfo()

// op1
// op1
// op1
// op1
// op1
// op2
// op2
// op2
// op11
// op11

Figure 6. AFS model and class for use-caseU3

The conditions (1)-(3) and (5) above imply we can assume
dj = d′j , i.e., condition (4) holds without loss of generality.
This can be seen as follows. Becauseopj = op′j can compute
each ofdj and d′j , it can computedj ∪ d′j and thus we can
replace each ofdj and d′j by dj ∪ d′j . The equivalence of
sj and s′j depends only on the states on the pathsπ(sj) and
π′(s′j), the inputs, outputs, and dataflows to and from those
states, and the transition-conditions alongπ(sj) and π′(s′j).
Note that the above definition of equivalence differs in many
ways from that in finite-state automata theory, where the state-
equivalence depends on what can happen in future from those
states; in particular, the final states play a critical role.In our
definition, the final-states have no special role.

B. Combining AFS models

SupposeU andU ′ are two (elementary) use-cases with one
or more equivalent states. (We can always imagine a dummy
start-state for a use-case, which just displays ”starting...” and
having no dataflow from this state. This will make the start-
state of all use-cases equivalent.) We can merge the pairs of
equivalent-states, one in each ofAFS(U) andAFS(U ′), and
the result is an AFS model having a tree-structure with two
terminal nodes (final states). We can repeat the process for
a set of use-casesU , merging a state inAFS(Uj) with its
equivalent-state (if any) the result of mergingAFS(Ui), 1 ≤
i < j. The final AFS modelAFS(U) does not depend on
the order in which we mergeAFS(Ui)’s. Figure 7 shows the
merged AFS model obtained from those in Figures 4-6.

The pathπ = 〈s1, s2〉 in Figure 7 gives the class ATM-
Transaction in Figure 8. The other classes in Figure 8 are
obtained from the single-state paths〈s3〉, 〈s4〉, 〈s8〉, and〈s11〉.
The next-relationship between the paths〈s1, s2〉 and 〈s3〉
makes Withdrawal-class a subclass of ATMTransaction-class
in Figure 8, and likewise for the other subclass-relationships.

We obtain the same class structure in Figure 8 if we start with
the classes in Figures 4-6 and apply refactoring [7].

s1

s2

s3

s4 s8

s11

in1 out1

in2
out2
= ∅

in3 out3
in11
= ∅ out11

in4 out4
in8

= ∅ out8

c1,2 = true

c2,3c2,11

c3,4 c3,8

d1 d1

d2

d3

Figure 7. Combined AFS model forU1-U3.

ATMtransaction

ATMidAndOtherInfo
bankDebitCardPINinfo
bankDebitCardAccountDetailInfo
selectedTransactionOption

// d1
// d2

readDebitCardPINinfo()
displayEnterPINmssg()
readAndValidatePIN()
readBankAccountDetailInfo()
writePart1TransactionLogInfo()
displayTransactionOptions()
readSelectedTransactionOption()
writePart2TransactionLogInfo()

//op1
//op1
//op1
//op1
//op1
//op2
//op2
//op2

BalanceEnquiry

displayAccount-
Balance()

writePart6Tran-
sactionLogInfo()

//op11

//op11

Withdrawal
maxAllowableWithdrawalAmount
desiredWithdrawalAmount

// d3
// d3

displayMaxWithdrawalAmount()
displayEnterWithdrawalAmountMssg()
readDesiredWithdrawalAmount()
writePart3TransactionLogInfo()

//op3
//op3
//op3
//op3

SuccessfulWithdrawal

updateATMandBankAccountInfo()
displayAccountDetailInfo()
displayCollectCashMssg()
dispenseCashOperation()
writePart4TransactionLogInfo()

//op4
//op4
//op4
//op4
//op4

InsufficientFund

displayInsufficient-
FundMssg()

writePart5Tran-
sactionLogInfo()

//op8

//op8

Figure 8. Class-hierarchy from the AFS model in Figure 7
It is worth pointing out that if we apply the concept analysis

technique [12] to the attributes (variables) and methods ofthe
classes in Figures 4-6, based on the use-relationship between
those variables and methods, then we would arrive basically
at the same final class structure in Figure 8, except that each
of the classes ATMtransaction and Withdrawal will become a
chain of simpler classes (involving a partitioning of variables
and methods in those classes). We will then simply merge those
chains to form the classes ATMtransaction and Withdrawal as
given in Figure 8. Note that a major part of buildingAFS(U)
involves, via the details of the interactions in the use-case
U , the identification of all class variables and methods, and
their use-relationships, and the latter are the inputs to concept
analysis. The only part ofAFS(U) which does not explicitly
appear in the class-structure and is not used in concept analysis
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is the transition-conditions; they play, however, a critical role
in the correctness of the tree-structure ofAFS(U), its unique
decomposition into maximal linear segments (like〈s1, s2〉),
and in developing the controller (see Section V-C) to drive
the execution of the methods in the class-structure. In this
sense, our approach based on the AFS model is superior to the
concept analysis method. After all, there is not much value in
a class-structure design unless we clearly understand how to
control the calls to its methods.

C. Implementation

Figure 9 shows theexecutiondependencies among the
methods for the AFS model in Figure 7. Here,fj represents
the group of methods corresponding toopj (see Figure 8) for
statesj . A link (fi, fj) implies the execution offj follows
that of fi, partly becausedi generated byfi is required byfj
for its computations ordi is needed in determining whetherfj
can execute or not. It is not surprising that the links(fi, fj)
in Figure 9 parallel the links(si, sj) in Figure 7.

all

user and

external

inputs

(in8 =
in11 = ∅ )

Memory

for

all class

variables

Controller for executing f j ’s

f1

f2

f3

f4 f8

f11

d1

d1, d2

d1, d2

d2

d3

d3

d3

in1

in2

in3

in4

Figure 9. The execution dependency among methodsfj
corresponding toopj in Figure 8;dj ’s are the dataflows.

There are many ways [13] to implement the dependencies
in Figure 9. The simplest and the best solution is a central
controller that works as follows. It first calls the root function
f1, and following the execution of anfj it tests the disjoint
conditionscj,k for the ”child” functionsfk of fj and calls
fk if cj,k is true. Another approach is to start with the root
function f1 as before but let eachfj evaluate the conditions
cj,k and callfk, if cj,k is true, as its last step, Here, changes in
U may require small modifications to severalfj ’s, depending
on how many classes are affected. In the first approach,
the modifications to the central controller can be completely
automated. As a third alternative, we can introduce parameters
to fj ’s and let eachfj storedj as a local variable in it and use
it as one of the parameters in the call to anfk. For Figure 9.
this meansf1 executes first and ends with a call tof2, with d1
as the parameter. Next,f2 ends with a call tof3 or f11, with
d1 andd2 as parameters. Likewise,f3 ends with a call tof4
with d1, d2, and, d3 as parameters, etc. This approach requires
fewer class-variables, but changes in requirements may cause
many changes in the definition and selection of the parameters.
This approach clearly gives a poor quality software.

VI. CONCLUSION

We have presented here a systematic, semi-formal method
to obtain a hierarchical class-structure, including the attributes

and methods for each class in the hierarchy, for an object-
oriented design of a software from its requirements given in
the form of a set of use-cases. We use two formal models:
(1) a detailed model of a use-case in terms of its inter-
actions (operations), which includes the user and external
inputs/outputs of each operation and the dataflows to/from
it, and (2) an Augmented Finite State (AFS) model for a
set of use-cases, which captures shared operations among the
use-cases, the points-of-divergence between use-cases and the
related control-flow conditions. The AFS model can help to
identify missing use-cases, missing interactions in the use-
cases, and the potential need to decompose some interactions
into simpler ones. If the AFS model has a tree structure, then
this directly gives a hierarchical class-structure suitable for
an object oriented implementation of the requirements. This
means, in principle, one could start from, say, a C-programP
and reverse engineer it to obtain an AFS model for it, and if the
AFS model has a tree structure then create a hierarchical class-
structure from that AFS model, and finally obtain an object-
oriented programP ′ with the same functionality asP .
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